Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (142)

Search Parameters:
Keywords = creep bending test

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2594 KiB  
Article
Low-Temperature Performance and Thermal Control of Asphalt Modified with Microencapsulated Phase-Change Materials
by Liming Zhang, Junmao Wang, Jinhua Wu, Ran Zhang, Yinchuan Guo, Hongbo Shen, Xinghua Liu and Kuncan Li
Coatings 2025, 15(8), 879; https://doi.org/10.3390/coatings15080879 - 26 Jul 2025
Viewed by 376
Abstract
Conventional asphalt is prone to cracking in cold climates due to its poor flexibility and limited ability to regulate temperature. This study investigates the use of low-temperature microencapsulated phase-change materials (MPCMs) to improve both the thermal storage and low-temperature performance of asphalt. MPCMs [...] Read more.
Conventional asphalt is prone to cracking in cold climates due to its poor flexibility and limited ability to regulate temperature. This study investigates the use of low-temperature microencapsulated phase-change materials (MPCMs) to improve both the thermal storage and low-temperature performance of asphalt. MPCMs were incorporated into asphalt through physical blending at various concentrations. The physical, thermal, and rheological properties of the asphalt were then systematically evaluated. Tests included penetration, softening point, ductility, thermogravimetric analysis (TGA), and dynamic shear rheometer (DSR). The addition of MPCMs increased penetration and ductility. It slightly reduced the softening point and viscosity. These changes suggest improved flexibility and workability at low temperatures. Rheological tests showed reductions in rutting and fatigue factors. This indicates better resistance to thermal and mechanical stresses. Bending Beam Rheometer (BBR) results further confirmed that MPCMs lowered creep stiffness and increased the m-value. These findings demonstrate improved crack resistance under cold conditions. Thermal cycling tests also showed that MPCMs delayed the cooling process and reduced temperature fluctuations. This highlights their potential to enhance both energy efficiency and the durability of asphalt pavements in cold regions. Full article
(This article belongs to the Special Issue Synthesis and Application of Functional Polymer Coatings)
Show Figures

Graphical abstract

23 pages, 3933 KiB  
Article
Evaluations on the Properties of Polymer and Nanomaterials Modified Bitumen Under Different Aging Conditions
by Shaban Ismael Albrka Ali, Khalifa Salem Gallouz, Ikenna D. Uwanuakwa, Mustafa Alas and Mohd Rosli Mohd Hasan
Nanomaterials 2025, 15(14), 1071; https://doi.org/10.3390/nano15141071 - 10 Jul 2025
Viewed by 325
Abstract
This research evaluates the rheological and mechanical properties of polymer- and nanomaterials-modified bitumen by incorporating nanosilica (NSA), nanoclay (NCY), and Acrylonitrile Styrene Acrylate (ASA) at 5% by weight of the bitumen. The samples were prepared at 165 °C for one hour to obtain [...] Read more.
This research evaluates the rheological and mechanical properties of polymer- and nanomaterials-modified bitumen by incorporating nanosilica (NSA), nanoclay (NCY), and Acrylonitrile Styrene Acrylate (ASA) at 5% by weight of the bitumen. The samples were prepared at 165 °C for one hour to obtain homogeneous blends. All samples were subjected to short- and long-term aging to simulate the effects of different operating conditions. The research conducted a series of tests, including consistency, frequency sweep, and multiple creep stress and recovery (MSCR) using the dynamic shear rheometer (DSR) and bending beam rheometer (BBR). The results showed that all modified bitumen outperformed the neat bitumen. The frequency sweep showed a higher complex modulus (G*) and lower phase angle (δ), indicating enhanced viscoelastic properties and, thus, higher resistance to permanent deformation. The BBR test revealed that the bitumen modified with NCY5% has a creep stiffness of 47.13 MPa, a 51.5% improvement compared to the neat bitumen, while the NSA5% has the highest m-value, a 28.5% enhancement compared with the neat bitumen. The MSCR showed that the modified blends have better recovery properties and, therefore, better resistance to permanent deformation under repeated loadings. The aging index demonstrated that the modified bitumen is less vulnerable to aging and maintains their good flexibility and resistance to permanent deformations. Finally, these results showed that adding 5% polymer and nanomaterials improved the bitumen’s’ performance before and after aging by reducing permanent deformation and enhancing crack resistance at low temperatures, thus extending the pavement service life and making them an effective alternative for improving pavement performance in various climatic conditions and under high traffic loads. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

