Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = critical stable sectional area

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 6904 KiB  
Article
Numerical Studies on the Combined Effect of Curvature and Area Expansion Rate on Gaseous Detonation Propagation in Curved Channels
by Peng Wang, Lei Bao, Wenyi Dang, Chuntao Ge and Anfeng Yu
Fire 2025, 8(6), 218; https://doi.org/10.3390/fire8060218 - 29 May 2025
Viewed by 961
Abstract
Here, a pure and systematic numerical study is conducted to investigate the detonation propagation in a curvature bend by focusing on the combined effect of curvature and cross-section area with a simple two-step chemical reaction model. In a channel with a small radius [...] Read more.
Here, a pure and systematic numerical study is conducted to investigate the detonation propagation in a curvature bend by focusing on the combined effect of curvature and cross-section area with a simple two-step chemical reaction model. In a channel with a small radius of curvature R/λ < 10, the detonation wave presents a periodical failure-reinitiation mode. The detonation wave near the inner wall cannot sustain itself due to the strong curvature effect. In contrast, the compression of the outer wall strengthens the front and can form a transverse detonation wave to re-initiate the failed detonation near the inner wall. In a channel with a large radius of curvature R/λ > 10, the inner wall’s weak rarefaction effect is not strong enough to completely quench the detonation wave. In the same way, the numerical results also show that a large area expansion rate inevitably produces a strong rarefaction effect near the inner wall, causing wave front decoupling and even failure. According to the radius of the curvature and the area increase rate, there are three different modes of detonation propagation: stable, critical, and unstable. By defining a new parameter κ to characterize different detonation modes and by considering both the curvature and area expansion effect, we found that the threshold κ = 0.33 can be used to distinguish the unstable and critical modes. Full article
Show Figures

Figure 1

24 pages, 8643 KiB  
Article
Characteristics of Cambrian Paleo-Fluid Profiles and Their Implications for Shale Gas Preservation: A Case Study from Well Yidi2 in the Central Yangtze Yichang Area
by An Liu, Shuo Qin, Kai Wei, Qilin Xiao, Quansheng Cai, Huilan Huang, Xiongwei Zeng and Peijun Li
Sustainability 2025, 17(11), 4875; https://doi.org/10.3390/su17114875 - 26 May 2025
Viewed by 377
Abstract
Exploration practice has proved that preservation conditions are one of the critical factors contributing to shale gas enrichment in the Middle Yangtze area. Well Yidi2 is the discovery well of Cambrian shale gas in this area. The paleo-fluid evolution and its implication for [...] Read more.
Exploration practice has proved that preservation conditions are one of the critical factors contributing to shale gas enrichment in the Middle Yangtze area. Well Yidi2 is the discovery well of Cambrian shale gas in this area. The paleo-fluid evolution and its implication for preservation conditions of shale gas remains unclear, posing challenges for shale gas exploration and development. In this study, through systematic analysis of fluid inclusions in fractrue-filling vein of the entire core section of this well, combined with carbon and oxygen isotope tests of veins and host rocks, a paleo-fluid profile was established to explore the formation environment of Cambrian paleo-fluids and their implications for the preservation conditions of the Shuijingtuo Formation (SJT Fm.) shale gas. The results suggest that fractures in the SJT Fm. shale at the base of Cambrian Series 2 mainly formed during the deep burial hydrocarbon generation stage, trapping a large number of liquid hydrocarbon inclusions. Subsequently, numerous high-density methane inclusions and a few of gas-liquid two-phase inclusions were trapped. The SO42−, Ca2+ and Mg2+ content of fluid inclusion groups in the veins decreased from the Qinjiamiao Formation (QJM Fm.) at the bottom of Cambrian Series 3 upward and downward respectively, and the rNa+/rCl ratio was the lowest in the SJT Fm. and increased overall upward. The δ13C values of calcite veins in Tianheban Formation (THB Fm.)-Shipai Formation (SP Fm.) of the middle Cambrian Series 2 and the Loushanguan Formation (LSG Fm.) of the Cambrian Series 3 were lighter compared to the host rocks. Results indicate the later tectonic activities in this area were relatively weak, and the shale interval remained in a state of high gas saturation for a long time. The QJM Fm. was the main source of high-salinity brine, and the SJT Fm. had strong self-sealing properties and was relatively less affected by external fluids. However, the pressure evolution of high-density methane inclusions in the SJT Fm. indicated that the pressure coefficient of the shale section significantly decreased during the Indosinian uplift and erosion stage. The veins in the THB-SP and LSG Fms. were closely related to the oxidation of hydrocarbon gases by TSR (thermochemical sulfate reduction) and the infiltration of atmospheric water, respectively. Therefore, the paleo-fluid in the fractures of Well Yidi2 have integrally recorded the whole geological process including the evolution from oil to gas, the backflow of high-salinity formation water, the upward escape of shale gas, and the process of shale gas reservoirs evolving from overpressure to normal pressure. Considering that Well Yidi2 area is located in a relatively stable tectonic setting, widely distributed fracture veins probably enhance the self-sealing ability, inhibiting the rapid escape of SJT Fm. shale gas. And the rapid deposition of Cretaceous also delayed the loss of shale gas to some extent. The combination of these two factors creates favorable preservation conditions of shale gas, establishing the SJT Fm. as the primary exploration target in this area. Full article
(This article belongs to the Special Issue Sustainable Exploitation and Utilization of Hydrocarbon Resources)
Show Figures

