Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (79)

Search Parameters:
Keywords = coupling irrigation and nitrogen

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3454 KiB  
Article
Yield Increase and Emission Reduction Effects of Alfalfa in the Yellow River Irrigation District of Gansu Province: The Coupling Mechanism of Biodegradable Mulch and Controlled-Release Nitrogen Fertilizer
by Wenjing Chang, Haiyan Li, Yaya Duan, Yi Ling, Jiandong Lu, Minhua Yin, Yanlin Ma, Yanxia Kang, Yayu Wang, Guangping Qi and Jianjun Wang
Plants 2025, 14(13), 2022; https://doi.org/10.3390/plants14132022 - 2 Jul 2025
Viewed by 355
Abstract
Agricultural production in Northwest China is widely constrained by residual plastic film pollution, excessive greenhouse gas emissions, and low productivity. Integrating biodegradable film with controlled-release nitrogen fertilizer offers a promising approach to optimize crop management, enhance yield, and improve environmental outcomes. In this [...] Read more.
Agricultural production in Northwest China is widely constrained by residual plastic film pollution, excessive greenhouse gas emissions, and low productivity. Integrating biodegradable film with controlled-release nitrogen fertilizer offers a promising approach to optimize crop management, enhance yield, and improve environmental outcomes. In this study, three planting patterns (conventional flat planting, FP; ridge mulching with biodegradable film, BM; and ridge mulching with conventional plastic film, PM), two nitrogen fertilizer types (urea, U, and controlled-release nitrogen fertilizer, C), and four nitrogen application rates (0, 80, 160, and 240 kg·hm−2) were applied to systematically investigate their effects on alfalfa yield and N2O emissions from grasslands. The results showed that BM and PM increased alfalfa yield by 23.49% and 18.65%, respectively, compared to FP, while C increased yield by 8.46% compared to urea. The highest yield (24.84 t·hm−2) was recorded under the BMC2 treatment, which was 97.11% higher than that of FPN0. N2O emission flux and cumulative emissions increased with nitrogen application rate. Compared with U, C reduced cumulative N2O emissions and greenhouse gas emission intensity (GHGI) by 23.89% and 25.84%, respectively. Compared to PM, BM reduced cumulative N2O emissions and GHGI by 11.58% and 20.15%, respectively. Principal component analysis indicated that the combination of ridge mulching with biodegradable film and 160 kg·hm−2 of C was optimal for simultaneously increasing alfalfa yield and reducing N2O emissions, making it a suitable planting–fertilization strategy for the Yellow River irrigation district in Gansu and similar ecological regions. Full article
(This article belongs to the Special Issue Advances in Plant Nutrition and Novel Fertilizers—Second Edition)
Show Figures

Figure 1

19 pages, 2474 KiB  
Article
Growth and Biomass Distribution Responses of Populus tomentosa to Long-Term Water–Nitrogen Coupling in the North China Plain
by Yafei Wang, Juntao Liu, Yuelin He, Wei Zhu, Liming Jia and Benye Xi
Plants 2025, 14(12), 1833; https://doi.org/10.3390/plants14121833 - 14 Jun 2025
Viewed by 427
Abstract
From 2016 to 2021, a field experiment was conducted in the North China Plain to study the long-term effects of drip irrigation and nitrogen coupling on the growth, biomass allocation, and irrigation water and fertilizer use efficiency of short-rotation triploid Populus tomentosa plantations. [...] Read more.
From 2016 to 2021, a field experiment was conducted in the North China Plain to study the long-term effects of drip irrigation and nitrogen coupling on the growth, biomass allocation, and irrigation water and fertilizer use efficiency of short-rotation triploid Populus tomentosa plantations. The experiment adopted a completely randomized block design, with one control (CK) and six water–nitrogen coupling treatments (IF, two irrigation levels × three nitrogen application levels). Data analysis was conducted using ANOVA, regression models, Spearman’s correlation analysis, and path analysis. The results showed that the effects of water and nitrogen treatments on the annual increment of diameter at breast height (ΔDBH), annual increment of tree height (ΔH), basal area of the stand (BAS), stand volume (VS), and annual forest productivity (AFP) in short-rotation forestry exhibited a significant stand age effect. The coupling of water and nitrogen significantly promoted the DBH growth of 2-year-old trees (p < 0.05), but after 3 years of age, the promoting effect of water and nitrogen coupling gradually diminished. In the 6th year, the above-ground biomass of Populus tomentosa was 5.16 to 6.62 times the under-ground biomass under different treatments. Compared to the I45 treatment (irrigation at soil water potential of −45 kPa), the irrigation water use efficiency of the I20 treatment (−20 kPa) decreased by 88.79%. PFP showed a downward trend with the increase in fertilization amount, dropping by 130.95% and 132.86% under the I20 and I45 irrigation levels. Path analysis indicated that irrigation had a significant effect on the BAS, VS, AFP, and TGB of 6-year-old Populus tomentosa (p < 0.05), with the universality of irrigation being higher than that of fertilization. It is recommended to implement phased water and fertilizer management for Populus tomentosa plantations in the North China Plain. During 1–3 years of tree age, adequate irrigation should be ensured and nitrogen fertilizer application increased. Between the ages of 4 and 6, irrigation and fertilization should be ceased to reduce resource wastage. This work provides scientific guidance for water and fertilizer management in short-rotation plantations. Full article
Show Figures

