Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (460)

Search Parameters:
Keywords = critical heritage studies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 2523 KiB  
Technical Note
A Technical Note on AI-Driven Archaeological Object Detection in Airborne LiDAR Derivative Data, with CNN as the Leading Technique
by Reyhaneh Zeynali, Emanuele Mandanici and Gabriele Bitelli
Remote Sens. 2025, 17(15), 2733; https://doi.org/10.3390/rs17152733 - 7 Aug 2025
Abstract
Archaeological research fundamentally relies on detecting features to uncover hidden historical information. Airborne (aerial) LiDAR technology has significantly advanced this field by providing high-resolution 3D terrain maps that enable the identification of ancient structures and landscapes with improved accuracy and efficiency. This technical [...] Read more.
Archaeological research fundamentally relies on detecting features to uncover hidden historical information. Airborne (aerial) LiDAR technology has significantly advanced this field by providing high-resolution 3D terrain maps that enable the identification of ancient structures and landscapes with improved accuracy and efficiency. This technical note comprehensively reviews 45 recent studies to critically examine the integration of Machine Learning (ML) and Deep Learning (DL) techniques, particularly Convolutional Neural Networks (CNNs), with airborne LiDAR derivatives for automated archaeological feature detection. The review highlights the transformative potential of these approaches, revealing their capability to automate feature detection and classification, thus enhancing efficiency and accuracy in archaeological research. CNN-based methods, employed in 32 of the reviewed studies, consistently demonstrate high accuracy across diverse archaeological features. For example, ancient city walls were delineated with 94.12% precision using U-Net, Maya settlements with 95% accuracy using VGG-19, and with an IoU of around 80% using YOLOv8, and shipwrecks with a 92% F1-score using YOLOv3 aided by transfer learning. Furthermore, traditional ML techniques like random forest proved effective in tasks such as identifying burial mounds with 96% accuracy and ancient canals. Despite these significant advancements, the application of ML/DL in archaeology faces critical challenges, including the scarcity of large, labeled archaeological datasets, the prevalence of false positives due to morphological similarities with natural or modern features, and the lack of standardized evaluation metrics across studies. This note underscores the transformative potential of LiDAR and ML/DL integration and emphasizes the crucial need for continued interdisciplinary collaboration to address these limitations and advance the preservation of cultural heritage. Full article
(This article belongs to the Special Issue Application of Remote Sensing in Cultural Heritage Research II)
Show Figures

Figure 1

29 pages, 7038 KiB  
Article
Developing a Practice-Based Guide to Terrestrial Laser Scanning (TLS) for Heritage Documentation
by Junshan Liu, Danielle Willkens and Russell Gentry
Heritage 2025, 8(8), 313; https://doi.org/10.3390/heritage8080313 - 6 Aug 2025
Abstract
This research advances the integration of terrestrial laser scanning (TLS) in heritage documentation, targeting the development of holistic and practical guidance for practitioners to adopt the technology effectively. Acknowledging the pivotal role of TLS in capturing detailed and accurate representations of cultural heritage, [...] Read more.
This research advances the integration of terrestrial laser scanning (TLS) in heritage documentation, targeting the development of holistic and practical guidance for practitioners to adopt the technology effectively. Acknowledging the pivotal role of TLS in capturing detailed and accurate representations of cultural heritage, the study emerges against a backdrop of technological progression and the evolving needs of heritage conservation. Through a comprehensive literature review, critical case studies of heritage sites in the U.S., expert interviews, and the development of a TLS for Heritage Documentation Best Practice Guide (the guide), the paper addresses the existing gaps in streamlined practices in the domain of TLS’s applications in heritage documentation. While recognizing and building upon foundational efforts such as international guidelines developed over the past decades, this study contributes a practice-oriented perspective grounded in field experience and case-based analysis. The developed guide seeks to equip practitioners with structured methods and practical tools to optimize the use of TLS, ultimately enhancing the quality and accessibility of heritage documentation. It also sets a foundation for integrating TLS datasets with other technologies, such as Building Information Modeling (BIM), virtual reality (VR), and augmented reality (AR) for heritage preservation, tourism, education, and interpretation, ultimately enhancing access to and engagement with cultural heritage sites. The paper also critically situates this guidance within the evolving theoretical discourse on digital heritage practices, highlighting its alignment with and divergence from existing methodologies. Full article
Show Figures