Figure 1

28 pages, 9980 KiB  
Article
Research on the Influence of Particles and Blade Tip Clearance on the Wear Characteristics of a Submersible Sewage Pump
by Guangjie Peng, Jinhua Yang, Lie Ma, Zengqiang Wang, Hao Chang, Shiming Hong, Guangchao Ji and Yuan Lou
Water 2024, 16(19), 2845; https://doi.org/10.3390/w16192845 - 7 Oct 2024
Cited by 1 | Viewed by 1384
Abstract
A submersible sewage pump is designed for conveying solid–liquid two-phase media containing sewage, waste, and fiber components, through its small and compact design and its excellent anti-winding and anti-clogging capabilities. In this paper, the computational fluid dynamics–discrete element method (CFD-DEM) coupling model is [...] Read more.
A submersible sewage pump is designed for conveying solid–liquid two-phase media containing sewage, waste, and fiber components, through its small and compact design and its excellent anti-winding and anti-clogging capabilities. In this paper, the computational fluid dynamics–discrete element method (CFD-DEM) coupling model is used to study the influence of different conveying conditions and particle parameters on the wear of the flow components in a submersible sewage pump. At the same time, the energy balance equation is used to explore the influence mechanism of different tip clearance sizes on the internal flow pattern, wear, and energy conversion mechanism of the pump. This study demonstrates that increasing the particle volume fraction decreases the inlet particle velocity and intensifies wear in critical areas. When enlarging the tip clearance thickness from 0.4 mm to 1.0 mm, the leakage vortex formation at the inlet is enhanced, leading to increased wear rates in terms of the blade and volute. Consequently, the total energy loss and turbulent kinetic energy generation increased by 3.57% and 2.25%, respectively, while the local loss coefficient in regard to the impeller channel cross-section increased significantly. The findings in this study offer essential knowledge for enhancing the performance and ensuring the stable operation of pumps under solid–liquid two-phase flow conditions. Full article
(This article belongs to the Special Issue Hydrodynamic Science Experiments and Simulations)
Show Figures

