Perovskite-Based X-ray Detectors
Abstract
:1. Introduction
1.1. Indirect-Conversion X-ray Detectors
1.2. Direct-Conversion X-ray Detectors
1.3. Perovskite-Based X-ray Detectors
2. Principles of High-Energy Radiation Detectors
2.1. Fundamentals of X-ray Detection Material
2.1.1. X-ray Attenuation Ratio (ε)
2.1.2. Ionization Energy (W)
2.1.3. Charge Collection Efficiency (CCE)
2.2. Parameters of X-ray Detectors
2.2.1. Dark Current (Idark)
2.2.2. Sensitivity (S)
2.2.3. Limit of Detection
2.2.4. Mobility-Lifetime Product (μτ)
2.2.5. Response Time
3. Classification of Perovskite-Based X-ray Detectors
3.1. Three-Dimensional (3D) ABX3 Structure
3.1.1. Organic/Inorganic 3D ABX3 Structure
Single Crystals (SCs)
Thin Films
3.1.2. Inorganic 3D ABX3 Structure
Single Crystals (SCs)
Other Structures
3.2. Low-Dimensional Perovskite Materials
3.2.1. Two-Dimensional (2D) Perovskite Materials
Single Crystal
Film
3.2.2. Quasi-2D Perovskite Materials
3.2.3. One-Dimensional (1D) Perovskite Materials
3.2.4. Zero-Dimensional (0D) Perovskite Materials
3.3. A2B2X6 Double-Perovskite Materials
3.4. A3B2X9 Lead-Free Perovskite Materials
3.5. Large-Area Perovskite X-ray Detectors
4. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hoheisel, M. Review of medical imaging with emphasis on X-ray detectors. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2006, 563, 215–224. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, J.; Bakr, O.M.; Mohammed, O.F. Metal Halide Perovskites for X-ray Imaging Scintillators and Detectors. ACS Energy Lett. 2021, 6, 739–768. [Google Scholar] [CrossRef]
- Nikl, M.; Yoshikawa, A. Recent R&D Trends in Inorganic Single-Crystal Scintillator Materials for Radiation Detection. Adv. Opt. Mater. 2015, 3, 463–481. [Google Scholar]
- Weber, M.J. Inorganic scintillators: Today and tomorrow. J. Lumin. 2002, 100, 35–45. [Google Scholar] [CrossRef]
- Maddalena, F.; Xie, A.; Arramel; Witkowski, M.E.; Makowski, M.; Mahler, B.; Drozdowski, W.; Mariyappan, T.; Springham, S.V.; Coquet, P.; et al. Effect of commensurate lithium doping on the scintillation of two-dimensional perovskite crystals. J. Mater. Chem. C 2021, 9, 2504–2512. [Google Scholar] [CrossRef]
- Chen, Q.; Wu, J.; Ou, X.; Huang, B.; Almutlaq, J.; Zhumekenov, A.A.; Guan, X.; Han, S.; Liang, L.; Yi, Z.; et al. All-inorganic perovskite nanocrystal scintillators. Nature 2018, 561, 88–93. [Google Scholar] [CrossRef]
- Almeida, G.; Infante, I.; Manna, L. Resurfacing halide perovskite nanocrystals. Science 2019, 364, 833–834. [Google Scholar] [CrossRef]
- Quan, L.N.; García de Arquer, F.P.; Sabatini, R.P.; Sargent, E.H. Perovskites for light emission. Adv. Mater. 2018, 30, 1801996. [Google Scholar] [CrossRef]
- Voloshinovskii, A.S.; Mikhailik, V.B.; Myagkota, S.V.; Pidzyrailo, M.S.; Pashuk, I.P. Exciton luminescence of ionic semiconductors CsPbX3 (X = Cl, Br, I). Ukr. J. Phys. 1993, 38, 1012–1015. [Google Scholar]
