Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (35)

Search Parameters:
Keywords = coxI

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 10923 KB  
Article
Incidence of Crown and Root Rot in Rhododendron simsii Caused by Phytopythium vexans in China and Screening of Endophytic Bacteria for Biocontrol
by Zhuo Liu, Yang Sun, Zhuoma Yongcuo, Xiaorui Zhang, Guibin Wang, Yuhua Liu and Tingting Dai
Microorganisms 2025, 13(11), 2417; https://doi.org/10.3390/microorganisms13112417 - 22 Oct 2025
Viewed by 648
Abstract
Azaleas (Ericaceae) are among the most diverse ornamental plants, celebrated for their cultural and economic significance. R. simsii has been extensively utilized in horticulture as a parent species for both “pot azalea” cultivars and various cultivars grown in the warmer regions of China. [...] Read more.
Azaleas (Ericaceae) are among the most diverse ornamental plants, celebrated for their cultural and economic significance. R. simsii has been extensively utilized in horticulture as a parent species for both “pot azalea” cultivars and various cultivars grown in the warmer regions of China. From 2021 to 2023, approximately 15% of R. simsii in nurseries situated in the Xuanwu District, Nanjing, exhibited symptoms of wilting and chlorosis. Investigations revealed that these symptoms were caused by a pathogen responsible for crown and root rot. Strains were isolated from the roots of affected plants. The morphology of the colonies was predominantly radial to stellate, characterized by intercalary and terminal hyphal swelling. The sporangia appeared spherical, pyriform, or ovoid with a single papillae. For accurate identification, the 28S rDNA gene (Large subunit, LSU), cytochrome oxidase subunit I (COXI), and cytochrome oxidase subunit II (COXII) genes were amplified through PCR and then sequenced. The species was identified as P. vexans after completing the phylogenetic analysis. Healthy R. simsii plants were infected with zoospores and developed symptoms similar to those of natural infection. Furthermore, the morphological characteristics of the isolates from the experimentally infected plants were similar to those of the original inoculated strains. This study identified P. vexans as the pathogen causing root rot in R. simsii. During the sampling process, several strains were isolated from the rhizosphere soil of healthy rhododendron plants. Based on this, research was immediately initiated to explore whether there are specific bacterial species in the soil that have the potential to inhibit the occurrence of root rot. Additionally, an endophytic bacterial strain BL1 was isolated from rhizosphere soil and subjected to Whole-Genome Shotgun (WGS) sequencing, thus constructing a bacterial genome framework for this isolate. The strain BL1 was identified as Bacillus licheniformis. To our knowledge, this is the first report of the occurrence of P. vexans causing crown and root rot of R. simsii in China. In this study, we also focused on exploring the potential of biological control agents against P. vexans. The isolation and identification of the endophytic bacterial strain BL1 (Bacillus licheniformis) from the rhizosphere soil of healthy soil show strong in vitro antagonism, identifying it as a promising candidate for future biological control studies of root rot in R. simsii. The genomic component analysis and coding gene annotation of BL1 provide insights into its genetic makeup and potential mechanisms of action against pathogens. However, these findings are based on in vitro assays. Therefore, further research, including in planta experiments, is essential to confirm the efficacy of BL1 in controlling P. vexans infections in R. simsii and to evaluate its potential for practical application. Full article
Show Figures

Figure 1

15 pages, 3899 KB  
Article
Morphological and Molecular Characterization and Life Cycle of Meloidogyne graminicola Infecting Allium cepa
by Qiankun Li, Yanmei Yang, Fuxiang Liu, Yunxia Li, Hanyang Yao, Deliang Peng and Xianqi Hu
Agronomy 2025, 15(8), 1994; https://doi.org/10.3390/agronomy15081994 - 19 Aug 2025
Viewed by 1070
Abstract
To identify the root-knot nematodes (RKNs) infecting onions in Yuanmou County, Yunnan Province, morphological and molecular biological techniques were used. Observation of their life cycle and pathogenicity was conducted through artificial inoculation experiments in a greenhouse. The results show that the morphological characteristics [...] Read more.
To identify the root-knot nematodes (RKNs) infecting onions in Yuanmou County, Yunnan Province, morphological and molecular biological techniques were used. Observation of their life cycle and pathogenicity was conducted through artificial inoculation experiments in a greenhouse. The results show that the morphological characteristics and measurement data of the second-stage juveniles (J2s) and females of RKNs infecting onion roots are highly consistent with those of Meloidogyne graminicola (M. graminicola). Sequence alignment of the mitochondrial DNA (mtDNA) COXI region and 28S rDNA D2-D3 region revealed sequence similarities of 99.51–100.00% and 99.48–99.61%, respectively, compared with M. graminicola sequences from GenBank. The specific primers Mg-F3/Mg-R2 reliably amplified a characteristic 369 bp band. Inoculation experiments confirmed that the pathogen can complete its entire life cycle (approximately 26 days (ds)) on the roots of healthy onion seedlings, inducing typical root-knot symptoms and females. In conclusion, the pathogen was identified as M. graminicola, which is the first report of M. graminicola infecting onions in China. This study provides important theoretical support for the molecular diagnosis of onion root-knot nematode disease and the green control of Allium L. vegetables in China. Full article
Show Figures