Figure 1

24 pages, 48949 KiB  
Article
Co-Construction Mechanisms of Spatial Encoding and Communicability in Culture-Featured Districts—A Case Study of Harbin Central Street
by Hehui Zhu and Chunyu Pang
Sustainability 2025, 17(15), 7059; https://doi.org/10.3390/su17157059 - 4 Aug 2025
Viewed by 170
Abstract
During the transition of culture-featured district planning from static conservation to innovation-driven models, existing research remains constrained by mechanistic paradigms, reducing districts to functional containers and neglecting human perceptual interactions and meaning-production mechanisms. This study explores and quantifies the generative mechanisms of spatial [...] Read more.
During the transition of culture-featured district planning from static conservation to innovation-driven models, existing research remains constrained by mechanistic paradigms, reducing districts to functional containers and neglecting human perceptual interactions and meaning-production mechanisms. This study explores and quantifies the generative mechanisms of spatial communicability and cultural dissemination efficacy within human-centered frameworks. Grounded in humanistic urbanism, we analyze Harbin Central Street as a case study integrating historical heritage with contemporary vitality, developing a tripartite communicability assessment framework comprising perceptual experience, infrastructure utility, and behavioral dynamics. Machine learning-based threshold analysis reveals that spatial encoding elements govern communicability through significant nonlinear mechanisms. The conclusion shows synergies between street view-quantified greenery visibility and pedestrian accessibility establish critical human-centered design thresholds. Spatial data analysis integrating physiologically sensed emotional experiences and topologically analyzed spatial morphology resolves metric fragmentation while examining spatial encoding’s impact on interaction efficacy. This research provides data-driven decision support for sustainable urban renewal and enhanced cultural dissemination, advancing heritage sustainability. Full article
(This article belongs to the Section Sustainable Urban and Rural Development)
Show Figures

Figure 1

24 pages, 34850 KiB  
Article
New Belgrade’s Thermal Mosaic: Investigating Climate Performance in Urban Heritage Blocks Beyond Coverage Ratios
by Saja Kosanović, Đurica Marković and Marija Stamenković
Atmosphere 2025, 16(8), 935; https://doi.org/10.3390/atmos16080935 - 3 Aug 2025
Viewed by 122
Abstract
This study investigated the nuanced influence of urban morphology on the thermal performance of nine mass housing blocks (21–26, 28–30) in New Belgrade’s Central Zone. These blocks, showcasing diverse structures, provided a robust basis for evaluating the design parameters. ENVI-met simulations were used [...] Read more.
This study investigated the nuanced influence of urban morphology on the thermal performance of nine mass housing blocks (21–26, 28–30) in New Belgrade’s Central Zone. These blocks, showcasing diverse structures, provided a robust basis for evaluating the design parameters. ENVI-met simulations were used to assess two scenarios: an “asphalt-only” environment, isolating the urban structure’s impact, and a “real-world” scenario, including green infrastructure (GI). Overall, the findings emphasize that while GI offers mitigation, the inherent urban built structure fundamentally determines thermal outcomes. An urban block’s thermal performance, it turns out, is a complex interplay between morphological factors and local climate. Crucially, simple metrics like Green Area Percentage (GAP) and Building Coverage Ratio (BCR) proved unreliable predictors of thermal performance. This highlights the critical need for urban planning regulations to evolve beyond basic surface indicators and embrace sophisticated, context-sensitive design principles for effective heat mitigation. Optimal performance arises from morphologies that actively manage heat accumulation and facilitate its dissipation, a characteristic exemplified by Block 22’s integrated design. However, even the best-performing Block 22 remains warmer compared to denser central areas, suggesting that urban densification can be a strategy for heat mitigation. Given New Belgrade’s blocks are protected heritage, targeted GI reinforcements remain the only viable approach for improving the outdoor thermal comfort. Full article
Show Figures