- Belsky, A.; Chevallier, P.; Dhez, P.; Martin, P.; Pédrini, C.; Vasil’Ev, A. X-ray excitation of luminescence of scintillator materials in the 7–22 keV region. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 1995, 361, 384–387. [Google Scholar] [CrossRef]
- Shibuya, K.; Koshimizu, M.; Takeoka, Y.; Asai, K. Scintillation properties of (C6H13NH3)2PbI4: Exciton luminescence of an organic/inorganic multiple quantum well structure compound induced by 2.0 MeV protons. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2002, 194, 207–212. [Google Scholar] [CrossRef]
- Huang, H.; Abbaszadeh, S. Recent Developments of Amorphous Selenium-Based X-ray Detectors: A Review. IEEE Sens. J. 2019, 20, 1694–1704. [Google Scholar] [CrossRef]
- Schieber, M.; Zuck, A.; Gilboa, H.; Zentai, G. Reviewing Polycrystalline Mercuric Iodide X-ray Detectors. IEEE Trans. Nucl. Sci. 2006, 53, 2385–2391. [Google Scholar] [CrossRef]
- Yun, M.-S.; Cho, S.-H.; Lee, R.; Jang, G.-W.; Kim, Y.-S.; Shin, W.-J.; Nam, S.-H. Investigation of PbI2 Film Fabricated by a New Sedimentation Method as an X-ray Conversion Material. Jpn. J. Appl. Phys. 2010, 49, 041801. [Google Scholar] [CrossRef]
- Kabir, M. Effects of charge carrier trapping on polycrystalline PbO X-ray imaging detectors. J. Appl. Phys. 2008, 104, 074506. [Google Scholar] [CrossRef]
- Szeles, C. CdZnTe and CdTe materials for X-ray and gamma ray radiation detector applications. Phys. Status Solidi B 2004, 241, 783–790. [Google Scholar] [CrossRef]
- Wei, H.; Huang, J. Halide lead perovskites for ionizing radiation detection. Nat. Commun. 2019, 10, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Qian, W.; Xiao, S.; Wang, J.; Zheng, S.; Yang, S. Halide perovskites: A dark horse for direct X-ray imaging. EcoMat 2020, 2, e12064. [Google Scholar] [CrossRef]
- Zhang, H.; Ji, X.; Yao, H.; Fan, Q.; Yu, B.; Li, J. Review on efficiency improvement effort of perovskite solar cell. Sol. Energy 2022, 233, 421–434. [Google Scholar] [CrossRef]
- SSchmidt-Mende, L.; Dyakonov, V.; Olthof, S.; Ünlü, F.; Lê, K.M.T.; Mathur, S.; Karabanov, A.D.; Lupascu, D.C.; Herz, L.M.; Hinderhofer, A.; et al. Roadmap on organic–inorganic hybrid perovskite semiconductors and devices. APL Mater. 2021, 9, 109202. [Google Scholar] [CrossRef]
- Stoumpos, C.C.; Malliakas, C.D.; Peters, J.A.; Liu, Z.; Sebastian, M.; Im, J.; Chasapis, T.C.; Wibowo, A.C.; Chung, D.Y.; Freeman, A.J.; et al. Crystal Growth of the Perovskite Semiconductor CsPbBr3: A New Material for High-Energy Radiation Detection. Cryst. Growth Des. 2013, 13, 2722–2727. [Google Scholar] [CrossRef]
- Kim, Y.C.; Kim, K.H.; Son, D.-Y.; Jeong, D.-N.; Seo, J.-Y.; Choi, Y.S.; Han, I.T.; Lee, S.Y.; Park, N.-G. Printable organometallic perovskite enables large-area, low-dose X-ray imaging. Nature 2017, 550, 87–91. [Google Scholar] [CrossRef]
- Pan, W.; Yang, B.; Niu, G.; Xue, K.H.; Du, X.; Yin, L.; Zhang, M.; Wu, H.; Miao, X.S.; Tang, J. Hot-Pressed CsPbBr3 Quasi-Monocrystalline Film for Sensitive Direct X-ray Detection. Adv. Mater. 2019, 31, 1904405. [Google Scholar] [CrossRef]