Figure 1

23 pages, 1357 KiB  
Article
Leaf Plasticity and Biomass Allocation of Arundo donax Under Combined Irrigation and Nitrogen Conditions in Salinized Soil
by Yamin Jia, Yaqiong Fan, Tingyu Chen, Zhiwen Duan, Shuhui Liu and Xiaoli Gao
Agriculture 2025, 15(11), 1166; https://doi.org/10.3390/agriculture15111166 - 28 May 2025
Cited by 1 | Viewed by 324
Abstract
Arundo donax L. (giant reed) is a perennial rhizomatous grass with high drought and salinity tolerance, making it a promising low-input bioenergy crop. However, the understanding of the combined effects of irrigation and nitrogen application in salinized soil on physiological adaptations and biomass [...] Read more.
Arundo donax L. (giant reed) is a perennial rhizomatous grass with high drought and salinity tolerance, making it a promising low-input bioenergy crop. However, the understanding of the combined effects of irrigation and nitrogen application in salinized soil on physiological adaptations and biomass allocation is still limited. In this study, we conducted a three-factor orthogonal pot experiment with four levels per factor in 2023 and 2024 as follows: salinity (S0: non-saline, S1: low salinity, S2: moderate salinity, S3: high salinity); irrigation amount (W0: 605, W1: 770, W2: 935, W3: 1100 mm); and nitrogen application (N0: 0, N1: 60, N2: 120, N3: 180 kg/ha). This resulted in 14 irrigation-nitrogen-salinity combined treatments. The results showed the following: (1) Irrigation, nitrogen and salinity significantly affected leaf dimensions, photosynthetic rate, plant height, biomass allocation and dry matter of the total plant (p < 0.05). (2) Significant coupling interactions were observed between salinity and irrigation, as well as between nitrogen and irrigation, affecting leaf morphology, plant height, leaf dry matter and total biomass accumulation; a coupling interaction of salinity and nitrogen was found to affect the leaf area, root, stem and leaf dry weight. (3) The S0N2W2 treatment produced the highest dry biomass, which was 2.2 times higher than for the S3N2W2 treatment. (4) Under moderate-salinity conditions (S2), biomass allocation favored stems and leaves, whereas under high-salinity conditions (S3) biomass allocation shifted towards leaves, followed by stems and roots. A combination of 935 mm irrigation amount and 120 kg/ha nitrogen (N2W2) under S1 and S2 is recommended to optimize biomass production. Our study provides practical irrigation and nitrogen management strategies to enhance A. donax cultivation on marginal saline lands, supporting climate-resilient bio-economy initiatives. Full article
Show Figures

Figure 1

24 pages, 2594 KiB  
Article
Optimization of Irrigation Parameters of Peanut Under Mulched Drip Irrigation in Xinjiang Based on Yield and Water Use Efficiency
by Yuchao Zhang, Shaofei Li, Weimin Cui, Yang Gao, Zhuanyun Si, Haiming Li, Junwei Chen, Jianshu Dong, Qiang Li, Xiaojun Shen and Xiaopei Zhang
Agronomy 2025, 15(6), 1302; https://doi.org/10.3390/agronomy15061302 - 26 May 2025
Viewed by 504
Abstract
To optimize water–nitrogen management for mulched drip-irrigated peanuts in Xinjiang, a three-season field experiment was conducted to assess the impacts of drip irrigation rates and water–nitrogen coupling on peanut growth, yield, quality, and water–nitrogen use efficiency. Two irrigation accounts (30 and 37.5 mm, [...] Read more.
To optimize water–nitrogen management for mulched drip-irrigated peanuts in Xinjiang, a three-season field experiment was conducted to assess the impacts of drip irrigation rates and water–nitrogen coupling on peanut growth, yield, quality, and water–nitrogen use efficiency. Two irrigation accounts (30 and 37.5 mm, denoted as W1 and W2), three nitrogen application levels (half nitrogen application and conventional nitrogen application, denoted as N1 and N2), and a control treatment (CK) without nitrogen application, and two drip discharge rates (3.0 and 6.0 L h−1, denoted as Q1 and Q2) were utilized for a total of five treatments per year, and the experiment was repeated three times. The results demonstrated that the irrigation and fertilization parameters of the W2N1Q2 treatment could significantly improve peanut growth, yield, quality, and water–nitrogen use efficiency, achieving optimal values for all measured indicators. Compared with the control (W2N0Q1), the main stem height increased by 9.59% and 13.13%, the aboveground biomass increased by 6.32% and 34.67%, the yield increased by 26.69% and 20.97% (p < 0.01), the water use efficiency increased by 27.08% and 16.33%, the nitrogen partial factor productivity values were 47.39 and 77.00 kg kg−1, the protein content increased by 3.99% and 4.63%, and the oil content increased by 1.68% and 8.53%, respectively. A PCA was performed using five key performance indicators (yield, protein content, oil content, water use efficiency, and nitrogen partial factor productivity) to evaluate different treatment combinations. The W2N1Q2 treatment obtained the highest composite score, indicating its overall superior performance among all treatments. Therefore, under the conditions of this experiment, the irrigation and nitrogen application parameters for achieving both a high yield and quality of peanuts under mulched drip irrigation in Xinjiang were determined to be W2N1Q2 treatment (irrigation account of 37.5 mm, nitrogen application of 118 kg ha−1, and drip discharge of 6.0 L h−1). This optimized combination brings three key advantages to water-scarce regions: (1) maximizing yield water use efficiency through precise irrigation scheduling; (2) balanced nutrient management to prevent nitrogen wastage; and (3) providing a key technological reference for agricultural production in Xinjiang and other similar ecological zones. Full article
(This article belongs to the Section Water Use and Irrigation)
Show Figures