Figure 1

16 pages, 2207 KB  
Article
Mitogenomic Insights into Adaptive Evolution of African Ground Squirrels in Arid Environments
by Yamin Xing, Xibao Wang, Yao Chen, Yongquan Shang, Haotian Cai, Liangkai Wang and Xiaoyang Wu
Diversity 2025, 17(8), 538; https://doi.org/10.3390/d17080538 - 31 Jul 2025
Viewed by 823
Abstract
African ground squirrels (Xerus spp.), the inhabitants of African arid zones, face extreme heat and water scarcity driving selection for metabolic optimization. We assembled and annotated the first mitogenomes of Xerus inauris and Xerus rutilus (16,525–16,517 bp), revealing conserved vertebrate architecture with [...] Read more.
African ground squirrels (Xerus spp.), the inhabitants of African arid zones, face extreme heat and water scarcity driving selection for metabolic optimization. We assembled and annotated the first mitogenomes of Xerus inauris and Xerus rutilus (16,525–16,517 bp), revealing conserved vertebrate architecture with genus-specific traits. Key features include Xerus rutilus’s elongated ATP6 (680 vs. 605 bp), truncated ATP8ATP6 spacers (4 vs. 43 bp), and tRNA-Pro control regions with 78.1–78.3% AT content. Their nucleotide composition diverged from that of related sciurids, marked by reduced T (25.78–26.9%) and extreme GC skew (−0.361 to −0.376). Codon usage showed strong Arg-CGA bias (RSCU = 3.78–3.88) and species-specific elevations in Xerus rutilus’s UGC-Cys (RSCU = 1.83 vs. 1.17). Phylogenetics positioned Xerus as sister to Ratufa bicolor (Bayesian PP = 0.928; ML = 1.0), aligning with African biogeographic isolation. Critically, we identified significant signatures of positive selection in key mitochondrial genes linked to arid adaptation. Positive selection signals in ND4 (ω = 1.8 × background), ND1, and ATP6 (p < 0.0033) correspond to enhanced proton gradient efficiency and ATP synthesis–molecular adaptations likely crucial for optimizing energy metabolism under chronic water scarcity and thermoregulatory stress in desert environments. Distinct evolutionary rates were observed across mitochondrial genes and complexes: Genes encoding Complex I subunits (ND2, ND6) and Complex III (Cytb) exhibited accelerated evolution in arid-adapted lineages, while genes encoding Complex IV subunits (COXI) and Complex V (ATP8) remained highly conserved. These findings resolve the Xerus mitogenomic diversity, demonstrating adaptive plasticity balancing arid-energy optimization and historical diversification while filling critical genomic gaps for this xeric-adapted lineage. Full article
(This article belongs to the Section Animal Diversity)
Show Figures

