Rheological Evaluation of Ultra-High-Performance Concrete as a Rehabilitation Alternative for Pavement Overlays
Abstract
1. Introduction
2. Materials and Experimental Design
Materials
- Measurement of rheological parameters using a rheometer, determining key properties such as yield stress and viscosity.
- Evaluation of flow behavior using the Abrams cone test [1] to analyze consistency and laying characteristics.
3. Results and Discussion
3.1. Characterization in Fresh State
3.2. Static Fluency Effort Behavior
3.3. Behavior of Dynamic Fluency Effort, Plastic Viscosity, and Thixotropy
3.4. Behavior of Mixes in Hardened State
3.5. Verification of UHPFRC Mix in Installing as Pavement Overlay
3.6. Practical Implications, Limitations, and Future Directions
- Restricted range of rheological modifications: The experimental program focused exclusively on varying the superplasticizer-to-binder ratio (SP/b), without exploring the combined effects of other parameters such as water content, fiber volume fraction, particle size distribution, or alternative admixtures. As a result, the findings are constrained to a narrow formulation window and may not be directly extrapolated to other UHPFRC systems.
- Constant fiber content across mixes: The steel fiber content was held constant in all formulations, which limited the analysis of how varying fiber volume may influence rheological behavior or mechanical performance. As fiber content can affect viscosity, dispersion, and flexural behavior, future studies should evaluate the combined effects of fiber dosage and rheology, particularly under thixotropic conditions.
- Single slope configuration and fixed overlay thickness: The field application was performed on a 10% slope with a 40 mm overlay thickness, limiting the validation of the predictive model for critical yield stress to this specific geometry. Different slope angles, thicknesses, or multilayer configurations could introduce additional flow or stability phenomena not captured in the current setup.
- No monitoring under service loads or environmental exposure: Although the field trial was carried out on realistic base layers (asphalt and concrete), it was not subjected to mechanical loading or environmental cycles.
- Recent efforts to model complex mechanical behavior in concrete using machine learning and deep learning approaches [62] suggest a growing interest in data-driven prediction, which could complement experimental investigations such as the present study.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- ASTM C143/C143M-20; Standard Test Method for Slump of Hydraulic-Cement Concrete. ASTM: West Conshohocken, PA, USA, 2020.
- ACI Committee 238. Report on Measurements of Workability and Rheology of Fresh Concrete; American Concrete Institute: Farmington Hills, MI, USA, 2008. [Google Scholar]
- Wong, G.S.; Alexander, A.M.; Haskins, R.; Poole, T.S.; Malone, P.G.; Wakeley, L. Portland-Cement Concrete Rheology and Workability; Technical Report; Turner-Fairbank Highway Research Center: McLean, VA, USA, 2001. [Google Scholar]
- Roussel, N.; Stéfani, C.; Leroy, R. From mini-cone test to Abrams cone test: Measurement of cement-based materials yield stress using slump tests. Cem. Concr. Res. 2005, 35, 817–822. [Google Scholar] [CrossRef]
- ASTM C1611/C1611M-18; Standard Test Method for Slump Flow of Self-Consolidating Concrete. ASTM: West Conshohocken, PA, USA, 2018.
- Choi, M.S.; Lee, J.S.; Ryu, K.S.; Koh, K.-T.; Kwon, S.H. Estimation of rheological properties of UHPFRC using mini slump test. Constr. Build. Mater. 2016, 106, 632–639. [Google Scholar] [CrossRef]
- Koutný, O.; Snoeck, D.; Van Der Vurst, F.; De Belie, N. Rheological behaviour of ultra-high performance cementitious composites containing high amounts of silica fume. Cem. Concr. Compos. 2018, 88, 29–40. [Google Scholar] [CrossRef]
- Kelessidis, V.C. Investigations on the thixotropy of bentonite suspensions. Energy Sources Part A 2008, 30, 1729–1746. [Google Scholar] [CrossRef]
- Tai, Y.-S.; El-Tawil, S.; Meng, B.; Hansen, W. Parameters influencing fluidity of UHPFRC and their effect on mechanical and durability properties. J. Mater. Civ. Eng. 2020, 32, 04020298. [Google Scholar] [CrossRef]
- Xue, J.; Briseghella, B.; Huang, F.; Nuti, C.; Tabatabai, H.; Chen, B. Review of ultra-high performance concrete and its application in bridge engineering. Constr. Build. Mater. 2020, 260, 119844. [Google Scholar] [CrossRef]
- Shi, C.; Wu, Z.; Xiao, J.; Wang, D.; Huang, Z.; Fang, Z. A review on ultra high performance concrete: Part I. Raw materials and mixture design. Constr. Build. Mater. 2015, 101, 741–751. [Google Scholar] [CrossRef]
- Green, B.H.; Moser, R.D.; Scott, D.A.; Long, W.R. Ultra-high performance concrete history and usage by the Corps of Engineers. Adv. Civ. Eng. Mater. 2015, 4, 132–143. Available online: https://store.astm.org/acem20140031.html (accessed on 1 January 2025). [CrossRef]
- Graybeal, B.A. Material Property Characterization of Ultra-High Performance Concrete; Technical Report; U.S. Federal Highway Administration, Office of Infrastructure: Washington, DC, USA, 2006. Available online: https://www.fhwa.dot.gov/publications/research/infrastructure/structures/06103/ (accessed on 1 January 2025).