Figure 1

24 pages, 9718 KiB  
Article
Study on the Effect and Enhancement of Near-Natural Integrated Plant Positioning Configuration in the Hilly Gully Region, China
by Hongsheng Zhao, Shuang Feng, Wanjiao Li and Yong Gao
Forests 2024, 15(5), 841; https://doi.org/10.3390/f15050841 - 11 May 2024
Cited by 2 | Viewed by 1133
Abstract
The establishment of protective forests plays a crucial role in mitigating soil erosion on slopes within hilly and gully regions. However, in practical applications, the configuration of protective forests on slopes is intricate and diverse, and the suitability and rationality of different configuration [...] Read more.
The establishment of protective forests plays a crucial role in mitigating soil erosion on slopes within hilly and gully regions. However, in practical applications, the configuration of protective forests on slopes is intricate and diverse, and the suitability and rationality of different configuration patterns for various slope sections have not been thoroughly investigated. This study focuses on a 40-year-old artificial protective forest, examining 16 different configuration patterns on the top, middle, and lower slopes. It compares the growth conditions, community structure stability, and characteristics of the saturated soil’s hydraulic conductivity. The findings indicate that the top slope should be identified as a critical area for slope protection. The optimal configuration for this area is the “tree + grass” pattern with a spacing of 5 m × 5 m, which promotes the optimal growth of tree species and effectively reduces the surface runoff of gravel particles ranging from 1 cm to 3 cm in diameter. On the middle slope, the “tree + shrub + grass” structure proves effective in slowing down the erosive force of slope runoff. The recommended spacing for trees is 5 m × 6 m, and for understory shrubs, it is 1 m × 6 m. This configuration pattern results in the most stable structure for the plant community and maximizes the water conservation potential of forest litter. By analyzing the characteristics of the saturated soil’s hydraulic conductivity, we find that the complexity of the plant configuration on the lower slopes is correlated with a greater coefficient of variation in the saturated soil’s hydraulic conductivity. Nevertheless, there is no significant difference in the average soil saturated hydraulic conductivity per unit area between the different configuration patterns. Consequently, the lower slope can rely on the natural recovery of herbaceous plants. The results of this research contribute valuable scientific and technical insights to the management of soil erosion in hilly and gully areas, both in China and around the world. Full article
Show Figures

Figure 1

24 pages, 4000 KiB  
Review
Perovskite-Based X-ray Detectors
by Chen-Fu Lin, Kuo-Wei Huang, Yen-Ting Chen, Sung-Lin Hsueh, Ming-Hsien Li and Peter Chen
Nanomaterials 2023, 13(13), 2024; https://doi.org/10.3390/nano13132024 - 7 Jul 2023
Cited by 22 | Viewed by 7551
Abstract
X-ray detection has widespread applications in medical diagnosis, non-destructive industrial radiography and safety inspection, and especially, medical diagnosis realized by medical X-ray detectors is presenting an increasing demand. Perovskite materials are excellent candidates for high-energy radiation detection based on their promising material properties [...] Read more.
X-ray detection has widespread applications in medical diagnosis, non-destructive industrial radiography and safety inspection, and especially, medical diagnosis realized by medical X-ray detectors is presenting an increasing demand. Perovskite materials are excellent candidates for high-energy radiation detection based on their promising material properties such as excellent carrier transport capability and high effective atomic number. In this review paper, we introduce X-ray detectors using all kinds of halide perovskite materials along with various crystal structures and discuss their device performance in detail. Single-crystal perovskite was first fabricated as an active material for X-ray detectors, having excellent performance under X-ray illumination due to its superior photoelectric properties of X-ray attenuation with μm thickness. The X-ray detector based on inorganic perovskite shows good environmental stability and high X-ray sensitivity. Owing to anisotropic carrier transport capability, two-dimensional layered perovskites with a preferred orientation parallel to the substrate can effectively suppress the dark current of the device despite poor light response to X-rays, resulting in lower sensitivity for the device. Double perovskite applied for X-ray detectors shows better attenuation of X-rays due to the introduction of high-atomic-numbered elements. Additionally, its stable crystal structure can effectively lower the dark current of X-ray detectors. Environmentally friendly lead-free perovskite exhibits potential application in X-ray detectors by virtue of its high attenuation of X-rays. In the last section, we specifically introduce the up-scaling process technology for fabricating large-area and thick perovskite films for X-ray detectors, which is critical for the commercialization and mass production of perovskite-based X-ray detectors. Full article
(This article belongs to the Special Issue New Horizon in Perovskite Nanocrystals)
Show Figures