Figure 1

17 pages, 2498 KB  
Article
Lemongrass Alleviates Primary Dysmenorrhea Symptoms by Reducing Oxidative Stress and Inflammation and Relaxing the Uterine Muscles
by Sheikh Safeena Sidiq, Qaiser Jabeen, QurratUlAin Jamil, Muhammad Saeed Jan, Iram Iqbal, Fatima Saqib, Mohammed Aufy and Shahid Muhammad Iqbal
Antioxidants 2025, 14(7), 838; https://doi.org/10.3390/antiox14070838 - 8 Jul 2025
Cited by 4 | Viewed by 2197
Abstract
Primary dysmenorrhea (PD) is characterized by lower abdominal spasms and painful cramps during menstruation in females with a normal pelvic anatomy. Cymbopogon citratus (DC.) Stapf, commonly known as lemongrass, is consumed in the form of herbal tea around the world. It has been [...] Read more.
Primary dysmenorrhea (PD) is characterized by lower abdominal spasms and painful cramps during menstruation in females with a normal pelvic anatomy. Cymbopogon citratus (DC.) Stapf, commonly known as lemongrass, is consumed in the form of herbal tea around the world. It has been traditionally used for menstrual disorders in several communities. This study aims to evaluate the traditional use of C. citratus for its efficacy in alleviating the symptoms of PD. C. citratus extract (CcE) was chemically characterized using HPLC and GCMS, which indicated the presence of several phenolic compounds and long-chain fatty acids. The anti-inflammatory activity of CcE was assessed by COX-I, COX-II, and 5-LOX enzyme inhibition with IC50 values of 143.7, 91.7, and 61.5 µg/mL, respectively, and showed good total antioxidant capacity and free radical scavenging activity. PD was induced in female Wistar rats by administering estradiol valerate followed by oxytocin to induce PD symptoms. CcE efficacy was assessed at 30, 100, and 300 mg/kg concentrations and compared with ibuprofen. CcE 300 mg/kg reduced abdominal contortions and inflammation in the rat uterus. The inflammatory (COX-II, TNFα and IL-10) and oxidative stress (TAC, TOS, MDA and SOD) markers in uterine tissue homogenate were also improved. An in vivo analgesic assessment through hot-plate, tail-flick, and acetic acid-induced writhing assays showed good analgesic activity by CcE, while ex vivo experiments described tocolytic effects in rat uterine muscles. CcE alleviates PD by its antioxidant, anti-inflammatory, analgesic, and tocolytic effects. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Figure 1

10 pages, 1814 KB  
Article
First Molecular Identification of Cotylophoron cotylophorum in Ecuador and Its Phylogenetic Relationship with Fasciola hepatica
by Geanella Barragán-López, Fausto Bedoya-Páez, María Lugo-Almarza, Carolina Fonseca-Restrepo, Francisco Angulo-Cubillán, Edison J. Romero, Jacobus H. de Waard and Armando Reyna-Bello
Pathogens 2025, 14(7), 659; https://doi.org/10.3390/pathogens14070659 - 4 Jul 2025
Viewed by 1456
Abstract
Trematode infections caused by Fasciolidae and Paramphistomidae remain widespread in livestock, resulting in substantial economic losses. The two distinct fluke families are difficult to distinguish morphologically, and molecular identification provides the most reliable means of accurate diagnosis. In Ecuador, however, molecular data on [...] Read more.
Trematode infections caused by Fasciolidae and Paramphistomidae remain widespread in livestock, resulting in substantial economic losses. The two distinct fluke families are difficult to distinguish morphologically, and molecular identification provides the most reliable means of accurate diagnosis. In Ecuador, however, molecular data on these parasites are scarce. In this study, we collected trematodes from cattle rumen and bile ducts, molecularly identified them, and assessed their phylogenetic relationship to Fasciola hepatica to determine their introduction pathways into South America. Genomic DNA was extracted, and PCR was used to amplify the ITS2 (~500 bp) and COXI (~266 bp) regions; all amplicons were Sanger-sequenced. Phylogenetic trees for both markers were constructed using a Maximum Likelihood approach with 1000 bootstrap replicates in CIPRES v3.3. The rumen fluke exhibited 99% ITS2 and COXI similarity to an Indian Cotylophoron cotylophorum strain, while the bile-duct fluke showed 99% ITS2 and 100% COXI similarity to F. hepatica isolates from Australia and Nigeria, respectively. Distinct single-nucleotide polymorphisms (SNPs) in the ITS2 chromatograms suggest a diploid genome structure in both trematode species. This is the first report of C. cotylophorum in Ecuador, and its presence may be linked to the late 19th-century introduction of Zebu cattle (Bos taurus indicus) from India. Full article
Show Figures

