Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (21,583)

Search Parameters:
Keywords = criticality assessment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 469 KiB  
Article
An Adaptation of the Quality–Loyalty Model to Study Green Consumer Loyalty
by Thi Hoang Ha Tran and Tuan Le-Anh
Sustainability 2025, 17(15), 7144; https://doi.org/10.3390/su17157144 (registering DOI) - 6 Aug 2025
Abstract
This research proposes an adaptation of the quality–loyalty model in which affective commitment is integrated as a key factor in the proposed framework. The study presented a comprehensive framework encompassing 11 hypotheses formulated from an extensive literature review. Empirical data collected from 679 [...] Read more.
This research proposes an adaptation of the quality–loyalty model in which affective commitment is integrated as a key factor in the proposed framework. The study presented a comprehensive framework encompassing 11 hypotheses formulated from an extensive literature review. Empirical data collected from 679 environmentally conscious consumers predominantly residing in Vietnam’s three principal urban centers were employed to evaluate these hypotheses. The assessment was executed utilizing the partial least squares structural equation modeling technique. The results of this research authenticate the appropriateness of the integrated model in studying green consumption, verify the critical role of affective commitment in the newly introduced model, and identify the high impact of affective commitment on green loyalty intention and green purchase behavior. This research also shows that other factors of the quality–loyalty model have significant influences on affective commitment and green loyalty intention. Moreover, this study signifies the crucial role of green perceived quality in fostering affective commitment and green loyalty intention. Green perceived quality was identified as a key factor influencing green loyalty intention and played a crucial role in encouraging customers to purchase environmentally friendly products. Full article
(This article belongs to the Section Psychology of Sustainability and Sustainable Development)
Show Figures

Figure 1

45 pages, 4319 KiB  
Review
Advancements in Radiomics-Based AI for Pancreatic Ductal Adenocarcinoma
by Georgios Lekkas, Eleni Vrochidou and George A. Papakostas
Bioengineering 2025, 12(8), 849; https://doi.org/10.3390/bioengineering12080849 (registering DOI) - 6 Aug 2025
Abstract
The advancement of artificial intelligence (AI), deep learning, and radiomics has introduced novel methodologies for the detection, classification, prognosis, and treatment evaluation of pancreatic ductal adenocarcinoma (PDAC). As the integration of AI into medical imaging continues to evolve, its potential to enhance early [...] Read more.
The advancement of artificial intelligence (AI), deep learning, and radiomics has introduced novel methodologies for the detection, classification, prognosis, and treatment evaluation of pancreatic ductal adenocarcinoma (PDAC). As the integration of AI into medical imaging continues to evolve, its potential to enhance early detection, refine diagnostic precision, and optimize treatment strategies becomes increasingly evident. However, despite significant progress, various challenges remain, particularly in terms of clinical applicability, generalizability, interpretability, and integration into routine practice. Understanding the current state of research is crucial for identifying gaps in the literature and exploring opportunities for future advancements. This literature review aims to provide a comprehensive overview of the existing studies on AI applications in PDAC, with a focus on disease detection, classification, survival prediction, treatment response assessment, and radiogenomics. By analyzing the methodologies, findings, and limitations of these studies, we aim to highlight the strengths of AI-driven approaches while addressing critical gaps that hinder their clinical translation. Furthermore, this review aims to discuss future directions in the field, emphasizing the need for multi-institutional collaborations, explainable AI models, and the integration of multi-modal data to advance the role of AI in personalized medicine for PDAC. Full article
Show Figures