22 pages, 56730 KiB  
Article
Evolution Process of Toppling Deformations in Interbedded Anti-Inclined Rock Slopes
by Yibing Ning, Yanjun Shen, Tao Ding, Panpan Xu, Fenghao Duan, Bei Zhang, Bocheng Zhang and John Victor Smith
Appl. Sci. 2025, 15(14), 7727; https://doi.org/10.3390/app15147727 - 10 Jul 2025
Viewed by 230
Abstract
Rock slopes exhibiting anti-inclined interbedded strata have widespread distribution and complex deformation mechanisms. In this study, we used a physical model test with basal friction to replicate the evolution process of the slope deformation. Digital Image Correlation (DIC) and Particle Image Velocimetry (PIV) [...] Read more.
Rock slopes exhibiting anti-inclined interbedded strata have widespread distribution and complex deformation mechanisms. In this study, we used a physical model test with basal friction to replicate the evolution process of the slope deformation. Digital Image Correlation (DIC) and Particle Image Velocimetry (PIV) methods were used to capture the variation in slope velocity and displacement fields. The results show that the slope deformation is conducted by bending of soft rock layers and accumulated overturning of hard blocks along numerous cross joints. As the faces of the rock columns come back into contact, the motion of the slope can progressively stabilize. Destruction of the toe blocks triggers the formation of the landslides within the toppling zone. The toppling fracture zones form by tracing tensile fractures within soft rocks and cross joints within hard rocks, ultimately transforming into a failure surface which is located above the hinge surface of the toppling motion. The evolution of the slope deformation mainly undergoes four stages: the initial shearing, the free rotation, the creep, and the progressive failure stages. Full article
Show Figures

Figure 1

12 pages, 3805 KiB  
Article
Preparation of Graft-Functionalized SBS/SBS Composite Latex Modifier and Its Effect on Emulsified Asphalt Properties
by Kunyu Wang, Yifan Liu, Zhenhao Cao, Yanyan Zhang, Jia Wang and Xue Li
Processes 2025, 13(7), 2125; https://doi.org/10.3390/pr13072125 - 3 Jul 2025
Viewed by 352
Abstract
To broaden clean asphalt modification methods, this study employs a composite polymer of maleic anhydride-grafted styrene-butadiene-styrene (MA-g-SBS) and styrene-butadiene-styrene (SBS) as a modifier. The composite is formulated into polymer latex and used to modify emulsified asphalt. Routine performance tests were conducted on MA-g-SBS/SBS [...] Read more.
To broaden clean asphalt modification methods, this study employs a composite polymer of maleic anhydride-grafted styrene-butadiene-styrene (MA-g-SBS) and styrene-butadiene-styrene (SBS) as a modifier. The composite is formulated into polymer latex and used to modify emulsified asphalt. Routine performance tests were conducted on MA-g-SBS/SBS composite latex-modified emulsified asphalt (MSMEA) with varying ratios to determine the optimal composition. The ideal ratio was found to be MA-g-SBS:SBS = 1:4. Subsequently, conventional property tests, rheological analyses, microphase structure observations, and bending beam creep tests were conducted on MSMEA with the optimal ratio to assess the impact of the composite latex on asphalt performance. Findings indicated that increasing the latex content significantly enhanced the softening point and ductility while reducing penetration. These macroscopic improvements were notably superior to those achieved with single SBS latex modification. Fluorescence microscopy revealed that at low dosages, the MA-g-SBS/SBS composite dispersed uniformly as point-like structures within the asphalt. At higher dosages (above 5%), a distinct network structure emerged. The addition of the composite latex raised the complex shear modulus and rutting factor while reducing the phase angle, with pronounced fluctuations observed between 4% and 5% dosages. This suggests a substantial enhancement in the high-temperature performance of the emulsified asphalt, attributed to the formation of the network structure. FT-IR results confirmed that a chemical reaction occurred during the modification process. Additionally, the bending beam creep test demonstrated that the composite latex reduced asphalt brittleness and improved its low-temperature performance. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