Figure 1

23 pages, 2927 KB  
Article
A Correlation-Based Approach for Predicting Humic Substance Bioactivity from Direct Compost Characterization
by Ana Catarina Silva, Pedro Rocha, Patrícia Valderrama, Juan Antelo, Dulce Geraldo, Maria Fernanda Proença, Sarah Fiol and Fátima Bento
Molecules 2025, 30(7), 1511; https://doi.org/10.3390/molecules30071511 - 28 Mar 2025
Cited by 2 | Viewed by 945
Abstract
The efficient characterization of compost quality is essential for optimizing its application in agriculture and soil improvement. In this study, a correlation-based approach was employed to evaluate relationships between physicochemical properties, structural features, and reactivity indicators of compost extracts—fulvic acid-like (FA-L), humic acid-like [...] Read more.
The efficient characterization of compost quality is essential for optimizing its application in agriculture and soil improvement. In this study, a correlation-based approach was employed to evaluate relationships between physicochemical properties, structural features, and reactivity indicators of compost extracts—fulvic acid-like (FA-L), humic acid-like (HA-L), and dissolved organic matter (DOM)—and their respective bulk composts. The goal was to identify key compost parameters that can serve as reliable predictors of humic substance composition and bioactivity, thereby reducing reliance on labor-intensive humic substance extractions. A comprehensive set of elemental, spectroscopic (UV-vis, ATR-FTIR, 1H-NMR), and thermal (TGA-DSC) analyses were conducted to assess the composition and stability of the extracts. Strong correlations were found between compost oxidation state (Coxi/C), cation exchange capacity (CEC), thermal stability, and the structural characteristics of humic substances-like (HS-L) fractions, suggesting that direct compost characterization can effectively predict humic substance reactivity and agronomic potential. The findings also align with a previously developed Compost Quality Index (CQI), reinforcing the functional role of humic substances in soil fertility and nutrient retention. By establishing a simplified yet robust compost assessment framework, this study advances the potential for efficient, cost-effective evaluation methodologies for compost quality. Full article
(This article belongs to the Section Physical Chemistry)
Show Figures

Graphical abstract

15 pages, 19478 KB  
Article
Successful Traceability of Wildlife Samples Contributes to Wildlife Conservation: A Case Study of Tracing the Snub-Nosed Monkey (Rhinopithecus spp.)
by Xibo Wang, Ying Shen, Yang Teng, Ruifeng Wu, Shuhao Liu, Jilai Zhao, Can Hu, Ming Li, Huijuan Pan and Jiwei Qi
Animals 2025, 15(2), 174; https://doi.org/10.3390/ani15020174 - 10 Jan 2025
Cited by 1 | Viewed by 1879
Abstract
Rapid and effective methods for tracing the geographic origin of wildlife samples are essential for tackling the illegal wildlife trade. Traditional morphological categorization methods are often inadequate as relying on the mitochondrial COXI barcode is insufficient for determining geographic populations. To address these [...] Read more.
Rapid and effective methods for tracing the geographic origin of wildlife samples are essential for tackling the illegal wildlife trade. Traditional morphological categorization methods are often inadequate as relying on the mitochondrial COXI barcode is insufficient for determining geographic populations. To address these limitations, we developed a bioinformatics-based pipeline for the rapid identification of traceable nuclear genome loci. This pipeline has been applied to the whole-genome sequence (WGS) data of China’s flagship species, the snub-nosed monkey (Rhinopithecus spp.). These species are known for sex-biased dispersal and hybrid speciation, which complicates genealogy tracing. Using phylogenetic principles, we employed the Robinson and Foulds (RF) distance and scanned over 1,850,726 population-specific loci, identifying five pairs that can trace genealogy origins rapidly and cost-effectively using PCR. Additionally, we found that relying only on mitochondrial genetic information is insufficient for rapid and accurate traceability to subspecies-level geographic populations. Our pipeline efficiently identifies loci and traces the geographic origin of snub-nosed monkey individuals, providing a valuable tool for species preservation and combating the wildlife trade. This approach can be extended to other species, aiding in the conservation of endangered wildlife and tracing criminal evidence. Full article
(This article belongs to the Section Wildlife)
Show Figures