- Glushkova, A.; Andričević, P.; Smajda, R.; Náfrádi, B.; Kollár, M.; Djokić, V.; Arakcheeva, A.; Forró, L.; Pugin, R.; Horváth, E. Ultrasensitive 3D Aerosol-Jet-Printed Perovskite X-ray Photodetector. ACS Nano 2021, 15, 4077–4084. [Google Scholar] [CrossRef]
- Shockley, W. Problems related top-n junctions in silicon. Czechoslov. J. Phys. 1961, 11, 81–121. [Google Scholar] [CrossRef]
- Kakavelakis, G.; Gedda, M.; Panagiotopoulos, A.; Kymakis, E.; Anthopoulos, T.D.; Petridis, K. Metal Halide Perovskites for High-Energy Radiation Detection. Adv. Sci. 2020, 7, 2002098. [Google Scholar] [CrossRef]
- Uxa, Š.; Grill, R.; Belas, E. Evaluation of the mobility-lifetime product in CdTe and CdZnTe detectors by the transient-current technique. J. Appl. Phys. 2013, 114, 094511. [Google Scholar] [CrossRef]
- Basiricò, L.; Ciavatti, A.; Fraboni, B. Solution-Grown Organic and Perovskite X-ray Detectors: A New Paradigm for the Direct Detection of Ionizing Radiation. Adv. Mater. Technol. 2020, 6, 2000475. [Google Scholar] [CrossRef]
- Yang, T.; Li, F.; Zheng, R. Recent advances in radiation detection technologies enabled by metal-halide perovskites. Mater. Adv. 2021, 2, 6744–6767. [Google Scholar] [CrossRef]
- Thompson, M.; Ellison, S.L.R.; Wood, R. Harmonized guidelines for single-laboratory validation of methods of analysis (IUPAC Technical Report). Pure Appl. Chem. 2002, 74, 835–855. [Google Scholar] [CrossRef]
- Song, Y.; Li, L.; Bi, W.; Hao, M.; Kang, Y.; Wang, A.; Wang, Z.; Li, H.; Li, X.; Fang, Y.; et al. Atomistic surface passivation of CH3NH3PbI3 perovskite single crystals for highly sensitive coplanar-structure x-ray detectors. Research 2020, 2020, 5958243. [Google Scholar] [CrossRef]
- Wang, W.; Meng, H.; Qi, H.; Xu, H.; Du, W.; Yang, Y.; Yi, Y.; Jing, S.; Xu, S.; Hong, F. Electronic-Grade High-Quality Perovskite Single Crystals by a Steady Self-Supply Solution Growth for High-Performance X-ray Detectors. Adv. Mater. 2020, 32, 2001540. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Qiao, L.; Jiang, Y.; He, T.; Long, R.; Yang, F.; Wang, L.; Lei, X.; Yuan, M.; Chen, J. A-site cation engineering for highly efficient MAPbI3 single-crystal x-ray detector. Angew. Chem. Int. Ed. 2019, 58, 17834–17842. [Google Scholar] [CrossRef] [PubMed]
- Ye, F.; Lin, H.; Wu, H.; Zhu, L.; Huang, Z.; Ouyang, D.; Niu, G.; Choy, W.C. High-quality cuboid CH3NH3PbI3 single crystals for high performance X-ray and photon detectors. Adv. Funct. Mater. 2019, 29, 1806984. [Google Scholar] [CrossRef]
- Geng, X.; Zhang, H.; Ren, J.; He, P.; Zhang, P.; Feng, Q.; Pan, K.; Dun, G.; Wang, F.; Zheng, X.; et al. High-performance single crystal CH3NH3PbI3 perovskite x-ray detector. Appl. Phys. Lett. 2021, 118, 063506. [Google Scholar] [CrossRef]
- Shrestha, S.; Fischer, R.; Matt, G.J.; Feldner, P.; Michel, T.; Osvet, A.; Levchuk, I.; Merle, B.; Golkar, S.; Chen, H.; et al. High-performance direct conversion X-ray detectors based on sintered hybrid lead triiodide perovskite wafers. Nat. Photonics 2017, 11, 436–440. [Google Scholar] [CrossRef]
