Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (178)

Search Parameters:
Keywords = crack growth rate model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2554 KB  
Article
Research on Fatigue Crack Growth Rate Prediction of 2024-T3 Aluminum Alloy Friction Stir Welded Joints Driven by Machine Learning
by Yanning Guo, Na Sun, Wenbo Sun and Xiangmiao Hao
Aerospace 2026, 13(2), 134; https://doi.org/10.3390/aerospace13020134 - 30 Jan 2026
Viewed by 122
Abstract
Fatigue crack propagation in friction stir welded joints significantly affects aircraft structural integrity. This study investigates the influence of welding speed, rotational speed, specimen thickness, loading frequency, and stress ratio on the fatigue crack growth rate. Four classical machine learning models with different [...] Read more.
Fatigue crack propagation in friction stir welded joints significantly affects aircraft structural integrity. This study investigates the influence of welding speed, rotational speed, specimen thickness, loading frequency, and stress ratio on the fatigue crack growth rate. Four classical machine learning models with different structures—Deep Back-Propagation Network, Random Forest, Support Vector Regression, and K-Nearest Neighbors—were employed to predict fatigue crack growth behavior. The results show that all models achieve strong predictive performance. For FSWed joints, Deep BP and KNN exhibit comparable performance (R2 > 0.98) on the training data, indicating similar learning capabilities with sufficient data coverage. Notably, KNN achieves the fastest training time (<0.3 s), while all models require less than 5 s of computation time. These results demonstrate that machine learning-based models provide an efficient and reliable alternative for rapid fatigue crack growth evaluation, supporting damage-tolerant design and structural integrity assessment in aircraft engineering. Full article
(This article belongs to the Special Issue Finite Element Analysis of Aerospace Structures)
Show Figures

Figure 1

15 pages, 3172 KB  
Article
Accelerating the Measurement of Fatigue Crack Growth with Incremental Information-Based Machine Learning Approach
by Cheng Wen, Haipeng Lu, Yiliang Wang, Meng Wang, Yuwan Tian, Danmei Wu, Yupeng Diao, Jiezhen Hu and Zhiming Zhang
Materials 2026, 19(2), 396; https://doi.org/10.3390/ma19020396 - 19 Jan 2026
Viewed by 171
Abstract
Measuring the fatigue crack growth rate via the crack growth experiment (a-N curve) is labor-intensive and time-consuming. A machine learning interpolation–extrapolation strategy (MLIES) aimed at enhancing the prediction accuracy of small-data models has been proposed to accelerate fatigue testing. Two [...] Read more.
Measuring the fatigue crack growth rate via the crack growth experiment (a-N curve) is labor-intensive and time-consuming. A machine learning interpolation–extrapolation strategy (MLIES) aimed at enhancing the prediction accuracy of small-data models has been proposed to accelerate fatigue testing. Two specific approaches are designed by transforming a-N curve data from N to ΔN and from a to Δa (S1)/Δa/ΔN (S2) to enrich the data volume and leverage the incremental information. Thus, a simple and fast-responding single-layer neural network model can be trained based on the early-stage data points from fatigue testing and accurately predict the remaining part of an a-N curve, thereby enhancing the experimental efficiency. Through exponential data expansion and data augmentation, the trained neural network model is able to learn the underlying rules governing crack growth directly from the experimental data, requiring no explicit analytical crack growth laws. The proposed MLIES was validated on fatigue tests for aluminum alloy and titanium alloy samples under different experimental parameters. Results demonstrate its effectiveness in reducing testing time/cost by 15–32% while achieving over 30% higher prediction accuracy for the a-N curve compared to a traditional machine learning modeling approach. Our research offers a data-driven recipe for accurate crack growth prediction and accelerated fatigue testing. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