Figure 1

11 pages, 2597 KiB  
Article
Velocity String Drainage Technology for Horizontal Gas Wells in Changbei
by Wenbin Cai, Zhimin Huang, Xiangyang Mo and Huiren Zhang
Processes 2022, 10(12), 2640; https://doi.org/10.3390/pr10122640 - 8 Dec 2022
Cited by 4 | Viewed by 2980
Abstract
The Changbei gas field is dominated by wells with large horizontal displacement, which have exhibited high gas production performance at an early stage of development. With the decrease in reservoir pressure, the liquid loading in the gas well is relatively high and gas [...] Read more.
The Changbei gas field is dominated by wells with large horizontal displacement, which have exhibited high gas production performance at an early stage of development. With the decrease in reservoir pressure, the liquid loading in the gas well is relatively high and gas production rapidly decreases. Therefore, suitable drainage measures are required to maintain stable gas production. Based on the characteristics of the unconnected oil jacket of gas wells in Changbei, a velocity string was used for drainage. A critical liquid-carrying model was established to determine the location of liquid loading in horizontal gas wells in Changbei. First, the coefficients of the liquid-carrying model were determined through theoretical analysis of the characteristics of the gas well formation. Then, the depth setting of the velocity string was analyzed. The critical liquid-carrying model was employed to calculate the liquid-carrying flow rate of each section; the calculated flow rates were compared with the actual flow rates to determine whether fluid accumulation occurred in each section of the gas well. Thereafter, with the help of the oil and casing position, the suitable setting position of the velocity string was determined. The formation fluid was driven from the tubing into the casing owing to the increase in the overflow area, based on the principle of reducer fluid mechanics. The fluid velocity in the larger overflow cross-section decreased, thereby reducing the drainage capacity of the gas well and resulting in liquid loading. Finally, a timing analysis was performed. After the formation pressure decreased, the well production and flow rate changes were analyzed by placing two velocity strings of different sizes at different wellhead pressures in the gas well with fluid accumulation. The results indicated that although the velocity string was set at a position suitable for fluid drainage, fluid accumulation still occurred after a production period, thus necessitating replacement deliquification. Full article
Show Figures

Figure 1

19 pages, 4074 KiB  
Article
The Complexity of Comparative Adsorption of C6 Hydrocarbons (Benzene, Cyclohexane, n-Hexane) at Metal–Organic Frameworks
by Christian Jansen, Nabil Assahub, Alex Spieß, Jun Liang, Alexa Schmitz, Shanghua Xing, Serkan Gökpinar and Christoph Janiak
Nanomaterials 2022, 12(20), 3614; https://doi.org/10.3390/nano12203614 - 15 Oct 2022
Cited by 16 | Viewed by 3657
Abstract
The relatively stable MOFs Alfum, MIL-160, DUT-4, DUT-5, MIL-53-TDC, MIL-53, UiO-66, UiO-66-NH2, UiO-66(F)4, UiO-67, DUT-67, NH2-MIL-125, MIL-125, MIL-101(Cr), ZIF-8, ZIF-11 and ZIF-7 were studied for their C6 sorption properties. An understanding of the uptake of the [...] Read more.
The relatively stable MOFs Alfum, MIL-160, DUT-4, DUT-5, MIL-53-TDC, MIL-53, UiO-66, UiO-66-NH2, UiO-66(F)4, UiO-67, DUT-67, NH2-MIL-125, MIL-125, MIL-101(Cr), ZIF-8, ZIF-11 and ZIF-7 were studied for their C6 sorption properties. An understanding of the uptake of the larger C6 molecules cannot simply be achieved with surface area and pore volume (from N2 sorption) but involves the complex micropore structure of the MOF. The maximum adsorption capacity at p p0−1 = 0.9 was shown by DUT-4 for benzene, MIL-101(Cr) for cyclohexane and DUT-5 for n-hexane. In the low-pressure range from p p0−1 = 0.1 down to 0.05 the highest benzene uptake is given by DUT-5, DUT-67/UiO-67 and MIL-101(Cr), for cyclohexane and n-hexane by DUT-5, UiO-67 and MIL-101(Cr). The highest uptake capacity at p p0−1 = 0.02 was seen with MIL-53 for benzene, MIL-125 for cyclohexane and DUT-5 for n-hexane. DUT-5 and MIL-101(Cr) are the MOFs with the widest pore window openings/cross sections but the low-pressure uptake seems to be controlled by a complex combination of ligand and pore-size effect. IAST selectivities between the three binary mixtures show a finely tuned and difficult to predict interplay of pore window size with (critical) adsorptive size and possibly a role of electrostatics through functional groups such as NH2. Full article
(This article belongs to the Special Issue Advanced Porous Nanomaterials: Synthesis, Properties, and Application)
Show Figures