18 pages, 3861 KiB  
Article
Investigating the Rheological Impact of USP Warm Mix Modifier on Asphalt Binder
by Yali Liu, Jingfei Ping, Hao Guo, Yikai Kang and Yali Ye
Coatings 2025, 15(7), 784; https://doi.org/10.3390/coatings15070784 - 3 Jul 2025
Viewed by 446
Abstract
USP (usual temperature pitch)-modified asphalt optimizes its rheological properties through reactions between the modifier and the asphalt. This significantly enhances the high- and low-temperature adaptability and environmental friendliness of asphalt. It has now become an important research direction in the field of highway [...] Read more.
USP (usual temperature pitch)-modified asphalt optimizes its rheological properties through reactions between the modifier and the asphalt. This significantly enhances the high- and low-temperature adaptability and environmental friendliness of asphalt. It has now become an important research direction in the field of highway engineering. This article systematically investigates the impact of different dosages of USP warm mix modifier on asphalt binders through rheological and microstructural analysis. Base asphalt and SBS-modified asphalt were blended with USP at varying ratios. Conventional tests (penetration, softening point, ductility) were combined with dynamic shear rheometry (DSR, AASHTO T315) and bending beam rheometry (BBR, AASHTO T313) to characterize temperature/frequency-dependent viscoelasticity. High-temperature performance was quantified via multiple stress creep recovery (MSCR, ASTM D7405), while fluorescence microscopy and FTIR spectroscopy elucidated modification mechanisms. Key findings reveal that (1) optimal USP thresholds exist at 4.0% for base asphalt and 4.5% for SBS modified asphalt, beyond which the rutting resistance factor (G*/sin δ) decreases by 20–31% due to plasticization effects; (2) USP significantly improves low-temperature flexibility, reducing creep stiffness at −12 °C by 38% (USP-modified) and 35% (USP/SBS composite) versus controls; (3) infrared spectroscopy displays that no new characteristic peaks appeared in the functional group region of 4000–1300 cm−1 for the two types of modified asphalt after the incorporation of USP, indicating that no chemical changes occurred in the asphalt; and (4) fluorescence imaging confirmed that the incorporation of USP led to disintegration of the spatial network structure of the control asphalt, explaining the reason for the deterioration of high-temperature performance. Full article
(This article belongs to the Special Issue Surface Treatments and Coatings for Asphalt and Concrete)
Show Figures

Figure 1

28 pages, 5996 KiB  
Article
Development of Sustainable Composite Sandwich with Wood Waste and Natural Fibers for Circular Economy Applications
by Sofia Gomes, Paulo Santos and Tânia M. Lima
Recycling 2025, 10(4), 131; https://doi.org/10.3390/recycling10040131 - 2 Jul 2025
Viewed by 322
Abstract
Sustainability and the circular economy are increasingly recognized as global priorities, particularly in industrial waste management. This study explores the development of a sustainable composite material using wood waste and natural fibers, contributing to circular economy practices. Sandwich panels were manufactured with a [...] Read more.
Sustainability and the circular economy are increasingly recognized as global priorities, particularly in industrial waste management. This study explores the development of a sustainable composite material using wood waste and natural fibers, contributing to circular economy practices. Sandwich panels were manufactured with a green epoxy resin matrix, incorporating wood waste in the core and flax fibers in the outer layers. Mechanical tests on the sandwich panel revealed a facing bending stress of 92.79 MPa and a core shear stress of 2.43 MPa. The panel demonstrated good compressive performance, with an edgewise compressive strength of 61.39 MPa and a flatwise compressive strength of 96.66 MPa. The material’s viscoelastic behavior was also characterized. In stress relaxation tests (from an initial 21 MPa), the panel’s stress decreased by 20.2% after three hours. The experimental relaxation data were successfully fitted by the Kohlrausch–Williams–Watts (KWW) model for both short- and long-term predictions. In creep tests, the panel showed a 21.30% increase in displacement after three hours under a 21 MPa load. For creep behavior, the KWW model was preferable for short-term predictions, while the Findley model provided a better fit for long-term predictions. Full article
Show Figures