19 pages, 3675 KB  
Article
A Multiphysics Aging Model for SiOx–Graphite Lithium-Ion Batteries Considering Electrochemical–Thermal–Mechanical–Gaseous Interactions
by Xiao-Ying Ma, Xue Li, Meng-Ran Kang, Jintao Shi, Xingcun Fan, Zifeng Cong, Xiaolong Feng, Jiuchun Jiang and Xiao-Guang Yang
Batteries 2026, 12(1), 30; https://doi.org/10.3390/batteries12010030 - 16 Jan 2026
Viewed by 402
Abstract
Silicon oxide/graphite (SiOx/Gr) anodes are promising candidates for high energy-density lithium-ion batteries. However, their complex multiphysics degradation mechanisms pose challenges for accurately interpreting and predicting capacity fade behavior. In particular, existing multiphysics models typically treat gas generation and solid electrolyte interphase [...] Read more.
Silicon oxide/graphite (SiOx/Gr) anodes are promising candidates for high energy-density lithium-ion batteries. However, their complex multiphysics degradation mechanisms pose challenges for accurately interpreting and predicting capacity fade behavior. In particular, existing multiphysics models typically treat gas generation and solid electrolyte interphase (SEI) growth as independent or unidirectionally coupled processes, neglecting their bidirectional interactions. Here, we develop an electro–thermal–mechanical–gaseous coupled model to capture the dominant degradation processes in SiOx/Gr anodes, including SEI growth, gas generation, SEI formation on cracks, and particle fracture. Model validation shows that the proposed framework can accurately reproduce voltage responses under various currents and temperatures, as well as capacity fade under different thermal and mechanical conditions. Based on this validated model, a mechanistic analysis reveals two key findings: (1) Gas generation and SEI growth are bidirectionally coupled. SEI growth induces gas release, while accumulated gas in turn regulates subsequent SEI evolution by promoting SEI formation through hindered mass transfer and suppressing it through reduced active surface area. (2) Crack propagation within particles is jointly governed by the magnitude and duration of stress. High-rate discharges produce large but transient stresses that restrict crack growth, while prolonged stresses at low rates promote crack propagation and more severe structural degradation. This study provides new insights into the coupled degradation mechanisms of SiOx/Gr anodes, offering guidance for performance optimization and structural design to extend battery cycle life. Full article
Show Figures

Figure 1

9 pages, 1492 KB  
Proceeding Paper
Predicting Fatigue-Driven Delamination in Curved Composite Laminates Under Non-Constant Mixed-Mode Conditions Using a VCCT-Based Approach
by Carlos Mallor, Mario Sanchez, Andrea Calvo, Susana Calvo, Hubert Roman-Wasik and Federico Martin de la Escalera
Eng. Proc. 2025, 119(1), 34; https://doi.org/10.3390/engproc2025119034 - 19 Dec 2025
Viewed by 232
Abstract
Carbon-fibre reinforced polymer (CFRP) laminates are susceptible to both static and fatigue-driven delamination. Predicting this type of failure in curved composite structures, often referred to as delamination by unfolding, remains a critical challenge. This work presents the development of a Virtual Crack Closure [...] Read more.
Carbon-fibre reinforced polymer (CFRP) laminates are susceptible to both static and fatigue-driven delamination. Predicting this type of failure in curved composite structures, often referred to as delamination by unfolding, remains a critical challenge. This work presents the development of a Virtual Crack Closure Technique (VCCT)-based computational method for simulating fatigue-driven delamination propagation under non-constant mixed-mode conditions. The fatigue delamination growth model follows a phenomenological approach based on a Paris–Erdogan-based power-law relationship, where the delamination propagation rate depends on the strain energy release rate. This methodology has been implemented as a user-defined subroutine, UMIXMODEFATIGUE, for Abaqus, integrating the effects of load ratio and mode mixity conditions while leveraging the mode separation provided by VCCT. The proposed approach is validated against an experimental case involving a four-point bending test applied to an L-shaped CFRP curved beam specimen with a unidirectional layup. Unlike the existing standard configuration, the proposed test campaign introduces a non-adhesive Teflon foil insert at the bend, placed within the midplane layers to act as a delamination initiator, representing a manufacturing defect. In addition to the testing machine, digital image correlation (DIC) is used to monitor delamination length. The simulation method developed accurately predicts fatigue delamination propagation under varying mode mixity at the delamination front. By improving delamination modelling in composites, this approach supports timely maintenance and helps prevent fatigue failures. Additionally, it deepens the understanding of how the mode mixity influences the delamination propagation process. Full article
Show Figures