- Geng, X.; Feng, Q.; Zhao, R.; Hirtz, T.; Dun, G.; Yan, Z.; Ren, J.; Zhang, H.; Liang, R.; Tian, H.; et al. High-Quality Single Crystal Perovskite for Highly Sensitive X-ray Detector. IEEE Electron. Device Lett. 2019, 41, 256–259. [Google Scholar] [CrossRef]
- Xu, Q.; Shao, W.; Li, Y.; Zhang, X.; Ouyang, X.; Liu, J.; Liu, B.; Wu, Z.-Y.; Ouyang, X.; Tang, X.; et al. High-Performance Surface Barrier X-ray Detector Based on Methylammonium Lead Tribromide Single Crystals. ACS Appl. Mater. Interfaces 2019, 11, 9679–9684. [Google Scholar] [CrossRef]
- Pan, Y.; Wang, X.; Zhao, J.; Xu, Y.; Li, Y.; Li, Q.; Zhang, X.; Zhao, Z.; Zhu, Z.; Jing, C. Photodiodes based on a MAPbBr3/Bi3+-doped MAPbCl3 single crystals heterojunction for the X-ray detection. CrystEngComm 2021, 23, 4954–4962. [Google Scholar] [CrossRef]
- Fan, Z.; Liu, J.; Zuo, W.; Liu, G.; He, X.; Luo, K.; Ye, Q.; Liao, C. Mixed-Cation MAxCs1−xPbBr3 Perovskite Single Crystals with Composition Management for High-Sensitivity X-ray Detection. Phys. Status Solidi (RRL)–Rapid Res. Lett. 2020, 14, 2000226. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.; Zhu, X.; Feng, J.; Spanopoulos, I.; Ke, W.; He, Y.; Ren, X.; Yang, Z.; Xiao, F. Triple-Cation and Mixed-Halide Perovskite Single Crystal for High-Performance X-ray Imaging. Adv. Mater. 2021, 33, 2006010. [Google Scholar] [CrossRef]
- Basiricò, L.; Senanayak, S.P.; Ciavatti, A.; Abdi-Jalebi, M.; Fraboni, B.; Sirringhaus, H. Detection of X-rays by solution-processed cesium-containing mixed triple cation perovskite thin films. Adv. Funct. Mater. 2019, 29, 1902346. [Google Scholar] [CrossRef]
- Possanzini, L.; Basiricò, L.; Ciavatti, A.; Tessarolo, M.; Fraboni, B. Fully Textile X-ray Detectors Based on Fabric-Embedded Perovskite Crystals. Adv. Mater. Interfaces 2022, 9, 2101417. [Google Scholar] [CrossRef]
- Fan, Z.; Liu, J.; Zuo, W.; Liu, G.; He, X.; Luo, K.; Ye, Q.; Liao, C. Solution-Processed MAPbBr3 and CsPbBr3 Single-Crystal Detectors with Improved X-ray Sensitivity via Interfacial Engineering. Phys. Status Solidi A 2020, 217, 2000104. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, F.; Lu, Y.; Sun, Q.; Xu, Y.; Zhang, B.-B.; Jie, W.; Kanatzidis, M.G. High-sensitivity X-ray detectors based on solution-grown caesium lead bromide single crystals. J. Mater. Chem. C 2020, 8, 1248–1256. [Google Scholar] [CrossRef]
- Peng, J.; Xia, C.Q.; Xu, Y.; Li, R.; Cui, L.; Clegg, J.K.; Herz, L.M.; Johnston, M.B.; Lin, Q. Crystallization of CsPbBr3 single crystals in water for X-ray detection. Nat. Commun. 2021, 12, 1531. [Google Scholar] [CrossRef] [PubMed]
- Heo, J.H.; Shin, D.H.; Park, J.K.; Kim, D.H.; Lee, S.J.; Im, S.H. High-Performance Next-Generation Perovskite Nanocrystal Scintillator for Nondestructive X-ray Imaging. Adv. Mater. 2018, 30, e1801743. [Google Scholar] [CrossRef] [PubMed]
- Gou, Z.; Huanglong, S.; Ke, W.; Sun, H.; Tian, H.; Gao, X.; Zhu, X.; Yang, D.; Wangyang, P. Self-Powered X-ray Detector Based on All-Inorganic Perovskite Thick Film with High Sensitivity under Low Dose Rate. Phys. Status Solidi (RRL)–Rapid Res. Lett. 2019, 13, 1900094. [Google Scholar] [CrossRef]