Figure 1

33 pages, 6532 KiB  
Article
Short-Term and Long-Term Mechanical Properties of Lightweight Concrete with Sintered Aggregate
by Paweł M. Lewiński, Zbigniew Fedorczyk, Przemysław Więch and Łukasz Zacharski
Materials 2025, 18(13), 2977; https://doi.org/10.3390/ma18132977 - 23 Jun 2025
Viewed by 316
Abstract
The aim of this work is to determine the short-term and long-term mechanical properties of lightweight concrete with relatively new sintered aggregate, as knowledge of these parameters is essential to the design of prestressed structures. The problem can be placed in a broader [...] Read more.
The aim of this work is to determine the short-term and long-term mechanical properties of lightweight concrete with relatively new sintered aggregate, as knowledge of these parameters is essential to the design of prestressed structures. The problem can be placed in a broader ecological context, because the aggregate comes from recycled power plant ash. This research study was planned based on two concrete mixtures that were already used in previous publications, as the aim of this work was to conduct comparative research by using other methods. In particular, the aim was to investigate the long-term properties of lightweight concrete by using standard methods and appropriate equipment, such as creep-testing machines. As a result of these studies, the secant modulus of elasticity, cylindrical strength, cubic strength, axial tensile strength, splitting tensile strength, bending strength, and shrinkage and creep strain were determined. This study confirmed the short-term properties of concrete obtained in previous studies but did not confirm the results regarding shrinkage and creep. These results turned out to be much higher, which means that these values should not be tested by non-standard methods. An unusual process of development of the elastic modulus and axial tensile strength was observed, and the reasons for these phenomena were described. Full article
Show Figures

Figure 1

23 pages, 5213 KiB  
Article
Fire Test on Insulated Steel Beams with Fire-Protection Coating and Fiber Cement Board
by Weihua Wang, Tao Zhu, Xian Gao, Jingjie Yang, Xilong Chen and Weiyong Wang
Buildings 2025, 15(12), 2121; https://doi.org/10.3390/buildings15122121 - 18 Jun 2025
Viewed by 305
Abstract
Fire safety design for steel beams is crucial in the construction of steel structures. However, there remains a significant gap in the fire resistance testing of insulated steel beams. This study focuses on full-scale experimental research examining the fire resistance performance of steel [...] Read more.
Fire safety design for steel beams is crucial in the construction of steel structures. However, there remains a significant gap in the fire resistance testing of insulated steel beams. This study focuses on full-scale experimental research examining the fire resistance performance of steel beams with varying fire protection methods, cross-sectional dimensions, and heating curves. During the tests, the furnace temperature, specimen temperature, and deflection at mid-span were measured. The test results indicated that specimens mainly failed in lateral–torsional buckling. Additionally, a markedly non-uniform temperature distribution was observed across the cross-section, and the predictions made by GB 51249-2017 were found to be unsafe. The use of fiber cement board for fire protection may be ineffective, as it tends to become brittle at elevated temperatures, making it susceptible to breakage and detachment when the beams begin to bend. Furthermore, due to potential creep deformation, specimens subjected to longer heating durations exhibited lower critical temperatures compared to those with shorter heating durations. Finally, the design method outlined in BS EN 1993-1-2 and ANSI/AISC 360-22 was evaluated against the test results, indicating an accurate prediction of these methods for specimens with shorter heating durations, but an unconservative prediction for specimens with longer heating durations due to ignorance of creep deformation. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

20 pages, 6684 KiB  
Article
Study on Rheological Properties of Nano Titanium Dioxide High-Viscosity Modified Asphalt
by Ruiduo Li, Yanzhao Yuan, Yabing Ma, Zhigang Wang, Shikang Zhou and Liqin Li
Coatings 2025, 15(6), 717; https://doi.org/10.3390/coatings15060717 - 14 Jun 2025
Viewed by 517
Abstract
The research on nano titanium dioxide (nano-TiO2)-modified asphalt has received increasing attention. However, further studies are required in order to ascertain the influence of the phenomenon under discussion on the rheological characteristics and ability to resist deformation of bitumen. In the [...] Read more.
The research on nano titanium dioxide (nano-TiO2)-modified asphalt has received increasing attention. However, further studies are required in order to ascertain the influence of the phenomenon under discussion on the rheological characteristics and ability to resist deformation of bitumen. In the present study, modified bitumen was formulated by adding nano titanium dioxide. Physical property tests, temperature scanning tests, frequency scanning tests, repeated creep recovery tests, bending creep stiffness tests, and long-term aging performance experiments were carried out on the specimen of asphalt that had undergone the process of modification in order to assess the rheological characteristics and ability to resist unrecoverable deformation of the modified bitumen at different temperatures, both high and low. The outcomes of the repeated creep recovery experiment were analyzed using Burgers and fractional derivative models. The microstructure of nano-TiO2 high-viscosity modified asphalt was observed by Scanning Electron Microscope(SEM). In order to ascertain the manner in which base bitumen and nano-TiO2 interact, Fourier transform infrared spectroscopy (FTIR) was utilized in the study. The results show that the thermal stability and prolonged aging resistant properties of the modified bitumen binder improved, but nano-TiO2 made the asphalt binder weaker and more likely to crack at lower temperatures. Taking into account the variation in the road performance of the bitumen binder, 6% is recommended as the optimal amount of nano-TiO2. Nano-TiO2 was mainly uniformly distributed in asphalt and nano-TiO2 was physically mixed with asphalt. In comparison with the Burgers model, the present fractional derivative empirical creep model can fit the creep test data of the asphalt binder well with the advantages of high accuracy and few parameters. The research results provide a reference for promoting the implementation of modified bitumen incorporating nano-TiO2. Full article
Show Figures