Figure 1

21 pages, 13067 KiB  
Article
Significant Changes in Soil Properties in Arid Regions Due to Semicentennial Tillage—A Case Study of Tarim River Oasis, China
by Ying Xiao, Mingliang Ye, Jing Zhang, Yamin Chen, Xinxin Sun, Xiaoyan Li and Xiaodong Song
Sustainability 2025, 17(9), 4194; https://doi.org/10.3390/su17094194 - 6 May 2025
Viewed by 641
Abstract
Quantifying changes in soil properties greatly benefits our understanding of soil management and sustainable land use, especially in the context of strong anthropogenic activities and climate change. This study investigated the effects of long-term reclamation on soil properties in an artificial oasis region [...] Read more.
Quantifying changes in soil properties greatly benefits our understanding of soil management and sustainable land use, especially in the context of strong anthropogenic activities and climate change. This study investigated the effects of long-term reclamation on soil properties in an artificial oasis region with a cultivation history of more than 50 years. Critical soil properties were measured at 77 sites, and a total of 462 soil samples were collected down to a depth of 1 m, which captures both surface and subsurface processes that are critical for long-term cultivation effects. Thirteen critical soil properties were analyzed, among which four properties—soil organic carbon (SOC), total phosphorus (TP), pH, and ammonium nitrogen (NH4⁺)—were selected for detailed analysis due to their ecological significance and low intercorrelation. By comparing cultivated soils with nearby desert soils, this study found that semicentennial cultivation led to significant improvements in soil properties, including increased concentrations of SOC, NH4⁺, and TP, as well as reduced pH throughout the soil profile, indicating improved fertility and reduced alkalinity. Further analysis suggested that environmental factors—including temperature, clay content, evaporation differences between surface and subsurface layers, sparse vegetation cover, cotton root distribution, as well as prolonged irrigation and fertilization—collectively contributed to the enhancement of SOC decomposition and the reduction of soil alkalinity. Furthermore, three-dimensional digital soil mapping was performed to investigate the effects of long-term cultivation on the distributions of soil properties at unvisited sites. The soil depth functions were separately fitted to model the vertical variation in the soil properties, including the exponential function, power function, logarithmic function, and cubic polynomial function, and the parameters were extrapolated to unvisited sites via the quantile regression forest (QRF), boosted regression tree, and multiple linear regression techniques. The QRF technique yielded the best performance for SOC (R2 = 0.78 and RMSE = 0.62), TP (R2 = 0.79 and RMSE = 0.12), pH (R2 = 0.78 and RMSE = 0.10), and NH4+ (R2 = 0.71 and RMSE = 0.38). The results showed that depth function coupled with machine learning methods can predict the spatial distribution of soil properties in arid areas efficiently and accurately. These research conclusions will lead to more effective targeted measures and guarantees for local agricultural development and food security. Full article
Show Figures

Figure 1

21 pages, 6979 KiB  
Article
Nitrogen and Gray Water Footprints of Various Cropping Systems in Irrigation Districts: A Case from Ningxia, China
by Huan Liu, Xiaotong Liu, Tianpeng Zhang, Xinzhong Du, Ying Zhao, Jiafa Luo, Weiwen Qiu, Shuxia Wu and Hongbin Liu
Water 2025, 17(5), 717; https://doi.org/10.3390/w17050717 - 1 Mar 2025
Viewed by 789
Abstract
Under the influence of water resource conservation policies, the annual water diversion volumes in irrigation areas have been steadily decreasing, leading to substantial changes in regional cropping systems. These shifts have profoundly impacted agricultural reactive nitrogen (Nr) emissions and surface water quality. This [...] Read more.
Under the influence of water resource conservation policies, the annual water diversion volumes in irrigation areas have been steadily decreasing, leading to substantial changes in regional cropping systems. These shifts have profoundly impacted agricultural reactive nitrogen (Nr) emissions and surface water quality. This study focuses on the Yellow River Irrigation area of Ningxia, China, and employs a life cycle assessment method to quantitatively analyze fluctuations in the nitrogen footprint (NF) and gray water footprint (GWF) across three cropping systems—rice-maize intercropping, rice monoculture, and maize monoculture—during 2021–2023. The results indicate that rice monoculture exhibited significant variability in NF values (197.89–497.57 kg Neq·ha−1), with NO₃ leaching identified as the primary loss pathway (102.33–269.48 kg Neq·ha−1). The GWF analysis revealed that in 2021, the region’s GWF peaked at 23.18 × 104 m3·ha−1, with water pollution predominantly concentrated in Pingluo County (8 × 104 m3·ha−1). LMDI analysis identified nitrogen fertilizer application as the main contributor to variations in NF, while surface water pollution was indirectly influenced by crop yield. Furthermore, gray correlation analysis highlighted a significant coupling relationship between NF and GWF, with nitrogen fertilizer application having the most pronounced impact on GWF. Therefore, in the face of the gradual tightening of water resources in the irrigation areas, the current situation of reduced water diversion should be adopted as early as possible, and initiatives such as the reduction of nitrogen fertilizer application and the adjustment of the planting area of dryland crops should be accelerated to cope with the problem of nitrogen pollution brought about by changes in the cropping system. Full article
(This article belongs to the Special Issue Basin Non-Point Source Pollution)
Show Figures