Figure 1

23 pages, 3986 KB  
Article
Moisture Content Distribution in Cross-Section of Cylindrical Wood Components
by Panpan Tian, Heng Zhang, Jianhong Han, Yu Zhao and Xia Han
Polymers 2025, 17(22), 2994; https://doi.org/10.3390/polym17222994 - 11 Nov 2025
Viewed by 556
Abstract
The moisture content of wood components varies with changes in the external environment, which significantly affects the mechanical properties, moisture stress, decay, drying shrinkage, and cracking of wood components. Therefore, calculating the moisture content distribution of the cross-section of wood components is an [...] Read more.
The moisture content of wood components varies with changes in the external environment, which significantly affects the mechanical properties, moisture stress, decay, drying shrinkage, and cracking of wood components. Therefore, calculating the moisture content distribution of the cross-section of wood components is an important basis for in-depth research on wood components. First, a hygroscopicity test was performed on 45° sector-shaped Chinese fir thin-plate specimens. The specimens were treated to an absolutely dry state and placed in two different environments. The average moisture content and moisture content gradient on the cross-section of the specimens were measured, and the spatial distribution and temporal variation in the moisture content were studied. A theoretical model for the moisture content distribution of wood was then derived based on food drying theory. Finally, the applicability of the theoretical model was verified through experiments, and the effects of the root order μn of the characteristic equation of key parameters, the size of the component, and the position of the component on the moisture content distribution were discussed for the theoretical model. During the hygroscopic process, the average moisture content of wood components increased continuously, but the growth rate gradually slowed. The surface moisture content rapidly reached the level of the external moisture content first, followed by the equilibrium moisture content within a few hours. Hygroscopic hysteresis evidently occurred within the wood, which may take dozens or even hundreds of days. When calculating the average moisture content model of cylindrical components, as well as those of the models of the spatial and temporal variation in the moisture content, it is sufficient to take the first 3 orders of the root μn of the characteristic equation of the first Bessel function J. The rate of moisture release of cylindrical components is faster than that of laminates because the ratio of the surface area to the volume of a cylinder is greater than that of a plate, and the former is twice that of the latter. The results revealed that the theoretical model for the moisture content distribution of wood has good accuracy and applicability. Full article
(This article belongs to the Special Issue Advances in Wood and Wood Polymer Composites)
Show Figures

Figure 1

22 pages, 6803 KB  
Article
An Investigation of Water–Heat–Force Coupling During the Early Stage of Shaft Wall Pouring in Thick Topsoil Utilizing the Freezing Method
by Yue Yuan, Jianyong Pang, Jiuqun Zou and Chi Zhang
Processes 2025, 13(10), 3319; https://doi.org/10.3390/pr13103319 - 16 Oct 2025
Cited by 1 | Viewed by 549
Abstract
The freezing method is widely employed in the construction of a vertical shaft in soft soil and water-rich strata. As the construction depth increases, investigating the water–heat–force coupling effects induced by the hydration heat (internal heat source) of concrete is crucial for the [...] Read more.
The freezing method is widely employed in the construction of a vertical shaft in soft soil and water-rich strata. As the construction depth increases, investigating the water–heat–force coupling effects induced by the hydration heat (internal heat source) of concrete is crucial for the safety of the lining structure and its resistance to cracking and seepage. A three-dimensional coupled thermal–hydraulic–mechanical analysis model was developed, incorporating temperature and soil relative saturation as unknown variables based on heat transfer in porous media, unsaturated soil seepage, and frost heave theory. The coefficient type PDE module in COMSOL was used for secondary development to solve the coupling equation, and the on-site temperature and pressure monitoring data of the frozen construction process were compared. This study obtained the model-related parameters and elucidated the evolution mechanism of freeze–thaw and freeze–swelling pressures of a frozen wall under the influence of hydration heat. The resulting model shows that the maximum thaw depth of the frozen wall reaches 0.3576 m after 160 h of pouring, with an error rate of 4.64% compared to actual measurements. The peak temperature of the shaft wall is 73.62 °C, with an error rate of 3.76%. The maximum influence range of hydration heat on the frozen temperature field is 1.763 m. The peak freezing pressure is 4.72 MPa, which exhibits a 5.03% deviation from the actual measurements, thereby confirming the reliability of the resulting model. According to the strength growth pattern of concrete and the freezing pressure bearing requirements, it can provide a theoretical basis for quality control of the lining structure and a safety assessment of the freezing wall. Full article
Show Figures