Figure 1

13 pages, 5330 KB  
Article
Mitogenomics Provide New Phylogenetic Insights of the Family Apataniidae (Trichoptera: Integripalpia)
by Xinyu Ge, Jingyuan Wang, Haoming Zang, Lu Chai, Wenbin Liu, Jiwei Zhang, Chuncai Yan and Beixin Wang
Insects 2024, 15(12), 973; https://doi.org/10.3390/insects15120973 - 6 Dec 2024
Cited by 5 | Viewed by 1922
Abstract
The family Apataniidae consists of two subfamilies, Apataniinae and Moropsychinae. Currently, there are 204 valid species of Apataniidae, which are widely distributed throughout the northern hemisphere. The larvae typically inhabit cold-water environments, and they serve as biological indicators for monitoring the health of [...] Read more.
The family Apataniidae consists of two subfamilies, Apataniinae and Moropsychinae. Currently, there are 204 valid species of Apataniidae, which are widely distributed throughout the northern hemisphere. The larvae typically inhabit cold-water environments, and they serve as biological indicators for monitoring the health of freshwater ecosystems. The phylogenetic relationships within Apataniidae are not fully understood. Moreover, the available molecular data of Apataniidae are still limited. Herein, we provided the mitochondrial genomes of eight apataniid species and compared them with the published mitochondrial genomes of Apataniidae. The nine newly obtained sequences ranged from 15,070 bp to 16,737 bp in length. The results of the nonsynonymous with synonymous substitution rates displayed that ATP8 had the highest evolutionary rate, while COXI exhibited the lowest. The ND4L may be an effective molecular marker for the classification of the Apataniidae. Based on the published mitogenomes, we constructed a phylogenetic tree for Limnephiloidea and conducted a preliminary analysis of its advanced phylogeny. The ML and BI analyses recover the monophyly of Apataniidae and Limnephilidae. Except for PCG, BI tree based on other matrices consistently showed the topology: (Apataniana + (Moropsyche + (Apatidelia + Apatania))). The taxonomic status of Apatania and Apatidelia were also preliminarily explored. The mitochondrial genome of Apataniidae provides critical genomic resources for understanding the phylogenetic relationships of Apataniidae. Full article
(This article belongs to the Special Issue Aquatic Insects Biodiversity and eDNA Monitoring)
Show Figures

Figure 1

12 pages, 1706 KB  
Article
In Vitro and In Silico Anticyclooxygenase and Antitopoisomerase Activity of Anonna cherimola Ent-Kaurenes
by Carlos Eduardo Camacho-González, Alejandro Pérez-Larios, Sonia G. Sáyago-Ayerdi, Jasmin Salazar-Mendoza and Jorge A. Sánchez-Burgos
Separations 2024, 11(9), 263; https://doi.org/10.3390/separations11090263 - 6 Sep 2024
Viewed by 1710
Abstract
Annona cherimola is noted for its bioactive compounds, particularly diterpenes called ent-kaurenes, which exhibit various biological activities. This study focused on evaluating the ability of ent-kaurenes from Annona cherimola to inhibit cyclooxygenase (COX) and topoisomerase (TOP) enzymes. Researchers used solvent-free lipophilic eluates (SFLEs) [...] Read more.
Annona cherimola is noted for its bioactive compounds, particularly diterpenes called ent-kaurenes, which exhibit various biological activities. This study focused on evaluating the ability of ent-kaurenes from Annona cherimola to inhibit cyclooxygenase (COX) and topoisomerase (TOP) enzymes. Researchers used solvent-free lipophilic eluates (SFLEs) from the plant in enzymatic assays and a yeast model. The major compounds in SFLE were identified using gas chromatography–mass spectrometry (GC-MS), and in silico studies explored their inhibition mechanisms. SFLE showed significant inhibition of COX-II (95.44%) and COX-I (75.78%) enzymes and fully inhibited the yeast strain. The effectiveness of inhibition is attributed to the compounds’ structural diversity, lipophilicity, and molecular weight. Two main compounds, kauran-16-ol and isopimaral, were identified, with in silico results suggesting that they inhibit COX-II by blocking peroxidase activity and COX-I by interacting with the membrane-binding region. Additionally, these compounds allosterically and synergistically inhibit TOP-II and potentially sensitize cancer cells by interacting with key amino acids. This research is the first to identify and evaluate kauran-16-ol and isopimaral in silico, suggesting their potential as anti-inflammatory and anticancer agents. Full article
(This article belongs to the Special Issue Advanced Research on Extraction and Analysis of Plant Extracts)
Show Figures