Graphical abstract

19 pages, 5178 KiB  
Article
Modeling of Gas Migration in Large Elevation Difference Oil Transmission Pipelines during the Commissioning Process
by Liang Feng, Huafeng Zhu, Ying Song, Wenchen Cao, Ziyuan Li and Wenlong Jia
Energies 2022, 15(4), 1379; https://doi.org/10.3390/en15041379 - 14 Feb 2022
Cited by 8 | Viewed by 2055
Abstract
Oil pipeline construction and operation in mountainous areas have increased in southwestern China, with oil consumption increasing. Such liquid pipelines laid in mountainous areas continuously undulate along the terrain, resulting in many large elevation difference pipe segments. Serious gas block problems often occur [...] Read more.
Oil pipeline construction and operation in mountainous areas have increased in southwestern China, with oil consumption increasing. Such liquid pipelines laid in mountainous areas continuously undulate along the terrain, resulting in many large elevation difference pipe segments. Serious gas block problems often occur during the commissioning process of these pipelines due to the gas/air accumulation at the high point of the pipe, which causes pipeline overpressure and vibration, and even safety accidents such as bursting pipes. To solve this problem, the gas–liquid replacement model and its numerical solution are established with consideration of the initial gas accumulation formation and the gas segment compression processes in a U-shaped pipe during the initial start-up operation. Additionally, considering the interactions of the gas-phase transfer in the continuous U-shaped pipe, and the influence of the length, inclination angle, and backpressure on the air vent process, the gas migration model for a continuous U-shaped pipe is established to predict the gas movement process. Finally, the field oil pipe production data were applied to verify the model. The results demonstrate that the maximum deviation between the calculated pressure during the start-up process and real data is 0.3 MPa, and the critical point of crushing the gas in the pipe section is about 0.2 Mpa. Additionally, the results show that the mass transfer of the gas section in the multi-pipe hydraulic air vent process causes the gas accumulation section to increase in downstream of the pipe. This study’s achievements can provide theoretical guidance and technical support for the safe and stable operation of continuous undulating liquid pipelines with large drops. Full article
Show Figures