- Matt, G.J.; Levchuk, I.; Knüttel, J.; Dallmann, J.; Osvet, A.; Sytnyk, M.; Tang, X.; Elia, J.; Hock, R.; Heiss, W.; et al. Sensitive Direct Converting X-ray Detectors Utilizing Crystalline CsPbBr3 Perovskite Films Fabricated via Scalable Melt Processing. Adv. Mater. Interfaces 2020, 7, 1901575. [Google Scholar] [CrossRef] [Green Version]
- Lai, P.-T.; Lin, H.-C.; Chuang, Y.-T.; Chen, C.-Y.; Cheng, W.-K.; Tan, G.-H.; Hsu, B.-W.; Yang, L.; Lou, S.-C.; Chien, L.-J.; et al. All-Vacuum-Deposited Perovskite X-ray Detector with a Record-High Self-Powered Sensitivity of 1.2 C Gy–1 cm–3. ACS Appl. Mater. Interfaces 2022, 14, 19795–19805. [Google Scholar] [CrossRef] [PubMed]
- Lédée, F.; Ciavatti, A.; Verdi, M.; Basiricò, L.; Fraboni, B. Ultra-Stable and Robust Response to X-rays in 2D Layered Perovskite Micro-Crystalline Films Directly Deposited on Flexible Substrate. Adv. Opt. Mater. 2022, 10, 2101145. [Google Scholar] [CrossRef]
- Shi, E.; Gao, Y.; Finkenauer, B.P.; Akriti, A.; Coffey, A.H.; Dou, L. Two-dimensional halide perovskite nanomaterials and heterostructures. Chem. Soc. Rev. 2018, 47, 6046–6072. [Google Scholar] [CrossRef]
- Li, H.; Song, J.; Pan, W.; Xu, D.; Zhu, W.; Wei, H.; Yang, B. Sensitive and STable 2D Perovskite Single-Crystal X-ray Detectors Enabled by a Supramolecular Anchor. Adv. Mater. 2020, 32, 2003790. [Google Scholar] [CrossRef] [PubMed]
- Qian, C.X.; Wang, M.Z.; Lu, S.S.; Feng, H.J. Fabrication of 2D perovskite (PMA) 2PbI4 crystal and Cu ion implantation improved X-ray detector. Appl. Phys. Lett. 2022, 120, 011901. [Google Scholar] [CrossRef]
- Li, M.; Li, H.; Li, W.; Li, B.; Lu, T.; Feng, X.; Guo, C.; Zhang, H.; Wei, H.; Yang, B. Oriented 2D Perovskite Wafers for Anisotropic X-ray Detection through a Fast Tableting Strategy. Adv. Mater. 2022, 34, 2108020. [Google Scholar] [CrossRef] [PubMed]
- Ji, C.; Wang, S.; Wang, Y.; Chen, H.; Li, L.; Sun, Z.; Sui, Y.; Wang, S.; Luo, J. 2D Hybrid Perovskite Ferroelectric Enables Highly Sensitive X-ray Detection with Low Driving Voltage. Adv. Funct. Mater. 2019, 30, 1905529. [Google Scholar] [CrossRef]
- Tsai, H.; Liu, F.; Shrestha, S.; Fernando, K.; Tretiak, S.; Scott, B.; Vo, D.T.; Strzalka, J.; Nie, W. A sensitive and robust thin-film X-ray detector using 2D layered perovskite diodes. Sci. Adv. 2020, 6, eaay0815. [Google Scholar] [CrossRef] [Green Version]
- Tsai, H.; Shrestha, S.; Pan, L.; Huang, H.-H.; Strzalka, J.; Williams, D.; Wang, L.; Cao, L.R.; Nie, W. Quasi-2D Perovskite Crystalline Layers for Printable Direct Conversion X-ray Imaging. Adv. Mater. 2022, 34, 2106498. [Google Scholar] [CrossRef]
- Zhang, B.-B.; Liu, X.; Xiao, B.; Ben Hafsia, A.; Gao, K.; Xu, Y.; Zhou, J.; Chen, Y. High-Performance X-ray Detection Based on One-Dimensional Inorganic Halide Perovskite CsPbI3. J. Phys. Chem. Lett. 2019, 11, 432–437. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Jiao, B.; Song, T.B.; Stoumpos, C.C.; He, Y.; Hadar, I.; Lin, W.; Kanatzidis, M.G. Zero-dimensional Cs2TeI6 perovskite: Solution-processed thick films with high X-ray sensitivity. ACS Photonics 2018, 6, 196–203. [Google Scholar] [CrossRef]