Figure 1

20 pages, 1818 KiB  
Article
Aeroelastic Oscillations of Cantilever Beams Reinforced by Carbon Nanotubes Based on a Modified Third-Order Piston Theory
by Mehdi Alimoradzadeh, Francesco Tornabene and Rossana Dimitri
Appl. Sci. 2025, 15(15), 8700; https://doi.org/10.3390/app15158700 (registering DOI) - 6 Aug 2025
Abstract
This work analyzes the aero-elastic oscillations of cantilever beams reinforced by carbon nanotubes (CNTs). Four different distributions of single-walled CNTs are assumed as the reinforcing phase, in the thickness direction of the polymeric matrix. A modified third-order piston theory is used as an [...] Read more.
This work analyzes the aero-elastic oscillations of cantilever beams reinforced by carbon nanotubes (CNTs). Four different distributions of single-walled CNTs are assumed as the reinforcing phase, in the thickness direction of the polymeric matrix. A modified third-order piston theory is used as an accurate tool to model the supersonic air flow, rather than a first-order piston theory. The nonlinear dynamic equation governing the problem accounts for Von Kármán-type nonlinearities, and it is derived from Hamilton’s principle. Then, the Galerkin decomposition technique is adopted to discretize the nonlinear partial differential equation into a nonlinear ordinary differential equation. This is solved analytically according to a multiple time scale method. A comprehensive parametric analysis was conducted to assess the influence of CNT volume fraction, beam slenderness, Mach number, and thickness ratio on the fundamental frequency and lateral dynamic deflection. Results indicate that FG-X reinforcement yields the highest frequency response and lateral deflection, followed by UD and FG-A patterns, whereas FG-O consistently exhibits the lowest performance metrics. An increase in CNT volume fraction and a reduction in slenderness ratio enhance the system’s stiffness and frequency response up to a critical threshold, beyond which a damped beating phenomenon emerges. Moreover, higher Mach numbers and greater thickness ratios significantly amplify both frequency response and lateral deflections, although damping rates tend to decrease. These findings provide valuable insights into the optimization of CNTR composite structures for advanced aeroelastic applications under supersonic conditions, as useful for many engineering applications. Full article
Show Figures

Figure 1

19 pages, 1226 KiB  
Article
Improving Endodontic Radiograph Interpretation with TV-CLAHE for Enhanced Root Canal Detection
by Barbara Obuchowicz, Joanna Zarzecka, Michał Strzelecki, Marzena Jakubowska, Rafał Obuchowicz, Adam Piórkowski, Elżbieta Zarzecka-Francica and Julia Lasek
J. Clin. Med. 2025, 14(15), 5554; https://doi.org/10.3390/jcm14155554 - 6 Aug 2025
Abstract
Objective: The accurate visualization of root canal systems on periapical radiographs is critical for successful endodontic treatment. This study aimed to evaluate and compare the effectiveness of several image enhancement algorithms—including a novel Total Variation–Contrast-Limited Adaptive Histogram Equalization (TV-CLAHE) technique—in improving the detectability [...] Read more.
Objective: The accurate visualization of root canal systems on periapical radiographs is critical for successful endodontic treatment. This study aimed to evaluate and compare the effectiveness of several image enhancement algorithms—including a novel Total Variation–Contrast-Limited Adaptive Histogram Equalization (TV-CLAHE) technique—in improving the detectability of root canal configurations in mandibular incisors, using cone-beam computed tomography (CBCT) as the gold standard. A null hypothesis was tested, assuming that enhancement methods would not significantly improve root canal detection compared to original radiographs. Method: A retrospective analysis was conducted on 60 periapical radiographs of mandibular incisors, resulting in 420 images after applying seven enhancement techniques: Histogram Equalization (HE), Contrast-Limited Adaptive Histogram Equalization (CLAHE), CLAHE optimized with Pelican Optimization Algorithm (CLAHE-POA), Global CLAHE (G-CLAHE), k-Caputo