Figure 1

13 pages, 294 KiB  
Article
The Impact of Renewable Energy Sources on Financial Development, and Economic Growth: The Empirical Evidence from an Emerging Economy
by David Guan, Ubaldo Comite, Muhammad Safdar Sial, Asma Salman, Boyao Zhang, Stefan B. Gunnlaugsson, Urszula Mentel and Grzegorz Mentel
Energies 2021, 14(23), 8033; https://doi.org/10.3390/en14238033 - 1 Dec 2021
Cited by 16 | Viewed by 4047
Abstract
Developing energy from renewable sources and modernizing the energy system are critical components of China’s efforts to combat climate change. Policymakers and authorities have made significant attempts to bring them. However, one of the major impediments to China’s energy revolution is financial limitations, [...] Read more.
Developing energy from renewable sources and modernizing the energy system are critical components of China’s efforts to combat climate change. Policymakers and authorities have made significant attempts to bring them. However, one of the major impediments to China’s energy revolution is financial limitations, which are inextricably linked to the country’s economic growth. The present research paper intends to investigate the relationship between economic growth and sustainable financial development on the use of energy from renewable sources in both the short and long run in the context of China. To achieve this, the researchers have utilized the panel data consisting of 10 years from 2011 to 2020. When compared to cross-sectional and time-series data samples, the panel data model offers many benefits. For starters, the panel data includes information on the passage of time and the cross-sectional area. Another benefit of using panel-data models with a larger degree of freedom is that they provide more stable and reliable estimates across short periods across cross-sections. In the case of the short run, there is a positive relationship between economic and financial development and the use of energy from renewable sources in the context of all of China. While in the case of long-term effects, the results indicate the adverse impact of financial development on the use of energy from renewable sources in the western regions of China. These results were deduced using the causality test Granger proposed to determine the path of the causal relationship and the direction of the relationship between the variables. These results indicated that the relationship between economic and financial development in east China was unidirectional, and the nature of the underlying relationship was causal. Meanwhile, in east and west China, economic development in China as a whole has been unidirectionally increasing energy from renewable sources. Our empirical findings suggest many strategies for promoting the growth of energy from renewable sources. Full article
(This article belongs to the Special Issue Successful Deployment of Renewable Energies)
12 pages, 3388 KiB  
Article
Forest Structure and Projections of Avicennia germinans (L.) L. at Three Levels of Perturbation in a Southwestern Gulf of Mexico Mangrove
by Agustín de Jesús Basáñez-Muñoz, Adán Guillermo Jordán-Garza and Arturo Serrano
Forests 2021, 12(8), 989; https://doi.org/10.3390/f12080989 - 26 Jul 2021
Cited by 5 | Viewed by 3101
Abstract
Mangrove forests have declined worldwide and understanding the key drivers of regeneration at different perturbation levels can help manage and preserve these critical ecosystems. For example, the Ramsar site # 1602, located at the Tampamachoco lagoon, Veracruz, México, consists of a dense forest [...] Read more.
Mangrove forests have declined worldwide and understanding the key drivers of regeneration at different perturbation levels can help manage and preserve these critical ecosystems. For example, the Ramsar site # 1602, located at the Tampamachoco lagoon, Veracruz, México, consists of a dense forest of medium-sized trees composed of three mangrove species. Due to several human activities, including the construction of a power plant around the 1990s, an area of approximately 2.3 km2 has suffered differential levels of perturbation: complete mortality, partial tree loss (divided into two sections: main and isolated patch), and apparently undisturbed sites. The number and size of trees, from seedlings to adults, were measured using transects and quadrats. With a matrix of the abundance of trees by size categories and species, an ordination (nMDS) showed three distinct groups corresponding to the degree of perturbation. Projection matrices based on the size structure of Avicennia germinans showed transition probabilities that varied according to perturbation levels. Lambda showed growing populations except on the zone that showed partial tree loss; a relatively high abundance of seedlings is not enough to ensure stable mangrove dynamics or start regeneration; and the survival of young trees and adult trees showed high sensitivity. Full article
(This article belongs to the Special Issue Mangrove Wetland Restoration and Rehabilitation)
Show Figures

Figure 1

18 pages, 6932 KiB  
Article
Smart Coordinate Measuring Machine (CMM) Inspection for Turbine Guide Vanes with Trend Line and Geometric Profile Tolerance
by Marcin Jamontt and Paweł Pyrzanowski
Appl. Sci. 2021, 11(4), 1658; https://doi.org/10.3390/app11041658 - 12 Feb 2021
Cited by 7 | Viewed by 5777
Abstract
Turbine guide vanes are among the most critical and complex turbine parts. As an entire engine comprises a significant number of vanes, simplification of the measurement process translates into overall time and money savings. The key to simplification is to define critical areas [...] Read more.
Turbine guide vanes are among the most critical and complex turbine parts. As an entire engine comprises a significant number of vanes, simplification of the measurement process translates into overall time and money savings. The key to simplification is to define critical areas for inspection, which enables relaxation of strict inspection standards in all areas of stable process manufacturing. The method described herein can help engineers to achieve savings in inspection time and cost, at the same time ensuring the correct shape of vanes as the approach used in this work places great emphasis on correlations between measurements, working conditions, and manufacturing abilities. Another element of the novelty of this approach is an atypical hybrid convention for the crossing of vertical and horizontal inspection paths, assuring a correlation between the measured sections. Although this novel approach was used to measure the geometry of a cast turbine guide vane, it can be easily implemented to measure the geometry of any other element of complex shape. Full article
(This article belongs to the Section Applied Industrial Technologies)
Show Figures