- Russell, H.G.; Graybeal, B.A. Ultra-High Performance Concrete: A State-of-the-Art Report for the Bridge Community; Technical Report; U.S. Federal Highway Administration: Washington, DC, USA, 2013. Available online: https://www.fhwa.dot.gov/publications/research/infrastructure/structures/hpc/13060/ (accessed on 1 January 2025).
- Shafieifar, M.; Farzad, M.; Azizinamini, A. Experimental and numerical study on mechanical properties of ultra high performance concrete (UHPFRC). Constr. Build. Mater. 2017, 156, 402–411. [Google Scholar] [CrossRef]
- Abdulkareem, O.M.; Ben Fraj, A.; Bouasker, M.; Khelidj, A. Mixture design and early age investigations of more sustainable UHPFRC. Constr. Build. Mater. 2018, 163, 235–246. [Google Scholar] [CrossRef]
- Graybeal, B.; Tanesi, J. Durability of an ultrahigh-performance concrete. J. Mater. Civ. Eng. 2007, 19, 848–854. [Google Scholar] [CrossRef]
- Magureanu, C.; Sosa, I.; Negrutiu, C.; Heghes, B. Mechanical properties and durability of ultra-high-performance concrete. ACI Mater. J. 2012, 109, 183–192. [Google Scholar] [CrossRef]
- Habel, K.; Viviani, M.; Denarié, E.; Brühwiler, E. Development of the mechanical properties of an ultra-high performance fiber reinforced concrete (UHPFRC). Cem. Concr. Res. 2006, 36, 1362–1370. [Google Scholar] [CrossRef]
- Wille, K.; El-Tawil, S.; Naaman, A.E. Properties of strain hardening ultra high performance fiber reinforced concrete (UHP-FRC) under direct tensile loading. Cem. Concr. Compos. 2014, 48, 53–66. [Google Scholar] [CrossRef]
- Booya, E.; Loh, P.; Gardonio, D.; Adesina, A.; Das, S. Mechanical and durability performance of an innovative in-situ concrete pavement repair patch. In Proceedings of the Transportation Association of Canada 2020 Conference and Exhibition, Virtual, 21 September–8 October 2020; Available online: https://www.tac-atc.ca/en/knowledge-centre/technical-resources-search/conference-papers/mechanical-and-durability-performance-of-an-innovative-in-situ-concrete-pavement-repair-patch/ (accessed on 1 January 2025).
- Phares, B.; Shafei, B.; Sritharan, S. Alternative UHPFRC mix. Laboratory and field evaluation of an alternative UHPFRC mix and associated UHPFRC bridge. Bridge 2019, 515, 294–8103. [Google Scholar]
- Haber, Z.B. Improving bridge preservation with UHPFRC. Public Roads 2021, 84, 4. [Google Scholar]
- Hassan, A.M.T.; Jones, S.W.; Mahmud, G.H. Experimental test methods to determine the uniaxial tensile and compressive behaviour of ultra high performance fibre reinforced concrete (UHPFRC). Constr. Build. Mater. 2012, 37, 874–882. [Google Scholar] [CrossRef]
- Shin, T.Y.; Kim, J.H.; Koh, K.-T.; Ryu, G.-S.; Wang, K. Placement of ultra-high performance concrete for inclined-surface pavement. Road Mater. Pavement Des. 2021, 22, 1667–1680. [Google Scholar] [CrossRef]
- ASTM C150/C150M-21; Standard Specification for Portland Cement. ASTM: West Conshohocken, PA, USA, 2021.
- ASTM C494/C494M-19; Standard Specification for Chemical Admixtures for Concrete. ASTM: West Conshohocken, PA, USA, 2019.