Figure 1

20 pages, 10823 KiB  
Article
Exploring How Micro-Computed Tomography Imaging Technology Impacts the Preservation of Paleontological Heritage
by Michela Amendola, Andrea Barucci, Andrea Baucon, Chiara Zini, Claudia Borrelli, Simone Casati, Andrea di Cencio, Sandra Fiore, Salvatore Siano, Juri Agresti, Carlos Neto de Carvalho, Federico Bernardini, Girolamo Lo Russo, Alberto Collareta and Giulia Bosio
Heritage 2025, 8(8), 310; https://doi.org/10.3390/heritage8080310 - 2 Aug 2025
Viewed by 439
Abstract
Museums play an essential role in preserving both cultural and natural heritage, safeguarding samples that offer invaluable insights into our history and scientific understanding. The integration of micro-computed tomography (micro-CT) has significantly advanced the study, restoration, and conservation of these priceless objects. This [...] Read more.
Museums play an essential role in preserving both cultural and natural heritage, safeguarding samples that offer invaluable insights into our history and scientific understanding. The integration of micro-computed tomography (micro-CT) has significantly advanced the study, restoration, and conservation of these priceless objects. This work explores the application of micro-CT across three critical areas of museum practice: sample virtualization, restoration assessment, and the analysis of fossil specimens. Specifically, micro-CT scanning was applied to fossils stored in the G.A.M.P.S. collection (Scandicci, Italy), enabling the creation of highly detailed non-invasive 3D models for digital archiving and virtual exhibitions. At the Opificio delle Pietre Dure in Florence, micro-CT was employed to evaluate fossil bone restoration treatments, focusing on the internal impact of menthol as a consolidant and its effects on the structural integrity of the material. Furthermore, micro-CT was utilized to investigate a sealed bee preserved in its cocoon within a paleosol in Costa Vicentina (Portugal), providing unprecedented insights into its internal anatomy and state of preservation, all while maintaining the integrity of the specimen. The results of this study underscore the versatility of micro-CT as a powerful non-destructive tool for advancing the fields of conservation, restoration, and scientific analysis of cultural and natural heritage. By integrating high-resolution imaging with both virtual and hands-on conservation strategies, micro-CT empowers museums to enhance research capabilities, improve preservation methodologies, and foster greater public engagement with their collections. Full article
Show Figures

Figure 1

13 pages, 3901 KiB  
Article
Unveiling the Fire Effects on Hydric Dynamics of Carbonate Stones: Leeb Hardness and Ultrasonic Pulse Velocity as Capillary Coefficient Predictors
by Roberta Lobarinhas, Amélia Dionísio and Gustavo Paneiro
Appl. Sci. 2025, 15(15), 8567; https://doi.org/10.3390/app15158567 - 1 Aug 2025
Viewed by 189
Abstract
Natural carbonate stones such as limestones and marbles are widely used in heritage and contemporary architecture, yet their durability is increasingly threatened by wildfire-related thermal stress. Since water transport plays a key role in stone deterioration, understanding how high temperatures affect hydric behavior [...] Read more.
Natural carbonate stones such as limestones and marbles are widely used in heritage and contemporary architecture, yet their durability is increasingly threatened by wildfire-related thermal stress. Since water transport plays a key role in stone deterioration, understanding how high temperatures affect hydric behavior is critical for conservation. This study investigates thirteen Portuguese carbonate lithotypes (including marbles, limestones, a travertine, and a breccia) exposed to temperatures of 300 °C and 600 °C. Capillary absorption and open porosity were measured, alongside Leeb hardness (HL) and ultrasonic pulse velocity (UPV), to evaluate their predictive capacity for post-fire moisture behavior. Results show that thermal exposure increases porosity and capillary uptake while reducing mechanical cohesion. Strong correlations between UPV and hydric parameters across temperature ranges highlight its reliability as a non-invasive diagnostic tool. HL performed well in compact stones but was less consistent in porous or heterogeneous lithologies. The findings support the use of NDT tests, like UPV and HL, for rapid post-fire assessments and emphasize the need for lithology-specific conservation strategies. Full article
(This article belongs to the Special Issue Non-Destructive Techniques for Heritage Conservation)
Show Figures