Figure 1

19 pages, 3591 KiB  
Article
Effects of Fertilization on Soil Physicochemical Properties and Enzyme Activities of Zanthoxylum planispinum var. Dingtanensis Plantation
by Yurong Fu, Yanghua Yu, Shunsong Yang, Guangguang Yang, Hui Huang, Yun Yang and Mingfeng Du
Forests 2025, 16(3), 418; https://doi.org/10.3390/f16030418 - 25 Feb 2025
Cited by 1 | Viewed by 541
Abstract
Zanthoxylum planispinum var. Dingtanensis (hereafter Z. planispinum) has excellent characteristics, including Ca and drought tolerance. It can flourish in stony soils, and it is used as a pioneer plant in karst rocky desertification control. However, soil degradation, coupled with the removal of [...] Read more.
Zanthoxylum planispinum var. Dingtanensis (hereafter Z. planispinum) has excellent characteristics, including Ca and drought tolerance. It can flourish in stony soils, and it is used as a pioneer plant in karst rocky desertification control. However, soil degradation, coupled with the removal of nutrients absorbed from the soil by Z. planispinum’s fruit harvesting, exacerbates nutrient deficiency. The effects of fertilization on soil nutrient utilization and microbial limiting factors remain unclear. Here, we established a long-term (3 year) field experiment of no fertilization (CK), organic fertilizer + chemical fertilizer + sprinkler irrigation (T1), chemical fertilizer + sprinkler irrigation (T2), chemical fertilizer treatment (T3), and leguminous (soybean) + chemical fertilizer + sprinkler irrigation (T4). Our findings indicate that fertilization significantly improved the nutrient uptake efficiency of Z. planispinum, and it also enhanced urease activity compared with CK. T1 increased soil respiration and improved water transport, and the soil nutrient content retained in T1 was relatively high. It delayed the mineralization rate of organic matter, promoted nutrient balance, and enhanced enzyme activity related to the carbon and nitrogen cycle. T4 caused soil acidification, reducing the activity of peroxidase (POD) and polyphenol oxidase (PPO). The soil microbial community in the Z. planispinum plantation was limited by carbon and phosphorus, and T1 mitigated this limitation. This study indicated that soil nutrient content regulated enzymatic activity by influencing microbial resource limitation, with organic carbon being the dominant factor. Overall, we recommend T1 as the optimal fertilization strategy for Z. planispinum plantations. Full article
Show Figures

Figure 1

13 pages, 3875 KiB  
Article
Research on Summer Maize Irrigation and Fertilization Strategy in Henan Province Based on Multi-Objective Optimization Model
by Jianqin Ma, Yongqing Wang, Lei Liu, Bifeng Cui, Yu Ding and Lansong Liu
Sustainability 2025, 17(5), 1834; https://doi.org/10.3390/su17051834 - 21 Feb 2025
Viewed by 617
Abstract
Identifying a water–nitrogen coupling strategy to achieve high efficiency, emission reduction, and optimal yield in summer maize under multi-objective conditions is crucial for enhancing nitrogen fertilizer utilization and promoting agricultural sustainability. This study conducted a field experiment on water–fertilizer coupling in summer maize, [...] Read more.
Identifying a water–nitrogen coupling strategy to achieve high efficiency, emission reduction, and optimal yield in summer maize under multi-objective conditions is crucial for enhancing nitrogen fertilizer utilization and promoting agricultural sustainability. This study conducted a field experiment on water–fertilizer coupling in summer maize, with three irrigation levels (60%θf, 70%θf, 80%θf, with θf representing field capacity) and four nitrogen application levels (0, 180, 270, 360 kg/ha). It analyzed variations in yield, partial factor productivity of nitrogen fertilizer (PFPN), and the soil CO2 emission flux across different water–nitrogen combinations, establishing a multi-vector optimization model. NSGA-III (non-dominated Sorting Genetic Algorithm III) was utilized to determine the most effective combination of water and nitrogen. The results indicated that maize yield initially increases and then declines as irrigation and nitrogen levels rise. PFPN showed a decreasing trend, and its decline gradually decreased with increasing irrigation levels, suggesting that water can alleviate nitrogen stress to some extent. Soil carbon dioxide exhalation intensity increased with both irrigation and nitrogen levels. The NSGA-III optimization revealed that the optimal water–nitrogen ratio is 1086.28 m3/ha for irrigation and 265.79 kg/ha for nitrogen. Compared with the best water–nitrogen combination (W2N3) from the experiment, this optimized scheme showed no significant difference in irrigation volume, yield, or soil CO2 emission flux while increasing PFPN by 13.46% and saving 1.56% of nitrogen fertilizer. In summary, the optimized water–fertilizer coupling scheme provides a scientific basis for high-efficiency, high-yield, and low-emission maize production in Henan Province, supporting sustainable agricultural development. Full article
(This article belongs to the Section Sustainable Agriculture)
Show Figures