Fractional Differential Operator (KCFDO), and the proposed TV-CLAHE. Four experienced observers (two radiologists and two dentists) independently assessed root canal visibility. Subjective evaluation was performed using an own scale inspired by a 5-point Likert scale, and the detection accuracy was compared to the CBCT findings. Quantitative metrics including Peak Signal-to-Noise Ratio (PSNR), Signal-to-Noise Ratio (SNR), image entropy, and Structural Similarity Index Measure (SSIM) were calculated to objectively assess image quality. Results: Root canal detection accuracy improved across all enhancement methods, with the proposed TV-CLAHE algorithm achieving the highest performance (93–98% accuracy), closely approaching CBCT-level visualization. G-CLAHE also showed substantial improvement (up to 92%). Statistical analysis confirmed significant inter-method differences (p < 0.001). TV-CLAHE outperformed all other techniques in subjective quality ratings and yielded superior SNR and entropy values. Conclusions: Advanced image enhancement methods, particularly TV-CLAHE, significantly improve root canal visibility in 2D radiographs and offer a practical, low-cost alternative to CBCT in routine dental diagnostics. These findings support the integration of optimized contrast enhancement techniques into endodontic imaging workflows to reduce the risk of missed canals and improve treatment outcomes. Full article
(This article belongs to the Section Dentistry, Oral Surgery and Oral Medicine)
16 pages, 2576 KiB  
Article
Modeling and Spatiotemporal Analysis of Actual Evapotranspiration in a Desert Steppe Based on SEBS
by Yanlin Feng, Lixia Wang, Chunwei Liu, Baozhong Zhang, Jun Wang, Pei Zhang and Ranghui Wang
Hydrology 2025, 12(8), 205; https://doi.org/10.3390/hydrology12080205 - 6 Aug 2025
Abstract
Accurate estimation of actual evapotranspiration (ET) is critical for understanding hydrothermal cycles and ecosystem functioning in arid regions, where water scarcity governs ecological resilience. To address persistent gaps in ET quantification, this study integrates multi-source remote sensing data, energy balance modeling, and ground-based [...] Read more.
Accurate estimation of actual evapotranspiration (ET) is critical for understanding hydrothermal cycles and ecosystem functioning in arid regions, where water scarcity governs ecological resilience. To address persistent gaps in ET quantification, this study integrates multi-source remote sensing data, energy balance modeling, and ground-based validation that significantly enhances spatiotemporal ET accuracy in the vulnerable desert steppe ecosystems. The study utilized meteorological data from several national stations and Landsat-8 imagery to process monthly remote sensing images in 2019. The Surface Energy Balance System (SEBS) model, chosen for its ability to estimate ET over large areas, was applied to derive modeled daily ET values, which were validated by a large-weighted lysimeter. It was shown that ET varied seasonally, peaking in July at 6.40 mm/day, and reaching a minimum value in winter with 1.83 mm/day in December. ET was significantly higher in southern regions compared to central and northern areas. SEBS-derived ET showed strong agreement with lysimeter measurements, with a mean relative error of 4.30%, which also consistently outperformed MOD16A2 ET products in accuracy. This spatial heterogeneity was driven by greater vegetation coverage and enhanced precipitation in the southeast. The steppe ET showed a strong positive correlation with surface temperatures and vegetation density. Moreover, the precipitation gradients and land use were primary controllers of spatial ET patterns. The process-based SEBS frameworks demonstrate dual functionality as resource-optimized computational platforms while enabling multi-scale quantification of ET spatiotemporal heterogeneity; it was therefore a reliable tool for ecohydrological assessments in an arid steppe, providing critical insights for water resource management and drought monitoring. Full article
(This article belongs to the Section Hydrological and Hydrodynamic Processes and Modelling)
Show Figures