Figure 1

19 pages, 4759 KiB  
Article
Research on User Experience and Continuous Usage Mechanism of Digital Interactive Installations in Museums from the Perspective of Distributed Cognition
by Aili Zhang, Yanling Sun, Shaowen Wang and Mengjuan Zhang
Appl. Sci. 2025, 15(15), 8558; https://doi.org/10.3390/app15158558 - 1 Aug 2025
Viewed by 176
Abstract
With the increasing application of digital interactive installations in museums, their role in enhancing audience engagement and cultural dissemination effectiveness has become prominent. However, ensuring the sustained use of these technologies remains challenging. Based on distributed cognition and perceived value theories, this study [...] Read more.
With the increasing application of digital interactive installations in museums, their role in enhancing audience engagement and cultural dissemination effectiveness has become prominent. However, ensuring the sustained use of these technologies remains challenging. Based on distributed cognition and perceived value theories, this study investigates key factors influencing users’ continuous usage of digital interactive installations using the Capital Museum in Beijing as a case study. A theoretical model was constructed and empirically validated through Bayesian Structural Equation Modeling (Bayesian-SEM) with 352 valid samples. The findings reveal that perceived ease of use plays a critical direct predictive role in continuous usage intention. Environmental factors and peer interaction indirectly influence user behavior through learner engagement, while user satisfaction serves as a core mediator between perceived ease of use and continuous usage intention. Notably, perceived usefulness and entertainment showed no direct effects, indicating that convenience and social experience outweigh functional benefits in this context. These findings emphasize the importance of optimizing interface design, fostering collaborative environments, and enhancing user satisfaction to promote sustained participation. This study provides practical insights for aligning digital innovation with audience needs in museums, thereby supporting the sustainable integration of technology in cultural heritage education and preservation. Full article
Show Figures

Figure 1

25 pages, 14992 KiB  
Article
Microclimate Monitoring Using Multivariate Analysis to Identify Surface Moisture in Historic Masonry in Northern Italy
by Elisabetta Rosina and Hoda Esmaeilian Toussi
Appl. Sci. 2025, 15(15), 8542; https://doi.org/10.3390/app15158542 - 31 Jul 2025
Viewed by 128
Abstract
Preserving historical porous materials requires careful monitoring of surface humidity to mitigate deterioration processes like salt crystallization, mold growth, and material decay. While microclimate monitoring is a recognized preventive conservation tool, its role in detecting surface-specific moisture risks remains underexplored. This study evaluates [...] Read more.
Preserving historical porous materials requires careful monitoring of surface humidity to mitigate deterioration processes like salt crystallization, mold growth, and material decay. While microclimate monitoring is a recognized preventive conservation tool, its role in detecting surface-specific moisture risks remains underexplored. This study evaluates the relationship between indoor microclimate fluctuations and surface moisture dynamics across 13 historical sites in Northern Italy (Lake Como, Valtellina, Valposchiavo), encompassing diverse masonry typologies and environmental conditions. High-resolution sensors recorded temperature and relative humidity for a minimum of 13 months, and eight indicators—including dew point depression, critical temperature–humidity zones, and damp effect indices—were analyzed to assess the moisture risks. The results demonstrate that multivariate microclimate data could effectively predict humidity accumulation. The key findings reveal the impact of seasonal ventilation, thermal inertia, and localized air stagnation on moisture distribution, with unheated alpine sites showing the highest condensation risk. The study highlights the need for integrated monitoring approaches, combining dew point analysis, mixing ratio stability, and buffering performance, to enable early risk detection and targeted conservation strategies. These insights bridge the gap between environmental monitoring and surface moisture diagnostics in porous heritage materials. Full article
(This article belongs to the Special Issue Advanced Study on Diagnostics for Surfaces of Historical Buildings)
Show Figures