- Saleh Ahari, R.; Erdem, T.K.; Ramyar, K. Thixotropy and structural breakdown properties of self-consolidating concrete containing various supplementary cementitious materials. Cem. Concr. Compos. 2015, 59, 26–37. [Google Scholar] [CrossRef]
- Saak, A.W.; Jennings, H.M.; Shah, S.P. The influence of wall slip on yield stress and viscoelastic measurements of cement paste. Cem. Concr. Res. 2001, 31, 205–212. [Google Scholar] [CrossRef]
- Schwartzentruber, L.D.; Le Roy, R.; Cordin, J. Rheological behaviour of fresh cement pastes formulated from a self-compacting concrete (SCC). Cem. Concr. Res. 2006, 36, 1203–1213. [Google Scholar] [CrossRef]
- Qian, Y.; Kawashima, S. Distinguishing dynamic and static yield stress of fresh cement mortars through thixotropy. Cem. Concr. Compos. 2018, 86, 288–296. [Google Scholar] [CrossRef]
- Teng, L.; Zhu, J.; Khayat, K.H.; Liu, J. Effect of welan gum and nanoclay on thixotropy of UHPFRC. Cem. Concr. Res. 2020, 138, 106238. [Google Scholar] [CrossRef]
- Feys, D.; Wallevik, J.E.; Yahia, A.; Khayat, K.H.; De Schutter, G. Extension of the Reiner–Riwlin equation to determine modified Bingham parameters measured in coaxial cylinders rheometers. Mater. Struct. 2013, 46, 289–311. [Google Scholar] [CrossRef]
- Dils, J.; Boel, V.; De Schutter, G. Influence of cement type and mixing pressure on air content, rheology and mechanical properties of UHPFRC. Constr. Build. Mater. 2013, 41, 455–463. [Google Scholar] [CrossRef]
- Nazar, S.; Yang, J.; Thomas, B.S.; Azim, I.; Rehman, S.K.U. Rheological properties of cementitious composites with and without nano-materials: A comprehensive review. J. Clean. Prod. 2020, 528, 122701. [Google Scholar] [CrossRef]
- Lin, Y.; Yan, J.; Wang, Z.; Fan, F.; Zou, C. Effect of silica fumes on fluidity of UHPFRC: Experiments, influence mechanism and evaluation methods. Constr. Build. Mater. 2019, 210, 451–460. [Google Scholar] [CrossRef]
- Feys, D.; Verhoeven, R.; De Schutter, G. Evaluation of time independent rheological models applicable to fresh self-compacting concrete. Appl. Rheol. 2007, 17, 56244-1–56244-10. [Google Scholar] [CrossRef]
- Omran, A.F.; Naji, S.; Khayat, K.H. Portable vane test to assess structural buildup at rest of self-consolidating concrete. ACI Mater. J. 2011, 108, 681–690. [Google Scholar] [CrossRef]
- Ahari, R.S.; Erdem, T.K.; Ramyar, K. Time-Dependent Rheological Characteristics of Self-Consolidating Concrete Containing Various Mineral Admixtures. Constr. Build. Mater. 2015, 88, 134–142. [Google Scholar] [CrossRef]
- ASTM C39/C39M-21; Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM: West Conshohocken, PA, USA, 2021.
- ASTM C1609/C1609M-12; Standard Test Method for Flexural Performance of Fiber-Reinforced Concrete Using Beam with Third-Point Loading. ASTM: West Conshohocken, PA, USA, 2019.
- Sritharan, S.; Doiron, G.; Bierwagen, D.; Keierleber, B.; Abu-Hawash, A. First application of UHPFRC bridge deck overlay in North America. Transp. Res. Rec. 2018, 2672, 40–47. [Google Scholar] [CrossRef]
- Roesler, J.R.; Bordelon, A.C.; Ioannides, A.; Beyer, M.; Wang, D. Design and Concrete Material Requirements for Ultra-Thin WhiteTopping; Technical Report; Illinois Center for Transportation: Urbana, IL, USA, 2008. Available online: https://rosap.ntl.bts.gov/view/dot/39668/dot_39668_DS1.pdf (accessed on 1 January 2025).