Figure 1

21 pages, 5518 KiB  
Article
Soil Amendments and Slow-Release Urea Improved Growth, Physiological Characteristics, and Yield of Salt-Tolerant Rice Under Salt Stress Conditions
by Rongyi Li, Xiayu Guo, Yucheng Qi, Yuyuan Wang, Jianbo Wang, Pengfei Zhang, Shenghai Cheng, Wenli He, Tingcheng Zhao, Yusheng Li, Lin Li, Junchao Ji, Aibin He and Zhiyong Ai
Plants 2025, 14(4), 543; https://doi.org/10.3390/plants14040543 - 10 Feb 2025
Cited by 1 | Viewed by 882
Abstract
The present study aimed to investigate the effects of different soil amendments coupled with nitrogen fertilizer on the morpho-physiological characteristics and yield of salt-tolerant rice under saline conditions. The soil amendments, i.e., S1: zeolite amendment, S2: coconut coir amendment, S3: humic acid amendment, [...] Read more.
The present study aimed to investigate the effects of different soil amendments coupled with nitrogen fertilizer on the morpho-physiological characteristics and yield of salt-tolerant rice under saline conditions. The soil amendments, i.e., S1: zeolite amendment, S2: coconut coir amendment, S3: humic acid amendment, and S0: no amendment, and fertilizer treatments, i.e., N1: urea, N2: slow-release urea, and N0: no N fertilizer, were kept in main plots and sub-plots, respectively, in a split-plot design. The salt-tolerant variety ‘Shuangliangyou 138’ was exposed to 0.3% salt irrigation water. The results showed that during the entire growth period, compared to S0, the S1 and S3 treatments increased the SPAD values by an average of 6.3%and 5.5%, respectively, the leaf area index by an average of 24.5% and 19.8%, the canopy interception rate by an average of 11.5% and 4.1%, and the aboveground biomass by an average of 36.8% and 13.9%, respectively. Moreover, under S1 and S3 conditions, the tiller number per square meter, leaf water potential, leaf water content, and chlorophyll contents were also improved under the slow-release urea than urea. Moreover, slow-release urea promoted root vitality and nutrient absorption as well as enhanced the activity of antioxidant and nitrogen metabolism enzymes than urea under the S1 and S3 conditions. In sum, the rational application of soil amendments and slow-release urea could improve the rice productivity on saline-alkali land. Full article
(This article belongs to the Special Issue Fertilizer and Abiotic Stress)
Show Figures

Figure 1

25 pages, 6335 KiB  
Article
Optimization of Irrigation and Fertilization in Maize–Soybean System Based on Coupled Water–Carbon–Nitrogen Interactions
by Aizheng Yang, Shuyuan Luo, Yaowen Xu, Pingan Zhang, Zhenyi Sun, Kun Hu and Mo Li
Agronomy 2025, 15(1), 41; https://doi.org/10.3390/agronomy15010041 - 27 Dec 2024
Cited by 3 | Viewed by 1327
Abstract
Effective water and nitrogen management plays a pivotal role in enhancing crop yields while simultaneously reducing greenhouse gas emissions. This study differs from previous research by investigating the effects of water–nitrogen co-regulation involving organic carbon on the yield increase and emission mitigation in [...] Read more.
Effective water and nitrogen management plays a pivotal role in enhancing crop yields while simultaneously reducing greenhouse gas emissions. This study differs from previous research by investigating the effects of water–nitrogen co-regulation involving organic carbon on the yield increase and emission mitigation in a soybean–maize system. A dryland experiment was conducted, employing 20 distinct combinations of water and nitrogen treatments that were meticulously designed for the maize–soybean system. The DSSAT crop model was employed to quantitatively elucidate the intricate interactions between water and nitrogen. A multi-objective optimization model, integrating experimental data and mechanistic insights, was constructed and refined using the NSGA-III genetic algorithm to identify the optimal water and nitrogen application ratios. An analysis of maize and soybean data from Acheng in Heilongjiang, China, indicates that optimized irrigation and nitrogen application regimes—152.2 mm and 247.1 kg·ha−1 for maize and 91.7 mm and 106.2 kg·ha−1 for soybean—substantially enhanced the net economic returns within the dryland ecosystem. There is a significant positive correlation between the yield (Y), soil nitrogen content, and soil organic carbon (SOC). Nitrate nitrogen has a significant positive correlation with CO2 gas emissions. Organic carbon changes the soil’s carbon to nitrogen ratio by participating in the water and nitrogen cycles, thereby affecting nitrogen and phosphorus loss and carbon emissions. This study presents a sustainable method for regulating water and nitrogen in the maize–soybean system. Full article
(This article belongs to the Special Issue Land and Water Resources for Food and Agriculture—2nd Edition)
Show Figures