- Xu, Q.; Li, C.; Nie, J.; Guo, Y.; Wang, X.; Zhang, B.; Ouyang, X. Highly Sensitive and Stable X-ray Detector Based on a 0D Structural Cs4PbI6 Single Crystal. J. Phys. Chem. Lett. 2020, 12, 287–293. [Google Scholar] [CrossRef]
- Steele, J.A.; Pan, W.; Martin, C.; Keshavarz, M.; Debroye, E.; Yuan, H.; Banerjee, S.; Fron, E.; Jonckheere, D.; Kim, C.W.; et al. Photophysical Pathways in Highly Sensitive Cs2AgBiBr6 Double-Perovskite Single-Crystal X-ray Detectors. Adv. Mater. 2018, 30, 1804450. [Google Scholar] [CrossRef]
- Pan, W.; Wu, H.; Luo, J.; Deng, Z.; Ge, C.; Chen, C.; Jiang, X.; Yin, W.-J.; Niu, G.; Zhu, L.; et al. Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit. Nat. Photonics 2017, 11, 726–732. [Google Scholar] [CrossRef]
- Yuan, W.; Niu, G.; Xian, Y.; Wu, H.; Wang, H.; Yin, H.; Liu, P.; Li, W.; Fan, J. In Situ regulating the order–disorder phase transition in Cs2AgBiBr6 single crystal toward the application in an X-ray detector. Adv. Funct. Mater. 2019, 29, 1900234. [Google Scholar] [CrossRef]
- Zhuang, R.; Wang, X.; Ma, W.; Wu, Y.; Chen, X.; Tang, L.; Zhu, H.; Liu, J.; Wu, L.; Zhou, W.; et al. Highly sensitive X-ray detector made of layered perovskite-like (NH4)3Bi2I9 single crystal with anisotropic response. Nat. Photonics 2019, 13, 602–608. [Google Scholar] [CrossRef]
- Dong, S.; Xin, D.; Zhang, M.; Tie, S.; Cai, B.; Ma, Q.; Zheng, X. Green solvent blade-coated MA3Bi2I9 for direct-conversion X-ray detectors. J. Mater. Chem. C 2022, 10, 6236–6242. [Google Scholar] [CrossRef]
- Li, W.; Xin, D.; Tie, S.; Ren, J.; Dong, S.; Lei, L.; Zheng, X.; Zhao, Y.; Zhang, W. Zero-Dimensional Lead-Free FA3Bi2I9 Single Crystals for High-Performance X-ray Detection. J. Phys. Chem. Lett. 2021, 12, 1778–1785. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Xu, Z.; Ye, H.; Yang, Z.; You, J.; Liu, M.; He, Y.; Kanatzidis, M.G.; Liu, S. Nucleation-controlled growth of superior lead-free perovskite Cs3Bi2I9 single-crystals for high-performance X-ray detection. Nat. Commun. 2020, 11, 1–11. [Google Scholar]
- Mescher, H.; Schackmar, F.; Eggers, H.; Abzieher, T.; Zuber, M.; Hamann, E.; Baumbach, T.; Richards, B.S.; Hernandez-Sosa, G.; Paetzold, U.W.; et al. Flexible Inkjet-Printed Triple Cation Perovskite X-ray Detectors. ACS Appl. Mater. Interfaces 2020, 12, 15774–15784. [Google Scholar] [CrossRef]
- Liu, J.; Shabbir, B.; Wang, C.; Wan, T.; Ou, Q.; Yu, P.; Tadich, A.; Jiao, X.; Chu, D.; Qi, D.; et al. Flexible, printable soft-X-ray detectors based on all-inorganic perovskite quantum dots. Adv. Mater. 2019, 31, 1901644. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Liu, L.; Tan, M.; He, Y.; Guo, C.; Zhang, H.; Wei, H.; Yang, B. Low-Cost and Large-Area Hybrid X-ray Detectors Combining Direct Perovskite Semiconductor and Indirect Scintillator. Adv. Funct. Mater. 2021, 31, 2107843. [Google Scholar] [CrossRef]