- Jiao, D.; Shi, C.; Yuan, Q.; An, X.; Liu, Y.; Li, H. Effect of constituents on rheological properties of fresh concrete—A review. Cem. Concr. Compos. 2017, 83, 146–159. [Google Scholar] [CrossRef]
- Vacca, H.; Alvarado, Y.; Hurtado, J.; Ruiz, D.; Ocampo, M.; Nuñez, A. Effect of the liquid phase on the rheological properties of UHPFRC concrete. In Ultra-High Performance Concrete and High Performance Construction Materials: Proceedings of HiPerMat 2020 5th International Symposium on Ultra-High Performance Concrete and High Performance Materials Kassel, Kassel, Germany, 11–13 March 2020; BoD—Books on Demand: 2020; Available online: https://kobra.uni-kassel.de/items/cec73509-bca6-43a2-9b0e-f40158f0d726/full (accessed on 1 January 2025).
- Kong, X.; Zhang, Y.; Hou, S. Study on the Rheological Properties of Portland Cement Pastes with Polycarboxylate Super-plasticizers. Rheol. Acta 2013, 52, 707–718. [Google Scholar] [CrossRef]
- Chen, M.; Yang, L.; Zheng, Y.; Huang, Y.; Li, L.; Zhao, P.; Wang, S.; Lu, L.; Cheng, X. Yield stress and thixotropy control of 3D printed calcium sulfoaluminate cement composites with metakaolin related to structural build-up. Constr. Build. Mater. 2020, 252, 119090. [Google Scholar] [CrossRef]
- Wang, R.; Gao, X.; Huang, H.; Han, G. Influence of rheological properties of cement mortar on steel fiber distribution in UHPFRC. Constr. Build. Mater. 2017, 144, 65–73. [Google Scholar] [CrossRef]
- Clayton, S.; Grice, T.G.; Boger, D.V. Analysis of the slump test for on-site yield stress measurement of mineral suspensions. Int. J. Miner. Process. 2003, 70, 3–21. [Google Scholar] [CrossRef]
- Saak, A.W.; Jennings, H.M.; Shah, S.P. A generalized approach for the determination of yield stress by slump and slump flow. Cem. Concr. Res. 2004, 34, 363–371. [Google Scholar] [CrossRef]
- Barluenga, G.; Palomar, I.; Guardia, C.; Varela, H.; Hernández-Olivares, F. Rheology and build-up of fresh SCC pastes evaluated with the mini-slump cone test. In Rheology and Processing of Construction Materials; Springer: Cham, Switzerland, 2019; pp. 160–167. [Google Scholar] [CrossRef]
- Khayat, K.H.; Meng, W.; Vallurupalli, K.; Teng, L. Rheological properties of ultra-high-performance concrete—An overview. Cem. Concr. Res. 2019, 124, 105828. [Google Scholar] [CrossRef]
- Ma, J.; Orgass, M.; Nguyen, V.T. Influence of addition method of superplasticizer on the properties of fresh UHPFRC. In Proceedings of the 2nd International Symposium on Ultra-High Performance Concrete, Kassel, Germany, 5–7 March 2008; Kassel University Press: Kassel, Germany, 2008; pp. 93–100. Available online: https://www.researchgate.net/publication/280244202_Influence_of_addition_method_of_suplerplasticizer_on_the_properties_of_fresh_UHPFRC (accessed on 1 January 2025).
- Lowke, D.; Stengel, T.; Schießl, P.; Gehlen, C. Control of rheology, strength and fibre bond of UHPFRC with additions—Effect of packing density and addition type. In Ultra-High Performance Concrete and Nanotechnology in Construction: Proceedings of HiPerMat 2012, Kassel, Germany, 7–9 March 2012; Kassel University Press: Kassel, Germany, 2012; pp. 215–224. Available online: https://www.researchgate.net/publication/256196053_Control_of_Rheology_Strength_and_Fibre_Bond_of_UHPFRC_with_Additions_-_Effect_of_Packing_Density_and_Addition_Type?utm_source=chatgpt.com (accessed on 1 January 2025).