Figure 1

17 pages, 3268 KB  
Article
Experimental Study on Fatigue Performance of Steel Used in U75V Rails
by Dan Xu, Guoxiong Liu, Xianfeng Wang and Hui Liu
Materials 2025, 18(20), 4706; https://doi.org/10.3390/ma18204706 - 14 Oct 2025
Viewed by 658
Abstract
The 60 kg/m U75V rail serves as the predominant rail type within China’s high-speed rail network. This study comprehensively evaluates the fatigue behavior of U75V rails through experimental investigations encompassing monotonic tensile testing, high-cycle fatigue characterization, and fatigue crack propagation analysis. All specimens [...] Read more.
The 60 kg/m U75V rail serves as the predominant rail type within China’s high-speed rail network. This study comprehensively evaluates the fatigue behavior of U75V rails through experimental investigations encompassing monotonic tensile testing, high-cycle fatigue characterization, and fatigue crack propagation analysis. All specimens were extracted from standardized 60 kg/m high-speed rail sections to ensure material consistency. Firstly, monotonic tensile tests were conducted to determine the fundamental mechanical properties of the U75V rail. Secondly, uniaxial tension–compression fatigue tests were conducted to establish the S-N and P-S-N relationships of the U75V rail. Lastly, fatigue crack propagation analysis was carried out on three compact tension specimens under three incremental loading forces. Monotonic tensile test results demonstrated full compliance of the material’s basic mechanical properties with Chinese national standards. Fatigue crack propagation results indicated that the crack growth rate of the U75V rail was not only related to the stress-intensity range ∆K but was also correlated with the loading force range ∆F due to a typical crack tip shielding effect, i.e., plasticity-induced crack closure effect. The derived fatigue performance parameters and crack growth mechanism provide essential inputs for predictive fatigue life modeling of high-speed rail infrastructure and development of refined finite element models for fatigue analysis. Full article
Show Figures