Figure 1

19 pages, 3099 KiB  
Article
Improving the Microenvironmental of Spring Soybean Culture and Increasing the Yield by Optimization of Water and Nitrogen
by Lei Zhang, Hongbo Wang, Yang Gao, Weixiong Huang, Zhenxi Cao, Maosong Tang, Fengnian Zhao, Yuanhang Guo and Xingpeng Wang
Agronomy 2024, 14(12), 2814; https://doi.org/10.3390/agronomy14122814 - 26 Nov 2024
Viewed by 872
Abstract
Optimizing water and nitrogen management is an effective measure to reduce nitrogen fertilizer loss and environmental pollution risks. This study aims to quantify the impacts of different water and nitrogen management strategies on the soil microenvironment and yield of spring soybeans in southern [...] Read more.
Optimizing water and nitrogen management is an effective measure to reduce nitrogen fertilizer loss and environmental pollution risks. This study aims to quantify the impacts of different water and nitrogen management strategies on the soil microenvironment and yield of spring soybeans in southern Xinjiang. In this study, two irrigation quotas were established: W1—36 mm (low water) and W2—45 mm (high water). Three nitrogen application gradients were established: low nitrogen (150 kg·hm−2, N1), medium nitrogen (225 kg·hm−2, N2), and high nitrogen (300 k kg·hm−2, N3). The analysis focused on soil physicochemical properties, enzyme activities, microbial community diversity, soybean yield, and soybean quality changes. The results indicate that the activities of nitrate reductase and urease, as well as total nitrogen content, increased with higher irrigation and nitrogen application rates. The W2N3 treatment significantly increased 0.15 to 4.39, 0.18 to 1.04, and 0.31 to 1.73 times. (p < 0.05). Alkaline protease and sucrase activities increased with higher irrigation amounts, while their response to nitrogen application exhibited an initial increase followed by a decrease. The W2N2 treatment significantly increased by 0.10 to 0.34 and 0.07 to 1.46 times (p < 0.05). Irrigation significantly affected the soil bacterial community structure, while the coupling effects of water and nitrogen notably influenced soil bacterial abundance (p < 0.05). Increases in irrigation and nitrogen application enhanced bacterial diversity and species abundance. Partial least squares path analysis indicated that water–nitrogen coupling directly influenced the soil microenvironment and indirectly produced positive effects on soybean yield and quality. An irrigation quota of 4500 m3 hm−2 and a nitrogen application rate of 300 kg·hm−2 can ensure soybean yield while enhancing soil microbial abundance. The findings provide insights into the response mechanisms of soil microbial communities in spring soybeans to water–nitrogen management, clarify the relationship between soil microenvironments and the yield and quality of spring soybeans, and identify optimal irrigation and fertilization strategies for high quality and yield. This research offers a theoretical basis and technical support for soybean cultivation in southern Xinjiang. Full article
Show Figures

Figure 1

18 pages, 1815 KiB  
Article
Climate-Smart Drip Irrigation with Fertilizer Coupling Strategies to Improve Tomato Yield, Quality, Resources Use Efficiency and Mitigate Greenhouse Gases Emissions
by Xinchao Ma, Yanchao Yang, Zhanming Tan, Yunxia Cheng, Tingting Wang, Liyu Yang, Tao He and Shuang Liang
Land 2024, 13(11), 1872; https://doi.org/10.3390/land13111872 - 8 Nov 2024
Cited by 3 | Viewed by 2030
Abstract
Background: Integrated water and fertilizer management is important for promoting the sustainable development of agriculture. Climate-smart drip irrigation with fertilizer coupling strategies plays an important role to mitigate greenhouse gas emissions, ensuring food production, and alleviating water scarcity and excessive use of fertilizers. [...] Read more.
Background: Integrated water and fertilizer management is important for promoting the sustainable development of agriculture. Climate-smart drip irrigation with fertilizer coupling strategies plays an important role to mitigate greenhouse gas emissions, ensuring food production, and alleviating water scarcity and excessive use of fertilizers. Methods: The greenhouse experiment consists of three drip irrigation treatments which include D1: drip irrigation (100 mm); D2: drip irrigation (200 mm); D3: drip irrigation (300 mm) under three different fertilizer management practices N1: nitrogen level (150 kg N ha−1); N2: nitrogen level (300 kg N ha−1); N3: nitrogen level (450 kg N ha−1). Results: The results showed that significantly improved soil moisture contents, quality and tomato yield, while reduced (38.6%) greenhouse gas intensity (GHGI) under the D3N3 treatment. The D2 and D3 drip irrigation treatments with 450 kg nitrogen ha−1 considerably improved NH4+-N contents, and NO3-N contents at the fruit formation stage. The improve in net primary productivity (NPP), net ecosystem productivity (NEP), evapotranspiration (ET), and ecosystem crop water productivity (CWPeco) through D3N3 treatment is higher. The D3N3 treatment improved (28.2%) the net global warming potential (GWP), but reduced GHGI, due to improved (18.4%) tomato yield. The D3N3 treatment had significantly greater irrigation water productivity (IWP) (42.8%), total soluble sugar (TSS) (32.9%), vitamin C content (VC) (39.2%), soluble sugar content (SSC) (44.2%), lycopene content (41.3%) and nitrogen use efficiency (NUE) (52.4%), as compared to D1N1 treatment. Conclusions: Therefore, in greenhouse experiments, the D3N3 may be an effective water-saving and fertilizer management approach, which can improve WUE, tomato yield, and quality while reducing the effect of global warming. Full article
(This article belongs to the Special Issue Plant-Soil Interactions in Agricultural Systems)
Show Figures