Figure 1

13 pages, 2277 KB  
Article
Complete Mitogenome and Phylogenetic Analysis of a Marine Ray-Finned Fish, Alcichthys elongatus (Perciformes: Cottidae)
by Maheshkumar Prakash Patil, Jong-Oh Kim, Seung Hyun Yoo, Yong Bae Seo, Yu-Jin Lee, Jin-Koo Kim, Shin-Ichi Kitamura and Gun-Do Kim
Fishes 2023, 8(10), 513; https://doi.org/10.3390/fishes8100513 - 16 Oct 2023
Cited by 5 | Viewed by 2699
Abstract
Alcichthys elongatus is the only species in the genus, and this work is the first to provide a comprehensive mitogenome analysis of this species. The A. elongatus mitogenome was 16,712 bp long, with biased A + T content (52.33%), and featured thirteen protein-coding [...] Read more.
Alcichthys elongatus is the only species in the genus, and this work is the first to provide a comprehensive mitogenome analysis of this species. The A. elongatus mitogenome was 16,712 bp long, with biased A + T content (52.33%), and featured thirteen protein-coding genes (PCGs), twenty-two tRNAs, two rRNAs, and the control region (D-loop). The H strand encoded twenty-eight genes (twelve PCGs, fourteen tRNA, and two rRNA) and the control region, whereas the L strand encoded the remaining nine genes (ND6 and eight tRNA). Except for COXI, which started with GTG, all PCG sequences started with ATG and ended with TAA (ND4L, ND5, COXI, ATP8) or TAG (ND1, ND6) termination codons, with some (ND2, ND3, ND4, COXII, COXIII, ATP6, Cytb) having an incomplete termination codon. Except for tRNA-serine-1 (trnS), the majority of the tRNAs exhibited characteristic cloverleaf secondary structures. Based on 13 PCGs, phylogenetic analysis placed A. elongatus in the same clade as Icelus spatula. This genomic data will be useful for species identification, phylogenetic analysis, and population genetics. Full article
(This article belongs to the Section Taxonomy, Evolution, and Biogeography)
Show Figures

Figure 1

10 pages, 252 KB  
Article
A Retrospective Clinico-Pathologic Study of 35 Dogs with Urethral Transitional Cell Carcinoma Undergoing Treatment
by Giulia Ghisoni, Armando Foglia, Silvia Sabattini, Chiara Agnoli, Francesco Dondi, Simone Perfetti and Laura Marconato
Animals 2023, 13(14), 2395; https://doi.org/10.3390/ani13142395 - 24 Jul 2023
Cited by 6 | Viewed by 7321
Abstract
Chemotherapy and cyclooxygenase inhibitors (COXi) are primary treatments for canine urethral transitional cell carcinoma (uTCC), a tumor known for its aggressiveness and poor prognosis. This retrospective study aimed to evaluate the clinico-pathological characteristics, treatment modalities, and prognostic factors of 35 dogs with confirmed [...] Read more.
Chemotherapy and cyclooxygenase inhibitors (COXi) are primary treatments for canine urethral transitional cell carcinoma (uTCC), a tumor known for its aggressiveness and poor prognosis. This retrospective study aimed to evaluate the clinico-pathological characteristics, treatment modalities, and prognostic factors of 35 dogs with confirmed uTCC that received chemotherapy and COXi. Upon admission, urethral obstruction (UO) and urinary tract infection (UTI) were observed in seven (20%) dogs each. Gemcitabine (n = 20; 57.1%) and vinblastine (n = 10; 28.6%) were commonly used as first-line therapies, with four dogs also receiving radiation therapy. Based on RECIST, one (2.9%) dog achieved complete remission, nine (25.7%) partial remission, 20 (57.14%) showed stable disease, and five (14.3%) progressed. Among dogs with UO, six (85.7%) showed resolution or improvement after the first chemotherapy dose. The median time to local progression was 171 days (range: 107–235), and the median survival time was 333 days (range: 158–508). Dogs with UO upon admission had a higher risk of local progression, while both UO and UTI were associated with an increased risk of overall disease progression and tumor-related death. Additionally, gemcitabine significantly improved metastatic control. This study identified UO and UTI as negative prognostic factors, highlighting the importance of a multimodal approach in managing uTCC. Full article
(This article belongs to the Special Issue Recent Advances in the Treatment of Cancer in Domesticated Animals)
18 pages, 1839 KB  
Article
Evidence of a Natural Hybrid Oomycete Isolated from Ornamental Nursery Stock
by Clara Benavent-Celma, Debbie McLaggan, Pieter van West and Steve Woodward
J. Fungi 2023, 9(6), 627; https://doi.org/10.3390/jof9060627 - 29 May 2023
Viewed by 2311
Abstract
The oomycete genus Phytophthora includes many plant pathogens important in agricultural and environmental systems. Natural interspecific hybridization has been reported several times in Phytophthora, and although the fundamental processes of interspecific hybridization and the consequences of subsequent ecological distribution are poorly understood, [...] Read more.
The oomycete genus Phytophthora includes many plant pathogens important in agricultural and environmental systems. Natural interspecific hybridization has been reported several times in Phytophthora, and although the fundamental processes of interspecific hybridization and the consequences of subsequent ecological distribution are poorly understood, reports suggest some hybrids can infect a broader host range and display enhanced virulence compared to the putative parental species. During a survey carried out at the University of Aberdeen in 2014–2015, of oomycetes present in ornamental plants purchased via the internet, a batch of oomycete isolates remained unidentified, showing, in some isolates, features generally related to hybridization. The aim of this study was to determine whether hybridization events had occurred between endemic and introduced oomycetes, probably/possibly facilitated through the international plant trade. The list of isolates examined included a putative hybrid closely related to Phytophthora cryptogea. The putative hybrid isolate was further characterized, and pathogenicity were tests carried out on Eucalyptus globulus, using an isolate of P. cryptogea as a positive control. Cloning of ITS, COXI and β-tubulin genes resulted in different sequence versions of the putative hybrid isolate; after mapping and a polymorphism position comparison, it was concluded that the studied isolate contained genetic information from P. cryptogea, P. erythroseptica, P. kelmanii, P. sansomeana and Phytopythium chamaehyphon. A PCR-RFLP assay, a NEBcutter analysis and flow cytometry analysis (genomes ranged between 0.168 to 0.269 pg/2C) added further evidence of the hybrid nature of this isolate. The putative hybrid presented complex growing patterns ranging from rosaceous to chrysanthemum-like and had an optimum growth temperature of 25 °C. Although the putative hybrid produced visible symptoms of disease on E. globulus seedlings, assessment of the relative susceptibility of E. globulus to P. cryptogea and the putative hybrid indicated that P. cryptogea was significantly more virulent than the putative hybrid, based on mortality, disease severity and foliar symptoms. Full article
Show Figures