- Meng, W.; Khayat, K.H. Improving flexural performance of ultra-high-performance concrete by rheology control of suspending mortar. Compos. Part B Eng. 2017, 117, 26–34. [Google Scholar] [CrossRef]
- Liu, J.; Khayat, K.H.; Shi, C. Effect of superabsorbent polymer characteristics on rheology of ultra-high-performance concrete. Cem. Concr. Compos. 2020, 112, 103636. [Google Scholar] [CrossRef]
- Roussel, N.; Ovarlez, G.; Garrault, S.; Brumaud, C. The origins of thixotropy of fresh cement pastes. Cem. Concr. Res. 2012, 42, 148–157. [Google Scholar] [CrossRef]
- Assaad, J.; Khayat, K.H.; Mesbah, H. Assessment of thixotropy of flowable and self-consolidating concrete. ACI Mater. J. 2003, 100, 99–107. [Google Scholar] [CrossRef]
- Roussel, N. A theoretical frame to study stability of fresh concrete. Mater. Struct. 2006, 39, 81–91. [Google Scholar] [CrossRef]
- Roussel, N. A thixotropy model for fresh fluid concretes: Theory, validation and applications. Cem. Concr. Res. 2006, 36, 1797–1806. [Google Scholar] [CrossRef]
- Hurtado, J. Modificación Del Comportamiento Reológico Del Concreto UHPFRC Como Alternativa De Diseño Y Construcción Para Pavimentos. Master’s Thesis, Pontificia Universidad Javeriana, Bogotá, Colombia, 2021. [Google Scholar] [CrossRef]
- Niu, Y.; Wang, W.; Su, Y.; Jia, F.; Long, X. Plastic damage prediction of concrete under compression based on deep learning. Acta Mech. 2024, 235, 255–266. [Google Scholar] [CrossRef]
Superplasticizer (SP) | Units | Physical Properties |
---|---|---|
Color | - | Amber |
Specific density | kg/m3 | 1136.0 |
pH, 20 °C | - | 4.7 |
Marsh Viscosity | mPa.s | 114 |
Material/Mix | SP-0 | SP-1 | SP-2 | SP-3 |
---|---|---|---|---|
Portland cement | 740 | 740 | 740 | 740 |
Calcium carbonate | 310 | 310 | 310 | 310 |
Silica fume | 210 | 210 | 210 | 210 |
Steel fiber | 153 | 153 | 153 | 153 |
Siliceous sand | 802 | 802 | 802 | 802 |
Effective water | 219.0 | 219.8 | 220.5 | 221.2 |
Superplasticizer (SP) | 24.7 | 23.7 | 22.7 | 21.7 |
SP/b | 0.0196 | 0.0188 | 0.0180 | 0.0172 |
Step | Start Time | Finish Time | Description of Action |
---|---|---|---|
(mm:ss) | (mm:ss) | ||
1 | 0:00 | 1:00 | Mix SP + Water |
) | 0:00 | 0:30 | Add 50% dry materials |
3 | 0:30 | 1:30 | Mix |
4 | 1:30 | 2:00 | Add 25% dry materials |
5 | 2:00 | 8:00 | Mix |
6 | 8:00 | 8:30 | Add 25% dry materials |
7 | 8:30 | 27:00:00 | Mix |
8 | 27:00:00 | 27:30:00 | Add fiber |
) | 27:30:00 | 31:00:00 | Mix |
10 | 31:00:00 | 37:00:00 | Mix |
11 | 37:00:00 | 40:00:00 | Test preparation |
) | 40:00:00 | 48:00:00 | Simultaneous Tests |
) | 60:00:00 | 68:00:00 | Simultaneous Tests a |
) | 80:00:00 | 88:00:00 | Simultaneous Tests a |
100:00:00 | 108:00:00 | Simultaneous Tests a | |
) | 120:00:00 | 128:00:00 | Simultaneous Tests a |
Parameter λ | 0.84 | |
Density | 2459.3 | |
Gravity g | 9.81 | |
Thickness d | 0.040 | |
Slope in percentage | % | 10 |
Pa | 142.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vacca, H.; Alvarado, Y.A.; Ruiz, D.M.; Nuñez, A.M. Rheological Evaluation of Ultra-High-Performance Concrete as a Rehabilitation Alternative for Pavement Overlays. Materials 2025, 18, 3700. https://doi.org/10.3390/ma18153700
Vacca H, Alvarado YA, Ruiz DM, Nuñez AM. Rheological Evaluation of Ultra-High-Performance Concrete as a Rehabilitation Alternative for Pavement Overlays. Materials. 2025; 18(15):3700. https://doi.org/10.3390/ma18153700
Chicago/Turabian StyleVacca, Hermes, Yezid A. Alvarado, Daniel M. Ruiz, and Andres M. Nuñez. 2025. "Rheological Evaluation of Ultra-High-Performance Concrete as a Rehabilitation Alternative for Pavement Overlays" Materials 18, no. 15: 3700. https://doi.org/10.3390/ma18153700
APA StyleVacca, H., Alvarado, Y. A., Ruiz, D. M., & Nuñez, A. M. (2025). Rheological Evaluation of Ultra-High-Performance Concrete as a Rehabilitation Alternative for Pavement Overlays. Materials, 18(15), 3700. https://doi.org/10.3390/ma18153700