Figure 1

37 pages, 12671 KiB  
Article
Effect of Water and Nitrogen Coupling Regulation on the Growth, Physiology, Yield, and Quality Attributes of Isatis tinctoria L. in the Oasis Irrigation Area of the Hexi Corridor
by Yucai Wang, Xiaofan Pan, Haoliang Deng, Mao Li, Jin Zhao and Jine Yang
Agronomy 2024, 14(10), 2187; https://doi.org/10.3390/agronomy14102187 - 24 Sep 2024
Viewed by 1048
Abstract
To address the prevailing problems of high water and fertilizer input and low productivity in Isatis tinctoria L. production in the Hexi Corridor in China, the effects of different irrigation amounts and nitrogen application rates on growth characteristics, photosynthetic physiology, root yield, and [...] Read more.
To address the prevailing problems of high water and fertilizer input and low productivity in Isatis tinctoria L. production in the Hexi Corridor in China, the effects of different irrigation amounts and nitrogen application rates on growth characteristics, photosynthetic physiology, root yield, and quality of I. tinctoria plants were studied with the aim of obtaining the optimal irrigation level and nitrogen application rate. From 2021 to 2023, we established a two-factor split-plot experiment in the oasis irrigation area with three irrigation amounts (sufficient water, medium water, and low water are 100%, 85%, and 70% of the typical local irrigation quota) for the main zone; three nitrogen application rates (low nitrogen, 150 kg ha−1, medium nitrogen, 200 kg ha−1, and high nitrogen, 250 kg ha−1) for the secondary zone; and three irrigation amounts without nitrogen as the control to explore the response of these different water and nitrogen management patterns for I. tinctoria in terms of growth characteristics, photosynthetic physiology, root yield, and quality. The results showed the following: (1) When the irrigation amount was increased from 75% to 100% of the local typical irrigation quota and the nitrogen application rate was increased from 150 to 250 kg ha−1, while the plant’s height, leaf area index, dry matter accumulation in the stem, leaf, and root, as well as the net photosynthetic rate (Pn), the stomatal conductance (Gs), and the transpiration rate (Tr) of I. tinctoria increased gradually, and the root–shoot ratio decreased. (2) When the irrigation amount increased from 75% to 100% of the local typical irrigation quota, the yield and net proceeds of I. tinctoria increased from 43.12% to 53.43% and 55.07% to 71.61%, respectively. However, when the irrigation quota was 100% of the local typical irrigation quota, and the nitrogen application rate increased from 150 to 200 kg ha−1, the yield of I. tinctoria increased from 21.58% to 23.69%, whereas the increase in nitrogen application rate from 200 to 250 kg ha−1 resulted in a decrease in the yield of I. tinctoria from 10.66% to 18.92%. During the 3-year experiment, the maximum yield of I. tinctoria appeared when treated with sufficient water and medium nitrogen, reaching 9054.68, 8066.79, and 8806.15 kg ha−1, respectively. (3) The effect of different water and nitrogen combination treatments on the root quality of I. tinctoria was significant. Under the same irrigation level, increasing the nitrogen application rate from 150 to 250 kg ha−1 could increase the contents of indigo, indirubin, (R,S)–goitrin, total nucleoside, uridine, and adenosine in the root of I. tinctoria from 3.94% to 9.59%, 1.74% to 12.58%, 5.45% to 18.35%, 5.61% to 11.59%, 7.34% to 11.32%, and 14.98% to 54.40%, respectively, while the root quality of I. tinctoria showed a trend of first increasing and then decreasing under the same nitrogen application level. (4) AHP, the entropy weight method, and the TOPSIS method were used for a comprehensive evaluation of multiple indexes of water–nitrogen coupling planting patterns for I. tinctoria, which resulted in the optimal evaluation of the W3N2 combination. Therefore, the irrigation level was 100% of the local typical irrigation quota, the nitrogen application rate should be appropriately reduced, and controlling the nitrogen application rate at the level of 190.30–218.27 kg ha−1 can improve water–nitrogen productivity yields for I. tinctoria and root quality. The results of this study can provide a theoretical basis and technical support for a more reasonable water and fertilizer management model for the I. tinctoria production industry in the Hexi Corridor in China. Full article
(This article belongs to the Special Issue Water and Fertilizer Regulation Theory and Technology in Crops)
Show Figures