Figure 1

25 pages, 3789 KiB  
Article
Rheological Evaluation of Ultra-High-Performance Concrete as a Rehabilitation Alternative for Pavement Overlays
by Hermes Vacca, Yezid A. Alvarado, Daniel M. Ruiz and Andres M. Nuñez
Materials 2025, 18(15), 3700; https://doi.org/10.3390/ma18153700 - 6 Aug 2025
Abstract
This study evaluates the rheological behavior and mechanical performance of Ultra-High-Performance Fiber-Reinforced Concrete (UHPFRC) mixes with varying superplasticizer dosages, aiming to optimize their use in pavement rehabilitation overlays on sloped surfaces. A reference self-compacting UHPFRC mix was modified by reducing the superplasticizer-to-binder ratio [...] Read more.
This study evaluates the rheological behavior and mechanical performance of Ultra-High-Performance Fiber-Reinforced Concrete (UHPFRC) mixes with varying superplasticizer dosages, aiming to optimize their use in pavement rehabilitation overlays on sloped surfaces. A reference self-compacting UHPFRC mix was modified by reducing the superplasticizer-to-binder ratio in incremental steps, and the resulting mixes were assessed through rheometry, mini-Slump, and Abrams cone tests. Key rheological parameters—static and dynamic yield stress, plastic viscosity, and thixotropy—were determined using the modified Bingham model. The results showed that reducing superplasticizer content increased yield stress and viscosity, enhancing thixotropic behavior while maintaining ultra-high compressive (≥130 MPa) and flexural strength (≥20 MPa) at 28 days. A predictive model was validated to estimate the critical yield stress needed for overlays on slopes. Among the evaluated formulations, the SP-2 mix met the stability and performance criteria and was successfully tested in a prototype overlay, demonstrating its viability for field application. This research confirms the potential of rheology-tailored UHPFRC as a high-performance solution for durable and stable pavement overlays in demanding geometric conditions. Full article
(This article belongs to the Special Issue Advances in Material Characterization and Pavement Modeling)
16 pages, 2899 KiB  
Article
The Coupling Mechanism of the Electricity–Gas System and Assessment of Attack Resistance Based on Interdependent Networks
by Qingyu Zou and Lin Yan
Eng 2025, 6(8), 193; https://doi.org/10.3390/eng6080193 - 6 Aug 2025
Abstract
Natural gas plays a critical role in integrated energy systems. In this context, the present study proposes an optimization model for the electricity–gas coupling system, grounded in the theory of interdependent networks. By integrating network topology parameters with real-time operational metrics, the model [...] Read more.
Natural gas plays a critical role in integrated energy systems. In this context, the present study proposes an optimization model for the electricity–gas coupling system, grounded in the theory of interdependent networks. By integrating network topology parameters with real-time operational metrics, the model substantially enhances system robustness and adaptability. To quantify nodal vulnerability and importance, the study introduces two novel evaluation indicators: the Electric Potential–Closeness Fusion Indicator (EPFI) for power networks and the Pressure Difference–Closeness Comprehensive Indicator (PDCI) for natural gas systems. Leveraging these indicators, three coupling paradigms—assortative, disassortative, and random—are systematically constructed and analyzed. System resilience is assessed through simulation experiments incorporating three attack strategies: degree-based, betweenness centrality-based, and random node removal. Evaluation metrics include network efficiency and the variation in the size of the largest connected subgraph under different coupling configurations. The proposed framework is validated using a hybrid case study that combines the IEEE 118-node electricity network with a 20-node Belgian natural gas system, operating under a unidirectional gas-to-electricity energy flow model. Results confirm that the disassortative coupling configuration, based on EPFI and PDCI indicators, exhibits superior resistance to network perturbations, thereby affirming the effectiveness of the model in improving the robustness of integrated energy systems. Full article
19 pages, 1997 KiB  
Review
The Economic Landscape of Global Rabies: A Scoping Review and Future Directions
by Molly Selleck, Peter Koppes, Colin Jareb, Steven Shwiff, Lirong Liu and Stephanie A. Shwiff
Trop. Med. Infect. Dis. 2025, 10(8), 222; https://doi.org/10.3390/tropicalmed10080222 - 6 Aug 2025
Abstract
Rabies remains a significant global public health concern, causing an estimated 59,000–69,000 human fatalities annually. Despite being entirely preventable through vaccination, rabies continues to impose substantial economic burdens worldwide. This study presents a scoping review of the economic research on rabies to determine [...] Read more.
Rabies remains a significant global public health concern, causing an estimated 59,000–69,000 human fatalities annually. Despite being entirely preventable through vaccination, rabies continues to impose substantial economic burdens worldwide. This study presents a scoping review of the economic research on rabies to determine overlaps and gaps in knowledge and inform future research strategies. We selected 150 studies (1973–2024) to analyze. The review categorizes the literature based on geographic distribution, species focus, and type of study. Findings indicate that economic studies are disproportionately concentrated in developed countries, such as the United States and parts of Europe, where rabies risk is low, while high-risk regions, particularly in Africa and Asia, remain underrepresented. Most studies focus on dog-mediated rabies, reflecting its dominant role in human transmission, while fewer studies assess the economic impacts of wildlife and livestock-mediated rabies. Case studies and modeling approaches dominate the literature, whereas cost–benefit and cost–effectiveness analyses—critical for informing resource allocation—are limited. The review highlights the need for more economic evaluations in rabies-endemic regions, expanded research on non-dog reservoirs, and broader use of economic methods. Addressing these gaps will be crucial for optimizing rabies control and supporting global initiatives to eliminate dog-mediated rabies by 2030. Full article
(This article belongs to the Special Issue Rabies Epidemiology, Control and Prevention Studies)
Show Figures