Figure 1

25 pages, 2776 KiB  
Review
A Review of Critical Stable Sectional Areas for the Surge Tanks of Hydropower Stations
by Wencheng Guo, Yang Liu, Fangle Qu and Xinyu Xu
Energies 2020, 13(23), 6466; https://doi.org/10.3390/en13236466 - 7 Dec 2020
Cited by 17 | Viewed by 7709
Abstract
The critical stable sectional area (CSSA) for surge tanks corresponds to the critical stable state of hydropower stations and is an important index to evaluate the stability of the turbine regulation system. The research on CSSA for surge tanks is always one of [...] Read more.
The critical stable sectional area (CSSA) for surge tanks corresponds to the critical stable state of hydropower stations and is an important index to evaluate the stability of the turbine regulation system. The research on CSSA for surge tanks is always one of the most important topics in the area of transient processes of hydropower stations. The CSSA for surge tanks provides the value basis for the sectional area of surge tanks. In engineering practice, the CSSA for surge tanks is widely used to guide their hydraulic design. This paper provides a systematic literature review about the CSSA for surge tank of hydropower stations. Firstly, the CSSA for surge tanks based on hydraulic transients is discussed. Secondly, the CSSA for surge tanks based on hydraulic-mechanical-electrical coupling transients is presented. Thirdly, the CSSA for air cushion surge tanks is illustrated. Finally, the CSSA for combined surge tanks, i.e., upstream and downstream double surge tanks and upstream series double surge tanks, is presented. In future research, the CSSA for surge tanks of pumped storage power stations should be explored. The CSSA for surge tanks considering multi-energy complement is worth studying. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

12 pages, 2324 KiB  
Article
Food Chain Length Associated with Environmental Factors Affected by Large Dam along the Yangtze River
by Chun He, Huatang Deng, Jiawen Ba, Sheng Li, Zheyu Chen, Yixi Tao, Xinbin Duan, Shaoping Liu, Yun Li and Daqing Chen
Water 2020, 12(11), 3157; https://doi.org/10.3390/w12113157 - 12 Nov 2020
Cited by 4 | Viewed by 2739
Abstract
Food chain length (FCL) is a critical measure of food web complexity that influences the community structure and ecosystem function. The FCL of large subtropical rivers affected by dams and the decisive factors are far beyond clear. In this study, we used stable [...] Read more.
Food chain length (FCL) is a critical measure of food web complexity that influences the community structure and ecosystem function. The FCL of large subtropical rivers affected by dams and the decisive factors are far beyond clear. In this study, we used stable isotope technology to estimate the FCL of fish in different reaches of the main stream in the Yangtze River and explored the key factors that determined the FCL. The results showed that FCL varied widely among the studied areas with a mean of 4.09 (ranging from 3.69 to 4.31). The variation of FCL among river sections in the upstream of the dam was greater than that in the downstream. Regression analysis and model selection results revealed that the FCL had a significant positive correlation with ecosystem size as well as resource availability, and FCL variation was largely explained by ecosystem size, which represented 72% of the model weight. In summary, our results suggested that ecosystem size plays a key role in determining the FCL in large subtropical rivers and large ecosystems tend to have a longer food chain. Additionally, the construction of the Three Gorges Dam has been speculated to increase the FCL in the impoundment river sections. Full article
(This article belongs to the Section Water, Agriculture and Aquaculture)
Show Figures