Figure 1

27 pages, 3885 KB  
Article
Experimental and Machine Learning-Based Assessment of Fatigue Crack Growth in API X60 Steel Under Hydrogen–Natural Gas Blending Conditions
by Nayem Ahmed, Ramadan Ahmed, Samin Rhythm, Andres Felipe Baena Velasquez and Catalin Teodoriu
Metals 2025, 15(10), 1125; https://doi.org/10.3390/met15101125 - 10 Oct 2025
Viewed by 1391
Abstract
Hydrogen-assisted fatigue cracking presents a critical challenge to the structural integrity of legacy carbon steel natural gas pipelines being repurposed for hydrogen transport, posing a major barrier to the deployment of hydrogen infrastructure. This study systematically evaluates the fatigue crack growth (FCG) behavior [...] Read more.
Hydrogen-assisted fatigue cracking presents a critical challenge to the structural integrity of legacy carbon steel natural gas pipelines being repurposed for hydrogen transport, posing a major barrier to the deployment of hydrogen infrastructure. This study systematically evaluates the fatigue crack growth (FCG) behavior of API 5L X60 pipeline steel under varying hydrogen–natural gas (H2–NG) blending conditions to assess its suitability for long-term hydrogen service. Experiments are conducted using a custom-designed autoclave to replicate field-relevant environmental conditions. Gas mixtures range from 0% to 100% hydrogen by volume, with tests performed at a constant pressure of 6.9 MPa and a temperature of 25 °C. A fixed loading frequency of 8.8 Hz and load ratio (R) of 0.60 ± 0.1 are applied to simulate operational fatigue loading. The test matrix is designed to capture FCG behavior across a broad range of stress intensity factor values (ΔK), spanning from near-threshold to moderate levels consistent with real-world pipeline pressure fluctuations. The results demonstrate a clear correlation between increasing hydrogen concentration and elevated FCG rates. Notably, at 100% hydrogen, API X60 specimens exhibit crack propagation rates up to two orders of magnitude higher than those in 0% hydrogen (natural gas) conditions, particularly within the Paris regime. In the lower threshold region (ΔK ≈ 10 MPa·√m), the FCG rate (da/dN) increased nonlinearly with hydrogen concentration, indicating early crack activation and reduced crack initiation resistance. In the upper Paris regime (ΔK ≈ 20 MPa·√m), da/dNs remained significantly elevated but exhibited signs of saturation, suggesting a potential limiting effect of hydrogen concentration on crack propagation kinetics. Fatigue life declined substantially with hydrogen addition, decreasing by ~33% at 50% H2 and more than 55% in pure hydrogen. To complement the experimental investigation and enable predictive capability, a modular machine learning (ML) framework was developed and validated. The framework integrates sequential models for predicting hydrogen-induced reduction of area (RA), fracture toughness (FT), and FCG rate (da/dN), using CatBoost regression algorithms. This approach allows upstream degradation effects to be propagated through nested model layers, enhancing predictive accuracy. The ML models accurately captured nonlinear trends in fatigue behavior across varying hydrogen concentrations and environmental conditions, offering a transferable tool for integrity assessment of hydrogen-compatible pipeline steels. These findings confirm that even low-to-moderate hydrogen blends significantly reduce fatigue resistance, underscoring the importance of data-driven approaches in guiding material selection and infrastructure retrofitting for future hydrogen energy systems. Full article
(This article belongs to the Special Issue Failure Analysis and Evaluation of Metallic Materials)
Show Figures

Figure 1

25 pages, 11036 KB  
Article
Fatigue Performance Analysis of Weathering Steel Bridge Decks Under Residual Stress Conditions
by Wenye Tian, Ran Li, Tao Lan, Ruixiang Gao, Maobei Li and Qinyuan Liu
Materials 2025, 18(17), 3943; https://doi.org/10.3390/ma18173943 - 22 Aug 2025
Viewed by 1209
Abstract
The growing use of weathering steel in bridge engineering has highlighted the increasing impact of fatigue damage caused by the combined effects of welding residual stress and vehicular loading. This study investigates the fatigue performance of Q500qENH weathering steel bridge decks by proposing [...] Read more.
The growing use of weathering steel in bridge engineering has highlighted the increasing impact of fatigue damage caused by the combined effects of welding residual stress and vehicular loading. This study investigates the fatigue performance of Q500qENH weathering steel bridge decks by proposing a coupled analysis method for residual stress and fatigue crack growth, utilizing collaborative simulations with Abaqus 2023 and Franc3D 7.0. An interaction model integrating welding-induced residual stress fields and dynamic vehicular loads is developed to systematically examine crack propagation patterns in critical regions, including the weld toes of the top plate and the weld seams of the U-ribs. The results indicate that the crack propagation rate at the top plate weld toe exhibits the most rapid progression, reaching the critical dimension (two-thirds of plate thickness) at 6.98 million cycles, establishing this location as the most vulnerable failure point. Residual stresses significantly amplify the stress amplitude under tension–compression cyclic loading, with life degradation effects showing 48.9% greater severity compared to pure tensile stress conditions. Furthermore, parametric analysis demonstrates that increasing the top plate thickness to 16 mm effectively retards crack propagation, while wheel load pressures exceeding 1.0 MPa induce nonlinear acceleration of life deterioration. Based on these findings, engineering countermeasures including welding defect control, optimized top plate thickness (≥16 mm), and wheel load pressure limitation (≤1.0 MPa) are proposed, providing theoretical support for fatigue-resistant design and maintenance of weathering steel bridge decks. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