- Ciavatti, A.; Sorrentino, R.; Basiricò, L.; Passarella, B.; Caironi, M.; Petrozza, A.; Fraboni, B. High-Sensitivity Flexible X-ray Detectors based on Printed Perovskite Inks. Adv. Funct. Mater. 2021, 31, 2009072. [Google Scholar] [CrossRef]
- Guo, J.; Chen, S.; Xu, Y.; Li, F.; Jie, W.; Zhu, M. Oriented preparation of Large-Area uniform Cs2TeI6 perovskite film for high performance X-ray detector. J. Colloid Interface Sci. 2022, 624, 629–636. [Google Scholar] [CrossRef] [PubMed]
- Qian, W.; Xu, X.; Wang, J.; Xu, Y.; Chen, J.; Ge, Y.; Chen, J.; Xiao, S.; Yang, S. An aerosol-liquid-solid process for the general synthesis of halide perovskite thick films for direct-conversion X-ray detectors. Matter 2021, 4, 942–954. [Google Scholar] [CrossRef]
Crystal Structure | Materials | Crystal Type | Growth Method | Thickness (mm) | E (V·mm−1) | uτ (cm2·V−1) | S (μC·Gyair−1·cm−2) | LoD (nGyair·s−1) | Ref. |
---|---|---|---|---|---|---|---|---|---|
ABX3 (Organic) | MAPbI3 | Single crystals | ITC | NA | 100 | NA | 700,000 | 1.5 | [31] |
MAPbI3 | Single crystals | ITC | NA | 10 | 1.6 × 10−3 | NA | NA | [32] | |
MAPbI3 | Single crystals | ITC | 1.2 ± 0.04 | NA | 5.3 × 10−3 | 3.67 × 103 | 80.6 | [33] | |
DMAMAPbI3 | Single crystals | ITC | 1.2 ± 0.04 | NA | 7.2 × 10−3 | 1.18 × 104 | 16.9 | [33] | |
GAMAPbI3 | Single crystals | ITC | 1.2 ± 0.04 | NA | 1.3 × 10−2 | 2.31 × 104 | 16.9 | [33] | |
MAPbI3 | Single crystals | Solution | 1 | NA | 1.49 × 10−3 | 968.9 | NA | [34] | |
MAPbI3 | Single crystals | Solution | 2~3 | 3.3 | 2.57 × 10−3 | 1471.1 | 46,000 | [35] | |
MAPbI3 | Polycrystals (wafer) | Sintering process | 0.2~1 | 200 | 2 × 10−4 | 2527 | NA | [36] | |
MAPbBr3 | Single crystals | ITC | NA | 0.83 | 4.1 × 10−2 | 259.9 | NA | [37] | |
MAPbBr3 | Single crystals | Solution | NA | 1.43 × 104 | NA | 359 | 22,100 | [38] | |
MAPbBr3 | Single crystals | Fully textile | 0.05 | 17 | NA | 12.2 ± 0.6 | 3000 (for stacked)/8000 (for planar) | [43] | |
Bi3+-doped MAPbBr3 | Single crystals | Solution | 1.68 | 31.5 | 4.12 × 10−4 | 1.72 × 103 | NA | [39] | |
MA0.6Cs0.4PbBr3 | Single crystals | Solution | 2 | NA | 4.64 × 102 | 2017 | 1200 | [40] | |
FA0.85MA0.1Cs0.05Pb I2.55Br0.45 | Single crystals | Thermal evaporation | 1 | −60 | NA | (3.5 ± 0.2) × 106 | NA | [41] | |
Cs0.05FA0.79MA0.16Pb(I0.8 Br0.2)3 | Film | Spin coating | 4.5 × 10−4 | 200 | NA | 3.7 ± 0.1 | NA | [42] | |
ABX3 (Inorganic) | CsPbBr3 | Single crystals | Solution | NA | 45 | −NA | 2552 | 20,900 | [44] |
CsPbBr3 | Single crystals | Solution | 1 | 20 | (2.5 ± 0.2) × 10−3 | 1256 | NA | [45] | |
CsPbBr3 | Single crystals | LTC | 1 | NA | NA | 4086 | NA | [46] | |
CsPbBr3 | Microcrystals | Solution | 0.018 | 0 | NA | 470 | 53 | [48] | |
CsPbBr3 | Microcrystals | Vitreous enamel | 0.1 | 1.2 × 104 | NA | 1450 | NA | [49] | |
CsPbBr3 | Quasi-monocrystal | Hot pressing | 0.24 | 4.2 | 1.32 × 10−2 | 55,684 | 215 | [23] | |
CsPbI2Br | Film | Co-evaporation | 0.001 | NA | NA | 1.2 × 106 | 25.69 | [50] | |