Figure 1

18 pages, 3350 KiB  
Article
Solid Circulating Velocity Measurement in a Liquid–Solid Micro-Circulating Fluidised Bed
by Orlando L. do Nascimento, David A. Reay and Vladimir Zivkovic
Processes 2020, 8(9), 1159; https://doi.org/10.3390/pr8091159 - 16 Sep 2020
Cited by 11 | Viewed by 3780
Abstract
Liquid–solid circulating fluidised beds (CFB) possess many qualities which makes them useful for industrial operations where particle–liquid contact is vital, e.g., improved heat transfer performance, and consequent uniform temperature, limited back mixing, exceptional solid–liquid contact. Despite this, circulating fluidised beds have seen no [...] Read more.
Liquid–solid circulating fluidised beds (CFB) possess many qualities which makes them useful for industrial operations where particle–liquid contact is vital, e.g., improved heat transfer performance, and consequent uniform temperature, limited back mixing, exceptional solid–liquid contact. Despite this, circulating fluidised beds have seen no application in the micro-technology context. Liquid–solid micro circulating fluidised bed (µCFBs), which basically involves micro-particles fluidisation in fluidised beds within the bed of cross-section or inner diameter at the millimetre scale, could find potential applications in the area of micro-process and microfluidics technology. From an engineering standpoint, it is vital to know the solid circulating velocity, since that dictates the bed capability and operability as processing equipment. Albeit there are several studies on solid circulating velocity measurement in CFBs, this article is introducing the first experimental study on solid circulating velocity measurement in a CFB at micro-scale. The experimental studies were done in a novel micro-CFB which was fabricated by micro milling machining 1 mm2 cross-section channels in Perspex and in a 4 mm2 cross-section micro-CFB made by additive manufacturing technology. Soda-lime glass and polymethyl methacrylate (PMMA) micro-particles were employed as solid materials and tap water as the liquid medium. The digital particle image velocimetry (PIV) method was used as a measurement technique to determine the particle velocity in the micro-CFB system and validated by the valve accumulation technique using a novel magnetic micro-valve. The measured critical transition velocity, Ucr, is comparable to the particle terminal velocity, i.e., the normalised transition velocity is approximately 1 in line with macroscopic systems results and our previous study using simple visual observation. As in macroscopic CFB systems, Ucr decreased with solid inventory (1–9%) and finally becomes stable when the solid inventory is high enough (10–25%) and it increases with a reduction in particle size and density. Full article
Show Figures

Figure 1

21 pages, 8983 KiB  
Article
Charting Dynamic Areas in the Mackenzie River with RADARSAT-2, Simulated RADARSAT Constellation Mission and Optical Remote Sensing Data
by René Chénier, Khalid Omari, Ryan Ahola and Mesha Sagram
Remote Sens. 2019, 11(13), 1523; https://doi.org/10.3390/rs11131523 - 27 Jun 2019
Cited by 7 | Viewed by 10871
Abstract
Mariners navigating within Canadian waters rely on Canadian Hydrographic Service (CHS) navigational charts to safely reach their destinations. To fulfil this need, CHS charts must accurately reflect the current state of Canadian coastal regions. While many coastal regions are stable, others are dynamic [...] Read more.
Mariners navigating within Canadian waters rely on Canadian Hydrographic Service (CHS) navigational charts to safely reach their destinations. To fulfil this need, CHS charts must accurately reflect the current state of Canadian coastal regions. While many coastal regions are stable, others are dynamic and require frequent updates. In order to ensure that important and potentially dangerous changes are reflected in CHS products, the organization, in partnership with the Canadian Space Agency, is exploring coastal change detection through satellite remote sensing (SRS). In this work, CHS examined a hybrid shoreline extraction approach which uses both Synthetic Aperture Radar (SAR) and optical data. The approach was applied for a section of the Mackenzie River, one of Canada’s most dynamic river systems. The approach used RADARSAT-2 imagery as its primary information source, due to its high positioning accuracy (5 m horizontal accuracy) and ability to allow for low and high water line charting. Landsat represented the primary optical data source due to its long historical record of Earth observation data. Additional sensors, such as Sentinel-2 and WorldView, were also used where a higher resolution was required. The shoreline extraction process is based on an image segmentation approach that uses both the radar and optical data. Critical information was collected using the automated approach to support chart updates, resulting in reductions to the financial, human and time factors present within the ship-based hydrographic survey techniques traditionally used for chart improvements. The results demonstrate the potential benefit of wide area SRS change detection within dynamic waterways for navigational chart improvements. The work also demonstrates that the approach developed for RADARSAT-2 could be implemented with data from the forthcoming RADARSAT Constellation Mission (RCM), which is critical to ensure project continuity. Full article
Show Figures

Graphical abstract

Back to TopTop