15 pages, 4040 KB  
Article
The Mechanism of Microcrack Initiation in Fe-C Alloy Under Tensile Deformation in Molecular Dynamics Simulation
by Yanan Zeng, Xiangkan Miao, Yajun Wang, Yukang Yuan, Bingbing Ge, Lanjie Li, Kanghua Wu, Junguo Li and Yitong Wang
Materials 2025, 18(16), 3865; https://doi.org/10.3390/ma18163865 - 18 Aug 2025
Viewed by 776
Abstract
The microcrack initiation and evolution behavior of Fe-C alloy under uniaxial tensile loading are investigated using molecular dynamics (MD) simulations. The model is stretched along the z-axis at a strain rate of 2 × 109 s−1 and temperatures ranging from [...] Read more.
The microcrack initiation and evolution behavior of Fe-C alloy under uniaxial tensile loading are investigated using molecular dynamics (MD) simulations. The model is stretched along the z-axis at a strain rate of 2 × 109 s−1 and temperatures ranging from 300 to 1100 K, aiming to elucidate the microscopic deformation mechanisms during crack evolution under varying thermal conditions. The results indicate that the yield strength of Fe-C alloy decreases with a rising temperature, accompanied by a 25.2% reduction in peak stress. Within the temperature range of 300–700 K, stress–strain curves exhibit a dual-peak trend: the first peak arises from stress-induced transformations in the internal crystal structure, while the second peak corresponds to void nucleation and growth. At 900–1100 K, stress curves display a single-peak pattern, followed by rapid stress decline due to accelerated void coalescence. Structural evolution analysis reveals sequential phase transitions: initial BCC-to-FCC and -HCP transformations occur during deformation, followed by reversion to BCC and unidentified structures post-crack formation. Elevated temperatures enhance atomic mobility, increasing the proportion of disordered/unknown structures and accelerating material failure. Higher temperatures promote faster potential energy equilibration, primarily through accelerated void growth, which drives rapid energy dissipation. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

19 pages, 3876 KB  
Article
Kinetics and Evolution Modeling of Hydrogen-Induced Cracking in Low-Carbon Steel
by Iván Mortera-Bravo, Jorge Luis González-Velázquez, Diego Israel Rívas-López and Manuel Alejandro Beltrán-Zuñiga
Materials 2025, 18(16), 3813; https://doi.org/10.3390/ma18163813 - 14 Aug 2025
Viewed by 919
Abstract
The kinetics and evolution of hydrogen-induced cracking (HIC) were modeled using a theoretical model developed by Gonzalez to calculate the individual crack growth rate and a computational algorithm based on a Poisson distribution to generate the initial spatial distribution of HIC nuclei. Additionally, [...] Read more.
The kinetics and evolution of hydrogen-induced cracking (HIC) were modeled using a theoretical model developed by Gonzalez to calculate the individual crack growth rate and a computational algorithm based on a Poisson distribution to generate the initial spatial distribution of HIC nuclei. Additionally, the Monte Carlo method was used to model the interconnection of individual HIC cracks. The results of the computational model were compared versus experimental results of HIC induced by cathodic charging experiments in low-carbon steel plates. The model was capable of accurately emulating the kinetics of HIC, considering the first stage of nucleation and growth of randomly dispersed individual HIC cracks, followed by a second stage where the individual cracks interconnect with each other to form large cracks that subsequently grow. The study was complemented with the fractographic examination of the HIC cracks to verify if the fracture mechanism is consistent with the crack morphology and propagation mode in the proposed model. The results indicate that HIC propagation occurs by cleavage and quasi-cleavage mechanisms, with crack interconnection by ductile shear tearing, where the driving force for HIC is the accumulated hydrogen pressure within the internal HIC cracks, explaining why the crack growth rates are nearly constant in each stage of HIC growth. Full article
(This article belongs to the Special Issue Fracture and Fatigue in Metals and Alloys)
Show Figures