Figure 1

40 pages, 3045 KiB  
Review
HBIM and Information Management for Knowledge and Conservation of Architectural Heritage: A Review
by Maria Parente, Nazarena Bruno and Federica Ottoni
Heritage 2025, 8(8), 306; https://doi.org/10.3390/heritage8080306 - 30 Jul 2025
Viewed by 187
Abstract
This paper presents a comprehensive review of research on Historic Building Information Modeling (HBIM), focusing on its role as a tool for managing knowledge and supporting conservation practices of Architectural Heritage. While previous review articles and most research works have predominantly addressed geometric [...] Read more.
This paper presents a comprehensive review of research on Historic Building Information Modeling (HBIM), focusing on its role as a tool for managing knowledge and supporting conservation practices of Architectural Heritage. While previous review articles and most research works have predominantly addressed geometric modeling—given its significant challenges in the context of historic buildings—this study places greater emphasis on the integration of non-geometric data within the BIM environment. A systematic search was conducted in the Scopus database to extract the 451 relevant publications analyzed in this review, covering the period from 2008 to mid-2024. A bibliometric analysis was first performed to identify trends in publication types, geographic distribution, research focuses, and software usage. The main body of the review then explores three core themes in the development of the information system: the definition of model entities, both semantic and geometric; the data enrichment phase, incorporating historical, diagnostic, monitoring and conservation-related information; and finally, data use and sharing, including on-site applications and interoperability. For each topic, the review highlights and discusses the principal approaches documented in the literature, critically evaluating the advantages and limitations of different information management methods with respect to the distinctive features of the building under analysis and the specific objectives of the information model. Full article
Show Figures

Figure 1

40 pages, 6652 KiB  
Systematic Review
How Architectural Heritage Is Moving to Smart: A Systematic Review of HBIM
by Huachun Cui and Jiawei Wu
Buildings 2025, 15(15), 2664; https://doi.org/10.3390/buildings15152664 - 28 Jul 2025
Viewed by 411
Abstract
Heritage Building Information Modeling (HBIM) has emerged as a key tool in advancing heritage conservation and sustainable management. Preceding reviews had typically concentrated on specific technical aspects but did not provide sufficient bibliometric analysis. This study aims to integrate existing HBIM research to [...] Read more.
Heritage Building Information Modeling (HBIM) has emerged as a key tool in advancing heritage conservation and sustainable management. Preceding reviews had typically concentrated on specific technical aspects but did not provide sufficient bibliometric analysis. This study aims to integrate existing HBIM research to identify key research patterns, emerging trends, and forecast future directions. A total of 1516 documents were initially retrieved from the Web of Science Core Collection using targeted search terms. Following a relevance screening, 1175 documents were related to the topic. CiteSpace 6.4.R1, VOSviewer 1.6.20, and Bibliometrix 4.1, three bibliometric tools, were employed to conduct both quantitative and qualitative assessments. The results show three historical phases of HBIM, identify core journals, influential authors, and leading regions, and extract six major keyword clusters: risk assessment, data acquisition, semantic annotation, digital twins, and energy and equipment management. Nine co-citation clusters further outline the foundational literature in the field. The results highlight growing scholarly interest in workflow integration and digital twin applications. Future projections emphasize the transformative potential of artificial intelligence in HBIM, while also recognizing critical implementation barriers, particularly in developing countries and resource-constrained contexts. This study provides a comprehensive and systematic framework for HBIM research, offering valuable insights for scholars, practitioners, and policymakers involved in heritage preservation and digital management. Full article
Show Figures

Figure 1

18 pages, 1374 KiB  
Article
Learning Environment and Learning Outcome: Evidence from Korean Subject–Predicate Honorific Agreement
by Gyu-Ho Shin, Boo Kyung Jung and Minseok Yang
Languages 2025, 10(8), 180; https://doi.org/10.3390/languages10080180 - 26 Jul 2025
Viewed by 300
Abstract
This study examines the relationship between learning environments and learning outcomes in acquiring Korean as a language target. We compare two learner groups residing in the United States: English-speaking learners of Korean in foreign language contexts versus Korean heritage speakers. Both groups share [...] Read more.
This study examines the relationship between learning environments and learning outcomes in acquiring Korean as a language target. We compare two learner groups residing in the United States: English-speaking learners of Korean in foreign language contexts versus Korean heritage speakers. Both groups share English as their dominant language and receive similar tertiary-level instruction, yet differ in their language-learning profiles. We measure two groups’ comprehension behaviour involving Korean subject−predicate honorific agreement, focusing on two conditions manifesting a mismatch between the honorifiable status of a subject and the realisation of the honorific suffix in a predicate. Results from the acceptability judgement task revealed that (1) both learner groups rated the ungrammatical condition as more acceptable than native speakers did, (2) Korean heritage speakers rated the ungrammatical condition significantly lower than English-speaking learners, and (3) overall proficiency in Korean modulated learners’ evaluations of the ungrammatical condition in opposite directions between the groups. No between-group difference was found in the infelicitous-yet-grammatical condition. Results from reaction time measurement further showed that Korean heritage speakers responded considerably faster than English-speaking learners of Korean. These results underscore the critical role of broad usage experience—whether through home language exposure for heritage language speakers or formal instruction for foreign language learners—in shaping non-dominant language activities. Full article
Show Figures