Figure 1

20 pages, 2566 KiB  
Article
Research on Bending Creep Test and Long-Term Creep Behavior Prediction of Asphalt Concrete
by Yue Zhu, Changhong Yang, Zimo Zhong, Changsheng Huang, Yingbo Zhang, Shan Feng, Shutian Li and Rengui Jiang
Materials 2025, 18(10), 2381; https://doi.org/10.3390/ma18102381 - 20 May 2025
Viewed by 1910
Abstract
Different temperatures and continuous loads have significant effects on the long-term performance of asphalt concrete facings. The effects of temperature and stress on creep strain and creep rate were analyzed by designing a bending creep test of impermeable asphalt concrete under different temperatures [...] Read more.
Different temperatures and continuous loads have significant effects on the long-term performance of asphalt concrete facings. The effects of temperature and stress on creep strain and creep rate were analyzed by designing a bending creep test of impermeable asphalt concrete under different temperatures and stresses. Based on the test data, a time–temperature–stress-dependent creep constitutive model was constructed to predict the long-term creep behavior of asphalt concrete at low temperature. The results showed that the creep behavior of asphalt concrete showed significant temperature and stress dependence. The creep behavior accelerated as the temperature or stress increased, especially under high-stress conditions, indicating obvious nonlinear characteristics. Under the condition of 0.2376 MPa, when the temperature increased from 0 °C to 20 °C, the strain at the creep time of 9330 s nearly increased by 24 times. Under 0 °C, the loading stress increased from 0.2376 MPa to 1.3176 MPa, and the strain nearly increased by six times at a creep time of 880 s. The creep strain is expected to increase to 8% after 8 years at −15 °C and 0.2376 MPa. The results can provide a scientific basis for engineering practice and significant implications for designing and maintaining asphalt concrete facings. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

16 pages, 3096 KiB  
Article
Effect of Desulfurization Ash Content on the Low-Temperature Rheological Properties of Asphalt Mastic
by Yinghui Zhang, Kai Li, Yong Wu and Zhigang Zhou
Coatings 2025, 15(5), 604; https://doi.org/10.3390/coatings15050604 - 18 May 2025
Viewed by 434
Abstract
Circulating fluidized bed combustion flue gas desulfurization generates large volumes of dry desulfurization ash requiring sustainable management. This study evaluated the impacts of substituting desulfurization ash for mineral powder filler in asphalt mastic on low-temperature rheological properties. Asphalt mastics were produced with 0–100% [...] Read more.
Circulating fluidized bed combustion flue gas desulfurization generates large volumes of dry desulfurization ash requiring sustainable management. This study evaluated the impacts of substituting desulfurization ash for mineral powder filler in asphalt mastic on low-temperature rheological properties. Asphalt mastics were produced with 0–100% ash replacing mineral powder at 0.8–1.2 powder-binder mass ratios. Ductility and bending beam rheometer testing assessed flexibility and crack resistance. Burgers’ model fitted bending creep compliance to derive relaxation time, m(t)/S(t) index, and low-temperature compliance parameter for analytical insight. Scanning electron microscopy and Fourier transform infrared spectroscopy probed microstructural development and interaction mechanisms. Results showed that the inclusion of desulfurization ash reduced the low-temperature performance of the asphalt mastic compared to the mineral powder asphalt mastic. Additionally, as the temperature decreased further, the effect of the powder-to-gum ratio on the slurry’s crack resistance became less pronounced. Desulfurization ash primarily interacted with the base bitumen through physical means, and the performance of desulfurization ash asphalt slurry mainly depended on the degree of swelling between the desulfurization ash and the base asphalt. Full article
(This article belongs to the Special Issue Novel Cleaner Materials for Pavements)
Show Figures