Figure 1

14 pages, 845 KiB  
Article
Assessment of Ultrasound-Controlled Diagnostic Methods for Thyroid Lesions and Their Associated Costs in a Tertiary University Hospital in Spain
by Lelia Ruiz-Hernández, Carmen Rosa Hernández-Socorro, Pedro Saavedra, María de la Vega-Pérez and Sergio Ruiz-Santana
J. Clin. Med. 2025, 14(15), 5551; https://doi.org/10.3390/jcm14155551 - 6 Aug 2025
Abstract
Background/Objectives: Accurate diagnosis of thyroid cancer is critical but challenging due to overlapping ultrasound (US) features of benign and malignant nodules. This study aimed to evaluate the diagnostic performance of non-invasive and minimally invasive US techniques, including B-mode US, shear wave elastography (SWE), [...] Read more.
Background/Objectives: Accurate diagnosis of thyroid cancer is critical but challenging due to overlapping ultrasound (US) features of benign and malignant nodules. This study aimed to evaluate the diagnostic performance of non-invasive and minimally invasive US techniques, including B-mode US, shear wave elastography (SWE), color Doppler, superb microvascular imaging (SMI), and TI-RADS, in patients with suspected thyroid lesions and to assess their reliability and cost effectiveness compared with fine needle aspiration (FNA) biopsy. Methods: A prospective, single-center study (October 2023–February 2025) enrolled 300 patients with suspected thyroid cancer at a Spanish tertiary hospital. Of these, 296 patients with confirmed diagnoses underwent B-mode US, SWE, Doppler, SMI, and TI-RADS scoring, followed by US-guided FNA and Bethesda System cytopathology. Lasso-penalized logistic regression and a bootstrap analysis (1000 replicates) were used to develop diagnostic models. A utility function was used to balance diagnostic reliability and cost. Results: Thyroid cancer was diagnosed in 25 patients (8.3%). Elastography combined with SMI achieved the highest diagnostic performance (Youden index: 0.69; NPV: 97.4%; PPV: 69.1%), outperforming Doppler-only models. Intranodular vascularization was a significant risk factor, while peripheral vascularization was protective. The utility function showed that, when prioritizing cost, elastography plus SMI was cost effective (α < 0.716) compared with FNA. Conclusions: Elastography plus SMI offers a reliable, cost-effective diagnostic rule for thyroid cancer. The utility function aids clinicians in balancing reliability and cost. SMI and generalizability need to be validated in higher prevalence settings. Full article
(This article belongs to the Section Endocrinology & Metabolism)
Show Figures

Figure 1

22 pages, 5839 KiB  
Article
Fire Safety of Curtain Walling: Evidence-Based Critical Review and New Test Configuration Proposal for EN 1364-4
by Arritokieta Eizaguirre-Iribar, Raya Stoyanova Trifonova, Peter Ens and Xabier Olano-Azkune
Fire 2025, 8(8), 311; https://doi.org/10.3390/fire8080311 - 6 Aug 2025
Abstract
This article focuses on the fire safety risks associated with conventional glass–aluminum façades—with a particular focus on stick and unitized curtain walling systems—providing an overview of possible fire spread mechanisms, considering the role of the curtain wall in maintaining compartmentation at the spandrel [...] Read more.
This article focuses on the fire safety risks associated with conventional glass–aluminum façades—with a particular focus on stick and unitized curtain walling systems—providing an overview of possible fire spread mechanisms, considering the role of the curtain wall in maintaining compartmentation at the spandrel zone. First, it analyzes some of the relevant requirements of different European building regulations. Then, it provides a test evidence-based critical analysis of the gaps and loopholes in the relevant fire resistance standard for partial curtain wall configurations (EN 1364-4), where the evaluation of the propagation within the façade system is not necessarily considered in the fire-resistant spandrel zone. Finally, it presents a proposal for addressing these gaps in the form of a theoretical concept for a new test configuration and additional assessment criteria. This is followed by an initial experimental analysis of the concept. The standard testing campaign showed that temperature rise in mullions can exceed 180 °C after 30 min if limiting measures are not considered in the façade design. However, this can be only detected if framing is in the non-exposed area of the sample, being part of the evaluation surface. Meanwhile, differences are detected between the results from standard and new assessment criteria in the new configuration proposed, including a more rapid temperature rise for framing elements (207 K in a second level mullion at minute 90) than for the common non-exposed assessment surface of the sample (172 K at the same time) in cases where cavities are not protected. Accordingly, the proposed configuration successfully detected vertical temperature transfer within mullions, which can remain undetected in standard EN 1364-4 tests, highlighting the potential for fire spread even in EI120-rated assemblies. Full article
Show Figures