Figure 1

24 pages, 6242 KB  
Article
Study on Fatigue Crack Propagation Behavior of Fiber/Al-Li Laminates Under Typical Overload
by Weiying Meng, Jiayi Tan, Sihui Li, Xiao Huang and Jiaying Wang
Materials 2025, 18(16), 3812; https://doi.org/10.3390/ma18163812 - 14 Aug 2025
Viewed by 917
Abstract
Fiber metal laminates are applied in aerospace equipment due to their excellent crack propagation performance. However, during the service process of fiber metal laminates, the coupling between overload effect and fiber bridging effect makes the crack propagation behavior complex, which makes it difficult [...] Read more.
Fiber metal laminates are applied in aerospace equipment due to their excellent crack propagation performance. However, during the service process of fiber metal laminates, the coupling between overload effect and fiber bridging effect makes the crack propagation behavior complex, which makes it difficult to predict. Addressing this issue, the fatigue crack propagation behavior of Fiber/Al-Li laminates under typical overload conditions was analyzed and predicted in this paper. Firstly, based on flight loading characteristics, fatigue crack propagation tests under constant amplitude and single-peak tensile/compressive overload were designed and conducted for Fiber/Al-Li laminates. The crack propagation behavior characteristics under typical overload conditions were analyzed and investigated. Secondly, the influence mechanism of thickness dimensions was revealed based on fatigue crack propagation characteristics under constant amplitude loading. A thickness size effect factor was introduced to improve the equivalent crack length model, where the crack propagation behavior of non-overload stages was simulated. Thirdly, improved Wheeler theory was adopted to characterize the overload hysteresis effect in the hysteresis zone under tensile overload; improved incremental plasticity theory was used to describe crack propagation behavior in the overload zone under compression overload. Finally, based on crack behavior characteristics under single-peak tensile and compressive overloads, the improved equivalent crack length model was combined to establish, respectively, the prediction models on crack propagation behavior under single-peak tensile and compressive overloads for Fiber/Al-Li laminates. Through experimental verification, the overall prediction error rate of the crack propagation model under tensile overload is up to 9.7%, and the overall prediction error rate of the crack growth model under compressive overload is up to 8.1%. Compared with similar models (not found) for thicker fiber metal laminates, the effectiveness and advancement of the proposed model are verified. Full article
Show Figures

Figure 1

22 pages, 3440 KB  
Article
Probabilistic Damage Modeling and Thermal Shock Risk Assessment of UHTCMC Thruster Under Transient Green Propulsion Operation
by Prakhar Jindal, Tamim Doozandeh and Jyoti Botchu
Materials 2025, 18(15), 3600; https://doi.org/10.3390/ma18153600 - 31 Jul 2025
Cited by 1 | Viewed by 721
Abstract
This study presents a simulation-based damage modeling and fatigue risk assessment of a reusable ceramic matrix composite thruster designed for short-duration, green bipropellant propulsion systems. The thruster is constructed from a fiber-reinforced ultra-high temperature ceramic matrix composite composed of zirconium diboride, silicon carbide, [...] Read more.
This study presents a simulation-based damage modeling and fatigue risk assessment of a reusable ceramic matrix composite thruster designed for short-duration, green bipropellant propulsion systems. The thruster is constructed from a fiber-reinforced ultra-high temperature ceramic matrix composite composed of zirconium diboride, silicon carbide, and carbon fibers. Time-resolved thermal and structural simulations are conducted on a validated thruster geometry to characterize the severity of early-stage thermal shock, stress buildup, and potential degradation pathways. Unlike traditional fatigue studies that rely on empirical fatigue constants or Paris-law-based crack-growth models, this work introduces a simulation-derived stress-margin envelope methodology that incorporates ±20% variability in temperature-dependent material strength, offering a physically grounded yet conservative risk estimate. From this, a normalized risk index is derived to evaluate the likelihood of damage initiation in critical regions over the 0–10 s firing window. The results indicate that the convergent throat region experiences a peak thermal gradient rate of approximately 380 K/s, with the normalized thermal shock index exceeding 43. Stress margins in this region collapse by 2.3 s, while margin loss in the flange curvature appears near 8 s. These findings are mapped into green, yellow, and red risk bands to classify operational safety zones. All the results assume no active cooling, representing conservative operating limits. If regenerative or ablative cooling is implemented, these margins would improve significantly. The framework established here enables a transparent, reproducible methodology for evaluating lifetime safety in ceramic propulsion nozzles and serves as a foundational tool for fatigue-resilient component design in green space engines. Full article
Show Figures