Figure 1

18 pages, 6581 KB  
Article
Oswaldocruzia ukrainae (Nematoda: Molineidae)—A Parasite of European Green Toad Bufotes viridis: Morphological and Molecular Data
by Nadezhda Yu. Kirillova, Alexander A. Kirillov, Sergei V. Shchenkov and Igor V. Chikhlyaev
Biology 2023, 12(6), 772; https://doi.org/10.3390/biology12060772 - 26 May 2023
Cited by 4 | Viewed by 3045
Abstract
Nematodes of the genus Oswaldocruzia are common parasites of the small intestine of amphibians and reptiles. Our recent molecular analysis of Oswaldocruzia nematodes revealed that only Oswaldocruzia filiformis, which possesses high morphological variability, parasitizes amphibians and reptiles in European Russia. Here we [...] Read more.
Nematodes of the genus Oswaldocruzia are common parasites of the small intestine of amphibians and reptiles. Our recent molecular analysis of Oswaldocruzia nematodes revealed that only Oswaldocruzia filiformis, which possesses high morphological variability, parasitizes amphibians and reptiles in European Russia. Here we present the study of Oswaldocruzia nematodes from the European green toad Bufotes viridis (Anura, Bufonidae) collected at different localities of the Middle Volga region in 2018–2022. We analyzed the morphological characteristics of the Oswaldocruzia spp. taxonomy together with novel molecular phylogenetic data. The data on phylogenetic analysis (based on partial CoxI mtDNA gene sequences) showed that Bufotes viridis is parasitized by two Oswaldocruzia species, the host-specific parasite Oswaldocruzia ukrainae and species generalist Oswaldocruzia filiformis. Broad morphological variability was revealed in O. ukrainae nematodes both from the same host specimen and from various toad individuals from different localities. Our results highlight the need for further biodiversity research of morphologically similar Oswaldocruzia species from amphibians and reptiles in the Western Palearctic using molecular genetic methods. Full article
(This article belongs to the Section Zoology)
Show Figures