Figure 1

21 pages, 2699 KiB  
Article
Formulation and Numerical Verification of a New Rheological Model for Creep Behavior of Tropical Wood Species Based on Modified Variable-Order Fractional Element
by Loic Chrislin Nguedjio, Jeanne Sandrine Mabekou Takam, Benoit Blaysat, Pierre Kisito Talla and Rostand Moutou Pitti
Forests 2025, 16(5), 824; https://doi.org/10.3390/f16050824 - 15 May 2025
Viewed by 420
Abstract
This paper aims to develop a rheological model with fewer parameters that accurately describes the primary and secondary creep behavior of wood materials. The models studied are grounded in Riemann–Liouville fractional calculus theory. A comparison was conducted between the constant-order fractional Zener model [...] Read more.
This paper aims to develop a rheological model with fewer parameters that accurately describes the primary and secondary creep behavior of wood materials. The models studied are grounded in Riemann–Liouville fractional calculus theory. A comparison was conducted between the constant-order fractional Zener model and the variable-order fractional Maxwell model, with four parameters each. Using experimental creep data from four-point bending tests on two tropical wood species, along with an optimization algorithm, the variable-order fractional model demonstrated greater effectiveness. The selected fractional derivative order, modeled as a linearly increasing function of time, helped to elucidate the internal mechanisms in the wood structure during creep tests. Analyzing the parameters of this order function enabled an interpretation of their physical meanings, showing a direct link to the material’s mechanical properties. The Sobol indices have demonstrated that the slope of this function is the most influential factor in determining the model’s behavior. Furthermore, to enhance descriptive performance, this model was adjusted by incorporating stress non-linearity to account for the effects of the variation in constant loading level in wood. Consequently, this new formulation of rheological models, based on variable-order fractional derivatives, not only allows for a satisfactory simulation of the primary and secondary creep of wood but also provides deeper insights into the mechanisms driving the viscoelastic behavior of this material. Full article
Show Figures

Figure 1

25 pages, 6761 KiB  
Article
Laboratory Study on the Stiffening Phenomena Caused by Aging and by the Addition of Kraft Lignin at Low Dosages Measured by Physico-Chemical and Rheological Tests on a Soft Bitumen
by Gabriel Orozco, Sébastien Lamothe, Wesam Al-Falahat, Jean-Claude Carret and Alan Carter
Materials 2025, 18(10), 2209; https://doi.org/10.3390/ma18102209 - 10 May 2025
Viewed by 512
Abstract
This study investigates the stiffening phenomena caused by aging and low-dosage Kraft lignin addition on a soft bitumen (PG58S–28)- used in cold climate regions. Through a combination of physico-chemical and rheological analyses, including Fourier-transform infrared spectroscopy (FTIR), Brookfield rheometer viscosity (BRV), dynamic shear [...] Read more.
This study investigates the stiffening phenomena caused by aging and low-dosage Kraft lignin addition on a soft bitumen (PG58S–28)- used in cold climate regions. Through a combination of physico-chemical and rheological analyses, including Fourier-transform infrared spectroscopy (FTIR), Brookfield rheometer viscosity (BRV), dynamic shear rheometer (DSR), multiple stress creep recovery (MSCR), bending beam rheometer (BBR), and complex shear modulus (G*) tests, the impacts of lignin modification and thermo-oxidative aging are evaluated. In particular, the anti-aging potential of lignin is scrutinized. The results indicate that while the carbonyl index effectively tracks bitumen aging, the sulphoxide index is less reliable due to high initial S=O bond content in Kraft lignin and greater repeatability variability. Standard rheological tests (BRV, DSR, MSCR, and BBR) show that long-term aging significantly increases bitumen stiffness, while lignin modification leads to a moderate stiffening effect but does not exhibit any noticeable anti-aging properties. The G* analysis confirms that aging strongly influences bitumen rigidity, particularly at low and intermediate equivalent frequencies, while lignin acts similarly to an inert filler, with minimal effects on linear viscoelastic (LVE) behaviour. Overall, the study concludes that the addition of Kraft lignin at low dosage does not alter the fundamental aging mechanisms of bitumen, nor does it provide significant antioxidant benefits. These findings contribute to the ongoing discussion on bio-based bitumen modifiers and their role in sustainable pavement materials. Full article
Show Figures