Figure 1

11 pages, 2935 KB  
Proceeding Paper
Crack Growth Modeling in CT Specimens: The Influence of Heat Treatment and Loading
by Raycho Raychev, Ivanka Delova, Tsvetomir Borisov and Yordan Mirchev
Eng. Proc. 2025, 100(1), 61; https://doi.org/10.3390/engproc2025100061 - 21 Jul 2025
Viewed by 707
Abstract
This study provides a combined numerical and analytical investigation of fatigue crack growth in compact tension specimens made of 42CrMo4 steel. Through simulations in ANSYS Workbench (SMART Crack Growth module) and numerical modeling in MATLAB, the model is validated by comparing its results [...] Read more.
This study provides a combined numerical and analytical investigation of fatigue crack growth in compact tension specimens made of 42CrMo4 steel. Through simulations in ANSYS Workbench (SMART Crack Growth module) and numerical modeling in MATLAB, the model is validated by comparing its results with the standard ASTM E399 and Paris’ law relationships. The effect of heat treatments and loading on crack growth rate was investigated. The results confirm the model’s applicability in predicting fatigue behavior in the linear–elastic region. Full article
Show Figures

Figure 1

17 pages, 7633 KB  
Article
Mechanical Behavior Characteristics of Sandstone and Constitutive Models of Energy Damage Under Different Strain Rates
by Wuyan Xu and Cun Zhang
Appl. Sci. 2025, 15(14), 7954; https://doi.org/10.3390/app15147954 - 17 Jul 2025
Cited by 1 | Viewed by 702
Abstract
To explore the influence of mine roof on the damage and failure of sandstone surrounding rock under different pressure rates, mechanical experiments with different strain rates were carried out on sandstone rock samples. The strength, deformation, failure, energy and damage characteristics of rock [...] Read more.
To explore the influence of mine roof on the damage and failure of sandstone surrounding rock under different pressure rates, mechanical experiments with different strain rates were carried out on sandstone rock samples. The strength, deformation, failure, energy and damage characteristics of rock samples with different strain rates were also discussed. The research results show that with the increases in the strain rate, peak stress, and elastic modulus show a monotonically increasing trend, while the peak strain decreases in the reverse direction. At a low strain rate, the proportion of the mass fraction of complete rock blocks in the rock sample is relatively high, and the shape integrity is good, while rock samples with a high strain rate retain more small-sized fragmented rock blocks. This indicates that under high-rate loading, the bifurcation phenomenon of secondary cracks is obvious. The rock samples undergo a failure form dominated by small-sized fragments, with severe damage to the rock samples and significant fractal characteristics of the fragments. At the initial stage of loading, the primary fractures close, and the rock samples mainly dissipate energy in the forms of frictional slip and mineral fragmentation. In the middle stage of loading, the residual fractures are compacted, and the dissipative strain energy keeps increasing continuously. In the later stage of loading, secondary cracks accelerate their expansion, and elastic strain energy is released sharply, eventually leading to brittle failure of the rock sample. Under a low strain rate, secondary cracks slowly expand along the clay–quartz interface and cause intergranular failure of the rock sample. However, a high strain rate inhibits the stress relaxation of the clay, forces the energy to transfer to the quartz crystal, promotes the penetration of secondary cracks through the quartz crystal, and triggers transgranular failure. A constitutive model based on energy damage was further constructed, which can accurately characterize the nonlinear hardening characteristics and strength-deformation laws of rock samples with different strain rates. The evolution process of its energy damage can be divided into the unchanged stage, the slow growth stage, and the accelerated growth stage. The characteristics of this stage reveal the sudden change mechanism from the dissipation of elastic strain energy of rock samples to the unstable propagation of secondary cracks, clarify the cumulative influence of strain rate on damage, and provide a theoretical basis for the dynamic assessment of surrounding rock damage and disaster early warning when the mine roof comes under pressure. Full article
Show Figures

Figure 1

Back to TopTop