Figure 1

27 pages, 4506 KiB  
Article
Interpretable Machine Learning Framework for Corporate Financialization Prediction: A SHAP-Based Analysis of High-Dimensional Data
by Yanhe Wang, Wei Wei, Zhuodong Liu, Jiahe Liu, Yinzhen Lv and Xiangyu Li
Mathematics 2025, 13(15), 2526; https://doi.org/10.3390/math13152526 - 6 Aug 2025
Abstract
High-dimensional prediction problems with complex non-linear feature interactions present significant algorithmic challenges in machine learning, particularly when dealing with imbalanced datasets and multicollinearity issues. This study proposes an innovative Shapley Additive Explanations (SHAP)-enhanced machine learning framework that integrates SHAP with advanced ensemble methods [...] Read more.
High-dimensional prediction problems with complex non-linear feature interactions present significant algorithmic challenges in machine learning, particularly when dealing with imbalanced datasets and multicollinearity issues. This study proposes an innovative Shapley Additive Explanations (SHAP)-enhanced machine learning framework that integrates SHAP with advanced ensemble methods for interpretable financialization prediction. The methodology simultaneously addresses high-dimensional feature selection using 40 independent variables (19 CSR-related and 21 financialization-related), multicollinearity issues, and model interpretability requirements. Using a comprehensive dataset of 25,642 observations from 3776 Chinese A-share companies (2011–2022), we implement nine optimized machine learning algorithms with hyperparameter tuning via the Hippopotamus Optimization algorithm and five-fold cross-validation. XGBoost demonstrates superior performance with 99.34% explained variance, achieving an RMSE of 0.082 and R2 of 0.299. SHAP analysis reveals non-linear U-shaped relationships between key predictors and financialization outcomes, with critical thresholds at approximately 10 for CSR_SocR, 1.5 for CSR_S, and 5 for CSR_CV. SOE status, EPU, ownership concentration, firm size, and housing prices emerge as the most influential predictors. Notable shifts in factor importance occur during the COVID-19 pandemic period (2020–2022). This work contributes a scalable, interpretable machine learning architecture for high-dimensional financial prediction problems, with applications in risk assessment, portfolio optimization, and regulatory monitoring systems. Full article
Show Figures