2D | (F-PEA)2PbI4 | Single crystals | Solution | 2 | 133 | 5.1 × 10−4 | 3402 | 23 | [53] |
(PMA)2PbI4 | Single crystals | Cooling crystallization | 0.9 | NA | 8.05 × 10−3 | 283 | 2.13 | [54] | |
(F-PEA)3BiI6 | Single crystals | Tablet pressing | NA | 100 | 8.3 × 10−5 | 118.6 | 30 | [55] | |
PEA2PbBr4 | Film | Spin coating | 1.9 ± 0.8 × 10−3 | 500 | 1.09 ± 0.07 × 10−5 | 806 | 42 | [51] | |
Q-2D | BA2EA2Pb3Br10 | Single crystals | Cooling crystallization | NA | 20k | 7.6 × 10−3 | 6.8 × 103 | 5500 | [56] |
BA2EA2Pb3I10 | Film | Hot casting | 4.70 × 10−4 | NA | NA | 276,000 | 10,000 | [57] | |
MAPbI3/n-butylamine iodide | Film | Spin coating | 2–3 × 10−3 | NA | NA | 1214 | NA | [58] | |
1D | CsPbI3 | Polycrystals | Solution | NA | NA | 3.63 × 10−3 | 2370 | 59.7 | [59] |
0D | Cs2TeI6 | Polycrystals | E-spray deposition | 0.5 | 250 | 5.2 × 10−5 | 19.2 | NA | [60] |
Cs4PbI6 | Single crystals | Solution | NA | NA | 9.7 × 10−4 | 451.49 | 90 | [61] | |
A2B2X6 | Cs2AgBiBr6 | Single crystals | Solution | 2 | NA | NA | 105 | 59.7 | [62] |
Cs2AgBiBr6 | Single crystals | Solution | 2 | 25 | NA | 105 | 59.7 | [63] | |
Cs2AgBiBr6 | Single crystals | Solution | 2.2 | 22.7 | NA | 288 | NA | [64] | |
A3B2X9 | MA3Bi2I9 | Film | Blade coating | 50 × 10−3 | −3000 V cm−1 | 9.7 × 10−6 | 100.16 | 98.4 | [66] |
FA3Bi2I9 | Single crystals | SSCE | 0.9 | NA | NA | 598.1 | 0.2 | [67] | |
Cs3Bi2I9 | Single crystals | Solution | 1.2 | 50 | NA | 1652.3 | 130 | [68] | |
Large area process | MAPbI3 | Nanocrystals | Bar coating | 10 × 10−3 | 800 | NA | 2300 | 27,000 | [72] |
MAPbI3 | Polycrystals | Doctor blade coating | 0.83 | 10–240 | 1.5 × 10−4 | 1.1× 104 | 300 | [22] | |
CsPbBr3 | Monocrystal (quantum dot) | Inkjet printing | 2 × 10−5 | 0.1 V | NA | 1450 | <17,200 | [70] | |
CsPbI2Br | Polycrystals | ALS process | 0.04 | 125 | 1.14 | 148,000 | 280 | [74] | |
Cs0.1(FA0.83MA0.17)0.9Pb(Br0.17I0.83)3 | Polycrystals | Inkjet printing | 3.7 × 10−3 | 27 | 2.0 × 10−6 | 59.9 | 12,000 | [69] | |
Cs2TeI6 | Polycrystals | Electro-spraying | 1.5 × 10−3 | 6670 | NA | 227 | 115 | [73] | |
Cs2ABiBr6/ (C38H34P2)MnBr4 | Polycrystals | Tablet pressing | 1.7 | 100 | 8.5 × 10−5 | 114 | 200 | [71] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, C.-F.; Huang, K.-W.; Chen, Y.-T.; Hsueh, S.-L.; Li, M.-H.; Chen, P. Perovskite-Based X-ray Detectors. Nanomaterials 2023, 13, 2024. https://doi.org/10.3390/nano13132024
Lin C-F, Huang K-W, Chen Y-T, Hsueh S-L, Li M-H, Chen P. Perovskite-Based X-ray Detectors. Nanomaterials. 2023; 13(13):2024. https://doi.org/10.3390/nano13132024
Chicago/Turabian StyleLin, Chen-Fu, Kuo-Wei Huang, Yen-Ting Chen, Sung-Lin Hsueh, Ming-Hsien Li, and Peter Chen. 2023. "Perovskite-Based X-ray Detectors" Nanomaterials 13, no. 13: 2024. https://doi.org/10.3390/nano13132024
APA StyleLin, C.-F., Huang, K.-W., Chen, Y.-T., Hsueh, S.-L., Li, M.-H., & Chen, P. (2023). Perovskite-Based X-ray Detectors. Nanomaterials, 13(13), 2024. https://doi.org/10.3390/nano13132024