Figure 1

27 pages, 47905 KiB  
Article
FDS-Based Study on Fire Spread and Control in Modern Brick-Timber Architectural Heritage: A Case Study of Faculty House at a University in Changsha
by Simian Liu, Gaocheng Liang, Lei Shi, Ming Luo and Meizhen Long
Sustainability 2025, 17(15), 6773; https://doi.org/10.3390/su17156773 - 25 Jul 2025
Viewed by 396
Abstract
The modern Chinese architectural heritage combines sturdy Western materials with delicate Chinese styling, mainly adopting brick-timber structural systems that are highly vulnerable to fire damage. The study assesses the fire spread characteristics of the First Faculty House, a 20th-century architectural heritage located at [...] Read more.
The modern Chinese architectural heritage combines sturdy Western materials with delicate Chinese styling, mainly adopting brick-timber structural systems that are highly vulnerable to fire damage. The study assesses the fire spread characteristics of the First Faculty House, a 20th-century architectural heritage located at a university in China. The assessment is carried out by analyzing building materials, structural configuration, and fire load. By using FDS (Fire Dynamics Simulator (PyroSim version 2022)) and SketchUp software (version 2023) for architectural reconstruction and fire spread simulation, explores preventive measures to reduce fire risks. The result show that the total fire load of the building amounts to 1,976,246 MJ. After ignition, flashover occurs at 700 s, accompanied by a sharp increase in the heat release rate (HRR). The peak ceiling temperature reaches 750 °C. The roof trusses have critical structural weaknesses when approaching flashover conditions, indicating a high potential for collapse. Three targeted fire protection strategies are proposed in line with the heritage conservation principle of minimal visual and functional intervention: fire sprinkler systems, fire retardant coating, and fire barrier. Simulations of different strategies demonstrate their effectiveness in mitigating fire spread in elongated architectural heritages with enclosed ceiling-level ignition points. The efficacy hierarchy follows: fire sprinkler system > fire retardant coating > fire barrier. Additionally, because of chimney effect, for fire sources located above the ceiling and other hidden locations need to be warned in a timely manner to prevent the thermal plume from invading other sides of the ceiling through the access hole. This research can serve as a reference framework for other Modern Chinese Architectural Heritage to develop appropriate fire mitigation strategies and to provide a methodology for sustainable development of the Chinese architectural heritage. Full article
Show Figures

Figure 1

19 pages, 3408 KiB  
Article
Automated Edge Detection for Cultural Heritage Conservation: Comparative Evaluation of Classical and Deep Learning Methods on Artworks Affected by Natural Disaster Damage
by Laya Targa, Carmen Cano, Álvaro Solbes-García, Sergio Casas, Ester Alba and Cristina Portalés
Appl. Sci. 2025, 15(15), 8260; https://doi.org/10.3390/app15158260 - 24 Jul 2025
Viewed by 375
Abstract
Assessing the condition of artworks is a critical step in cultural heritage conservation that traditionally involves manual damage mapping, which is time-consuming and reliant on expert input. This study, conducted within the ChemiNova project, explores the automation of edge detection using both classical [...] Read more.
Assessing the condition of artworks is a critical step in cultural heritage conservation that traditionally involves manual damage mapping, which is time-consuming and reliant on expert input. This study, conducted within the ChemiNova project, explores the automation of edge detection using both classical image processing techniques (Canny, Sobel, and Laplacian) and a deep learning model (DexiNed). The methodology integrates interdisciplinary collaboration between conservation professionals and computer scientists, applying these algorithms to artworks affected by environmental damage, including flooding. Preprocessing and post-processing techniques were used to enhance detection accuracy and reduce noise. The results show that while traditional methods often yield higher precision and recall scores, they are also sensitive to texture and contrast variations. These findings suggest that automated edge detection can support conservation efforts by streamlining condition assessments and improving documentation. Full article
Show Figures