Figure 1

28 pages, 8519 KiB  
Article
Evaluating the Microclimatic Performance of Elevated Open Spaces for Outdoor Thermal Comfort in Cold Climate Zones
by Xuan Ma, Qian Luo, Fangxi Yan, Yibo Lei, Yuyang Lu, Haoyang Chen, Yuhuan Yang, Han Feng, Mengyuan Zhou, Hua Ding and Jingyuan Zhao
Buildings 2025, 15(15), 2777; https://doi.org/10.3390/buildings15152777 - 6 Aug 2025
Abstract
Improving outdoor thermal comfort is a critical objective in urban design, particularly in densely built urban environments. Elevated semi-open spaces—outdoor areas located beneath raised building structures—have been recognized for enhancing pedestrian comfort by improving airflow and shading. However, previous studies primarily focused on [...] Read more.
Improving outdoor thermal comfort is a critical objective in urban design, particularly in densely built urban environments. Elevated semi-open spaces—outdoor areas located beneath raised building structures—have been recognized for enhancing pedestrian comfort by improving airflow and shading. However, previous studies primarily focused on warm or temperate climates, leaving a significant research gap regarding their thermal performance in cold climate zones characterized by extreme seasonal variations. Specifically, few studies have investigated how these spaces perform under conditions typical of northern Chinese cities like Xi’an, which is explicitly classified within the Cold Climate Zone according to China’s national standard GB 50176-2016 and experiences both severe summer heat and cold winter conditions. To address this gap, we conducted field measurements and numerical simulations using the ENVI-met model (v5.0) to systematically evaluate the microclimatic performance of elevated ground-floor spaces in Xi’an. Key microclimatic parameters—including air temperature, mean radiant temperature, relative humidity, and wind velocity—were assessed during representative summer and winter conditions. Our findings indicate that the height of the elevated structure significantly affects outdoor thermal comfort, identifying an optimal elevated height range of 3.6–4.3 m to effectively balance summer cooling and winter sheltering needs. These results provide valuable design guidance for architects and planners aiming to enhance outdoor thermal environments in cold climate regions facing distinct seasonal extremes. Full article
16 pages, 752 KiB  
Systematic Review
Balancing Accuracy, Safety, and Cost in Mediastinal Diagnostics: A Systematic Review of EBUS and Mediastinoscopy in NSCLC
by Serban Radu Matache, Ana Adelina Afetelor, Ancuta Mihaela Voinea, George Codrut Cosoveanu, Silviu-Mihail Dumitru, Mihai Alexe, Mihnea Orghidan, Alina Maria Smaranda, Vlad Cristian Dobrea, Alexandru Șerbănoiu, Beatrice Mahler and Cornel Florentin Savu
Healthcare 2025, 13(15), 1924; https://doi.org/10.3390/healthcare13151924 - 6 Aug 2025
Abstract
Background: Mediastinal staging plays a critical role in guiding treatment decisions for non-small cell lung cancer (NSCLC). While mediastinoscopy has been the gold standard for assessing mediastinal lymph node involvement, endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) has emerged as a minimally invasive alternative [...] Read more.
Background: Mediastinal staging plays a critical role in guiding treatment decisions for non-small cell lung cancer (NSCLC). While mediastinoscopy has been the gold standard for assessing mediastinal lymph node involvement, endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) has emerged as a minimally invasive alternative with comparable diagnostic accuracy. This systematic review evaluates the diagnostic performance, safety, cost-effectiveness, and feasibility of EBUS-TBNA versus mediastinoscopy for mediastinal staging. Methods: A systematic literature review was conducted in accordance with PRISMA guidelines, including searches in Medline, Scopus, EMBASE, and Cochrane databases for studies published from 2010 onwards. A total of 1542 studies were identified, and after removing duplicates and applying eligibility criteria, 100 studies were included for detailed analysis. The extracted data focused on sensitivity, specificity, complications, economic impact, and patient outcomes. Results: EBUS-TBNA demonstrated high sensitivity (85–94%) and specificity (~100%), making it an effective first-line modality for NSCLC staging. Mediastinoscopy remained highly specific (~100%) but exhibited slightly lower sensitivity (86–90%). EBUS-TBNA had a lower complication rate (~2%) and was more cost-effective, while mediastinoscopy provided larger biopsy samples, essential for molecular and histological analyses. The need for general anaesthesia, longer hospital stays, and increased procedural costs make mediastinoscopy less favourable as an initial approach. Combining both techniques in select cases enhanced overall staging accuracy, reducing false negatives and improving diagnostic confidence. Conclusions: EBUS-TBNA has become the preferred first-line mediastinal staging method due to its minimally invasive approach, high diagnostic accuracy, and lower cost. However, mediastinoscopy remains crucial in cases requiring posterior mediastinal node assessment or larger tissue samples. The integration of both techniques in a stepwise diagnostic strategy offers the highest accuracy while minimizing risks and costs. Given the lower hospitalization rates and economic benefits associated with EBUS-TBNA, its widespread adoption may contribute to more efficient resource utilization in healthcare systems. Full article
Show Figures