Figure 1

12 pages, 5064 KB  
Article
Decellularized Scaffolds of Nopal (Opuntia Ficus-indica) for Bioengineering in Regenerative Dentistry
by Ruth Betsabe Zamudio-Ceja, Rene Garcia-Contreras, Patricia Alejandra Chavez-Granados, Benjamin Aranda-Herrera, Hugo Alvarado-Garnica, Carlos A. Jurado and Nicholas G. Fischer
J. Funct. Biomater. 2023, 14(5), 252; https://doi.org/10.3390/jfb14050252 - 1 May 2023
Cited by 9 | Viewed by 3753
Abstract
Opuntia Ficus-indica, or nopal, is traditionally used for its medicinal properties in Mexico. This study aims to decellularize and characterize nopal (Opuntia Ficus-indica) scaffolds, assess their degradation and the proliferation of hDPSC, and determine potential pro-inflammatory effects by assessing the [...] Read more.
Opuntia Ficus-indica, or nopal, is traditionally used for its medicinal properties in Mexico. This study aims to decellularize and characterize nopal (Opuntia Ficus-indica) scaffolds, assess their degradation and the proliferation of hDPSC, and determine potential pro-inflammatory effects by assessing the expression of cyclooxygenase 1 and 2 (COX-1 and 2). The scaffolds were decellularized using a 0.5% sodium dodecyl sulfate (SDS) solution and confirmed by color, optical microscopy, and SEM. The degradation rates and mechanical properties of the scaffolds were determined by weight and solution absorbances using trypsin and PBS and tensile strength testing. Human dental pulp stem cells (hDPSCs) primary cells were used for scaffold–cell interaction and proliferation assays, as well as an MTT assay to determine proliferation. Proinflammatory protein expression of COX-I and -II was discovered by Western blot assay, and the cultures were induced into a pro-inflammatory state with interleukin 1-β. The nopal scaffolds exhibited a porous structure with an average pore size of 252 ± 77 μm. The decellularized scaffolds showed a 57% reduction in weight loss during hydrolytic degradation and a 70% reduction during enzymatic degradation. There was no difference in tensile strengths between native and decellularized scaffolds (12.5 ± 1 and 11.8 ± 0.5 MPa). Furthermore, hDPSCs showed a significant increase in cell viability of 95% and 106% at 168 h for native and decellularized scaffolds, respectively. The combination of the scaffold and hDPSCs did not cause an increase in the expression of COX-1 and COX-2 proteins. However, when the combination was exposed to IL-1β, there was an increase in the expression of COX-2. This study demonstrates the potential application of nopal scaffolds in tissue engineering and regenerative medicine or dentistry, owing to their structural characteristics, degradation properties, mechanical properties, ability to induce cell proliferation, and lack of enhancement of pro-inflammatory cytokines. Full article
Show Figures

Figure 1

17 pages, 1764 KB  
Article
Genetic Diversity of Borreliaceae Species Detected in Natural Populations of Ixodes ricinus Ticks in Northern Poland
by Beata Wodecka and Valentyna Kolomiiets
Life 2023, 13(4), 972; https://doi.org/10.3390/life13040972 - 9 Apr 2023
Cited by 13 | Viewed by 2963
Abstract
In Europe, Ixodes ricinus tick is the vector of Lyme disease spirochetes and their relatives (Borreliella genus) and Borrelia miyamotoi. However, a newly described tick I. inopinatus with similar biological features and separated from I. ricinus may act as a vector [...] Read more.
In Europe, Ixodes ricinus tick is the vector of Lyme disease spirochetes and their relatives (Borreliella genus) and Borrelia miyamotoi. However, a newly described tick I. inopinatus with similar biological features and separated from I. ricinus may act as a vector for different Borrelia species. To date, eleven Borreliella species were detected in the natural populations of I. ricinus. Recently, two North American species have been detected in ticks parasitizing bats and red foxes in Europe, i.e., B. lanei and B. californiensis pointing to the necessity for searching for them in natural tick populations. In this study, using the coxI molecular marker only I. ricinus was identified in field-collected ticks with the exception of individual specimens of Haemaphysalis concinna. Using the flaB gene and mag-trnI intergenic spacer as molecular markers 14 Borreliaceae species have been detected with various frequencies in different parts of northern Poland. Among infected ticks, the most frequent were Borreliella (Bl.) afzelii (29.4%) and Bl. garinii (20.0%), followed by Bl. spielmanii, Bl. valaisiana, Bl. lanei, Bl. californiensis, B. miyamotoi, Bl. burgdorferi, Bl. carolinensis, Bl. americana, B. turcica, Bl. lusitaniae, Bl. bissettiae and Bl. finlandensis. Three of the above-mentioned species, i.e., Bl. lanei, Bl. californiensis and B. turcica were detected in this study for the first time in the natural ixodid tick population in Europe. The existence of the newly detected spirochetes increases their total diversity in Europe and points to the necessity of careful identification and establishment of the actual distribution of all Borreliaceae species transmitted by I. ricinus. Full article
(This article belongs to the Special Issue Tick-Transmitted Diseases)
Show Figures

Figure 1

Back to TopTop