Figure 1

21 pages, 2399 KiB  
Article
An HUL Assessment for Small Cultural Heritage Sites in Urban Areas: Framework, Methodology, and Empirical Research
by Shiyang Zhang, Haochen Sun, Muye Jiang and Jingrui Zhao
Land 2025, 14(8), 1513; https://doi.org/10.3390/land14081513 - 23 Jul 2025
Viewed by 315
Abstract
The research is grounded in the perspective of urban historical landscape (HUL), exploring the connections between cultural heritage and a broader urban context, as well as the general public and communities. It also focuses on small cultural heritage sites (SCHSs) in urban areas [...] Read more.
The research is grounded in the perspective of urban historical landscape (HUL), exploring the connections between cultural heritage and a broader urban context, as well as the general public and communities. It also focuses on small cultural heritage sites (SCHSs) in urban areas that have been overlooked in previous studies. By integrating various types of data, an assessment framework and methodology comprising six dimensions and 24 indicators were established and applied to the empirical research of 30 SCHSs in the Beijing section of the Grand Canal. The empirical research demonstrated the operability, effectiveness, and flexibility of the HUL assessment for SCHSs. The research findings are as follows. (1) The method provides differentiated recommendations for the formulation of tailored policies and planning management schemes based on heritage types, conservation levels, and the urban districts in which they are located. (2) The comprehensive quality of the open spaces where SCHSs are situated is critical for the cognition of the general public and community residents. (3) The overall conservation of the community areas containing SCHSs is highly significant, and the linkage between social development levels and cultural resources enhances public cognition of the SCHSs. (4) Cluster analysis offers guidance for the refined improvement of different SCHSs. The research aims to establish an action-oriented assessment framework, with a dimensional framework responding to the requirements of HULs and allowing for indicator flexibility. This study is significant for supporting the conservation and utilization of SCHSs in urban areas and for promoting their sustainable development. Full article
Show Figures

Figure 1

57 pages, 1459 KiB  
Article
Sustainable Digital Banking in Turkey: Analysis of Mobile Banking Applications Using Customer-Generated Content
by Yavuz Selim Balcioglu and Furkan Evranos
Sustainability 2025, 17(15), 6676; https://doi.org/10.3390/su17156676 - 22 Jul 2025
Viewed by 413
Abstract
This study addresses a critical gap in understanding how mobile banking applications contribute to sustainable development by introducing a novel text mining framework to analyze sustainability dimensions through user-generated content. We analyzed 120,000 reviews from six major Turkish mobile banking applications using an [...] Read more.
This study addresses a critical gap in understanding how mobile banking applications contribute to sustainable development by introducing a novel text mining framework to analyze sustainability dimensions through user-generated content. We analyzed 120,000 reviews from six major Turkish mobile banking applications using an ownership-sensitive analytical approach that integrates structural topic modeling with four sustainability dimensions (environmental, social, governance, and economic). Our analysis reveals significant institutional differences in sustainability approaches: government-owned banks demonstrate substantially stronger overall sustainability orientation (23.43% vs. 11.83% coverage) with pronounced emphasis on social sustainability (+181.7% growth) and economic development (+104.2% growth), while private banks prioritize innovation-focused sustainability. The temporal analysis (2022–2025) shows accelerating sustainability emphasis across all institutions, with distinct evolution patterns by ownership type. Institution-specific sustainability profiles emerge clearly, with each government bank demonstrating distinctive focus areas aligned with historical missions: cultural heritage preservation, agricultural sector support, and small business development. Mapping to Sustainable Development Goals reveals that government banks prioritize development-focused goals (SDGs 1, 8, and 10), while private banks emphasize innovation-focused goals (SDGs 9 and 17). This research makes three key contributions: demonstrating user-generated content as an effective lens for authentic sustainability assessment, establishing ownership-sensitive evaluation frameworks for digital banking sustainability, and providing empirical evidence for contextualized rather than universal sustainability strategies. The findings offer strategic implications for financial institutions, policymakers, and app developers seeking to enhance sustainable digital banking transformation. Full article
Show Figures

Figure 1

Back to TopTop