Figure 1

20 pages, 5413 KiB  
Article
Investigation of the Mechanical, Fatigue, and Creep Properties of PA6/GO Nanocomposites Manufactured by a Combination of Melt and Solvent Mixing
by Mehmet Palabiyik, Serhat Aydin and Oguzkan Senturk
Polymers 2025, 17(9), 1186; https://doi.org/10.3390/polym17091186 - 27 Apr 2025
Viewed by 830
Abstract
This study investigated the mechanical, fatigue, and creep properties of polyamide 6 (PA6)/graphene oxide (GO) nanocomposites manufactured by a combination of melt and solvent mixing. Results showed that increasing GO content improved tensile and bending properties and reduced temperature dependence. The tensile modulus [...] Read more.
This study investigated the mechanical, fatigue, and creep properties of polyamide 6 (PA6)/graphene oxide (GO) nanocomposites manufactured by a combination of melt and solvent mixing. Results showed that increasing GO content improved tensile and bending properties and reduced temperature dependence. The tensile modulus and strength of PA6/GO nanocomposite containing 1 wt.% GO (PA6 + 1GO) were measured with an increment of 33% and 37%, respectively, compared with neat PA6. The reduction in tensile strength occurred gradually with the increasing amount of GO. As the temperature increased from 25 °C to 70 °C, the tensile strength of PA6 and PA6 + 1GO decreased by 20% and 4%, respectively. Fatigue tests demonstrated that the rigid GO particles hindered the deformation capability of the matrix and facilitated crack propagation. While the PA6 reached 105 cycles at 60% of its tensile strength, PA6 + 1GO was able to reach 105 cycles at 35% of its tensile strength. Dynamic mechanical analysis (DMA) revealed that GO enhanced both storage modulus and glass transition temperature (Tg). Creep tests demonstrated better deformation resistance under stress in PA6/GO nanocomposites compared to pure PA6. After a 10 h creep test, the decrease in creep strain was observed as 52.4% for PA6 + 1GO. Full article
Show Figures

Figure 1

22 pages, 5134 KiB  
Article
A Study on the Fracture Properties of Cement Asphalt Emulsion Mixture Based on the SCB Test
by Yunliang Li, Qichen Wang, Xu Li, Yue Zhao, Wenyang Yu, Baocheng Liu and Yiqiu Tan
Materials 2025, 18(9), 1967; https://doi.org/10.3390/ma18091967 - 25 Apr 2025
Viewed by 439
Abstract
Cement asphalt emulsion mixture (CAEM) is a composite material composed of asphalt emulsion, cement, and graded aggregates. Currently, CAEM is primarily applied as a base course material for highways to improve the cracking resistance of pavement structures. To achieve this goal, the fracture [...] Read more.
Cement asphalt emulsion mixture (CAEM) is a composite material composed of asphalt emulsion, cement, and graded aggregates. Currently, CAEM is primarily applied as a base course material for highways to improve the cracking resistance of pavement structures. To achieve this goal, the fracture performance of CAEM plays a crucial role. Experimental studies have demonstrated that the fracture behavior of CAEM exhibits a significant correlation with the amount of asphalt emulsion and binder used. The influence of asphalt emulsion and binder content on the fracture parameters of CAEM was investigated through semi-circular bending (SCB) tests, combined with analyses of peak load and fracture energy. Furthermore, the influences of temperature, loading rate, and notch depth on fracture performance were evaluated. The microstructure of the cured binder was characterized by scanning electron microscopy (SEM), while the deformation behavior of CAEM was assessed through creep tests. The experimental results indicate that, to ensure satisfactory fracture resistance in CAEM, the optimal content of asphalt emulsion should be controlled within the range of 2.0~3.0%, with a corresponding binder content of 6.0%. This study provides theoretical and practical guidance for the material design optimization of CAEM, with a specific focus on enhancing fracture resistance performance. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

Back to TopTop