Figure 1

19 pages, 2135 KiB  
Article
Development of an Automotive Electronics Internship Assistance System Using a Fine-Tuned Llama 3 Large Language Model
by Ying-Chia Huang, Hsin-Jung Tsai, Hui-Ting Liang, Bo-Siang Chen, Tzu-Hsin Chu, Wei-Sho Ho, Wei-Lun Huang and Ying-Ju Tseng
Systems 2025, 13(8), 668; https://doi.org/10.3390/systems13080668 - 6 Aug 2025
Abstract
This study develops and validates an artificial intelligence (AI)-assisted internship learning platform for automotive electronics based on the Llama 3 large language model, aiming to enhance pedagogical effectiveness within vocational training contexts. Addressing critical issues such as the persistent theory–practice gap and limited [...] Read more.
This study develops and validates an artificial intelligence (AI)-assisted internship learning platform for automotive electronics based on the Llama 3 large language model, aiming to enhance pedagogical effectiveness within vocational training contexts. Addressing critical issues such as the persistent theory–practice gap and limited innovation capability prevalent in existing curricula, we leverage the natural language processing (NLP) capabilities of Llama 3 through fine-tuning based on transfer learning to establish a specialized knowledge base encompassing fundamental circuit principles and fault diagnosis protocols. The implementation employs the Hugging Face Transformers library with optimized hyperparameters, including a learning rate of 5 × 10−5 across five training epochs. Post-training evaluations revealed an accuracy of 89.7% on validation tasks (representing a 12.4% improvement over the baseline model), a semantic comprehension precision of 92.3% in technical question-and-answer assessments, a mathematical computation accuracy of 78.4% (highlighting this as a current limitation), and a latency of 6.3 s under peak operational workloads (indicating a system bottleneck). Although direct trials involving students were deliberately avoided, the platform’s technical feasibility was validated through multidimensional benchmarking against established models (BERT-base and GPT-2), confirming superior domain adaptability (F1 = 0.87) and enhanced error tolerance (σ2 = 1.2). Notable limitations emerged in numerical reasoning tasks (Cohen’s d = 1.15 compared to human experts) and in real-time responsiveness deterioration when exceeding 50 concurrent users. The study concludes that Llama 3 demonstrates considerable promise for automotive electronics skills development. Proposed future enhancements include integrating symbolic AI modules to improve computational reliability, implementing Kubernetes-based load balancing to ensure latency below 2 s at scale, and conducting longitudinal pedagogical validation studies with trainees. This research provides a robust technical foundation for AI-driven vocational education, especially suited to mechatronics fields that require close integration between theoretical knowledge and practical troubleshooting skills. Full article
Show Figures

Figure 1

18 pages, 3014 KiB  
Article
Biocide Tolerance, Biofilm Formation, and Efflux Pump Activity in Clinical Isolates of Trichosporon asahii
by Yasmim Passos Lima, Jamile de Paiva Macedo, Alessandra Barbosa Ferreira Machado, Cláudio Galuppo Diniz, Vania Lucia da Silva and Vanessa Cordeiro Dias
Infect. Dis. Rep. 2025, 17(4), 97; https://doi.org/10.3390/idr17040097 (registering DOI) - 6 Aug 2025
Abstract
Background: Trichosporon spp. are opportunistic fungi, capable of causing infection, especially in critically ill individuals who often use broad-spectrum antibiotics, invasive devices, and have comorbidities. Objectives The aim of this study was to analyze individuals’ clinical characteristics, evaluate tolerance to biocides, as well [...] Read more.
Background: Trichosporon spp. are opportunistic fungi, capable of causing infection, especially in critically ill individuals who often use broad-spectrum antibiotics, invasive devices, and have comorbidities. Objectives The aim of this study was to analyze individuals’ clinical characteristics, evaluate tolerance to biocides, as well as biofilm formation and efflux pump activity in isolates of Trichosporon asahii. Methods: Clinical isolates of T. asahii collected between 2020 and 2023 from both hospitalized and non-hospitalized individuals, of both sexes, regardless of age, were tested for tolerance to sodium hypochlorite, hydrogen peroxide, benzalkonium chloride, and ethyl alcohol. Efflux pump activity was also assessed using ethidium bromide, and biofilm formation was measured with the Safranin test. Clinical parameters such as outcomes, source, and length of hospitalization were analyzed through electronic medical records. Results: A total of 37 clinical isolates of T. asahii were identified. Thirty-three (83.8%) isolates were from hospitalized individuals, with 81.82% collected in ICUs, an average hospital stay of 35 days, and a mortality rate of 51.6%. The tested strains displayed the largest mean inhibition zone for 2% sodium hypochlorite, indicating lower tolerance. A high level of efflux pump expression was detected among clinical isolates. Biofilm formation was detected in 25/67.5% of the isolates. Conclusions: These findings highlight the clinical relevance of T. asahii, particularly in critically ill individuals, and underscore the pathogen’s ability to tolerate biocides, express efflux pumps, and form biofilms, all of which may contribute to its persistence and pathogenicity in hospital environments. Enhanced surveillance and effective microbial control measures are essential to mitigate the risks associated with T. asahii infections. Full article
(This article belongs to the Section Fungal Infections)
Show Figures

Figure 1

Back to TopTop