Figure 1

22 pages, 7864 KiB  
Article
A Plant Strategy: Irrigation, Nitrogen Fertilization, and Climatic Conditions Regulated the Carbon Allocation and Yield of Oilseed Flax in Semi-Arid Area
by Haidi Wang, Bangqing Zhao, Yuhong Gao, Bin Yan, Bing Wu, Zhengjun Cui, Yifan Wang, Ming Wen and Xingkang Ma
Plants 2024, 13(18), 2553; https://doi.org/10.3390/plants13182553 - 11 Sep 2024
Viewed by 1586
Abstract
The injudicious use of water and fertilizer to maximize crop yield not only leads to environmental pollution, but also causes enormous economic losses. For this reason, we investigated the effect of nitrogen (N) (N0 (0), N60 (60 kg ha−1), and N120 [...] Read more.
The injudicious use of water and fertilizer to maximize crop yield not only leads to environmental pollution, but also causes enormous economic losses. For this reason, we investigated the effect of nitrogen (N) (N0 (0), N60 (60 kg ha−1), and N120 (120 kg ha−1)) at different irrigation levels (I0 (0), I1200 (budding 600 m3 ha−1 + kernel 600 m3 ha−1), and I1800 (budding 900 m3 ha−1 + kernel 900 m3 ha−1)) on oilseed flax in the Loess Plateau of China in 2019 and 2020. The objective was to establish appropriate irrigation and fertilizer management strategies that enhance the grain yield (GY) of oilseed flax and maximize water and N productivity. The results demonstrated that irrigation and N application and their coupling effects promoted dry matter accumulation (DMA) and non-structural carbohydrate (NSC) synthesis, and increased the GY of oilseed flax. The contents of NSC in various organs of flax were closely related to grain yield and yield components. Higher NSC in stems was conducive to increased sink capacity (effective capsule number per plant (EC) and thousand kernel weight (TKW)), and the coupling of irrigation and N affected GY by promoting NSC synthesis. Higher GY was obtained by the interaction of irrigation and N fertilizer, with the increase rate ranging from 15.84% to 35.40%. Additionally, in the increased yield of oilseed flax, 39.70–78.06%, 14.49–54.11%, and −10.6–24.93% were contributed by the application of irrigation and nitrogen and the interaction of irrigation and nitrogen (I × N), respectively. Irrigation was the main factor for increasing the GY of oilseed flax. In addition, different climatic conditions changed the contribution of irrigation and N and their interaction to yield increase in oilseed flax. Drought and low temperature induced soluble sugar (SS) and starch (ST) synthesis to resist an unfavorable environment, respectively. The structural equation model showed that the key factors to increasing the GY of oilseed flax by irrigation and nitrogen fertilization were the differential increases in DMA, EC, and TKW. The increases in EC and TKW were attributed to the promotion of DMA and NSC synthesis in oilseed flax organs by irrigation, nitrogen fertilization, and their coupling effects. The I1200N60 treatment obtained higher water use efficiency (WUE) and N partial factor productivity (NPFP) due to lower actual evapotranspiration (ETa) and lower N application rate. Therefore, the strategy of 1200 m3 ha−1 irrigation and 60 kg ha−1 N application is recommended for oilseed flax in semi-arid and similar areas to achieve high grain yield and efficient use of resources. Full article
(This article belongs to the Special Issue Water and Nitrogen Management in the Soil–Crop System (3rd Edition))
Show Figures

Figure 1

15 pages, 2028 KiB  
Article
Effect of CO2 Elevation on Tomato Gas Exchange, Root Morphology and Water Use Efficiency under Two N-Fertigation Levels
by Manyi Zhang, Wentong Zhao, Chunshuo Liu, Changtong Xu, Guiyu Wei, Bingjing Cui, Jingxiang Hou, Heng Wan, Yiting Chen, Jiarui Zhang and Zhenhua Wei
Plants 2024, 13(17), 2373; https://doi.org/10.3390/plants13172373 - 26 Aug 2024
Cited by 2 | Viewed by 1005
Abstract
Atmospheric elevated CO2 concentration (e[CO2]) decreases plant nitrogen (N) concentration while increasing water use efficiency (WUE), fertigation increases crop nutrition and WUE in crop; yet the interactive effects of e[CO2] coupled with two N-fertigation levels [...] Read more.
Atmospheric elevated CO2 concentration (e[CO2]) decreases plant nitrogen (N) concentration while increasing water use efficiency (WUE), fertigation increases crop nutrition and WUE in crop; yet the interactive effects of e[CO2] coupled with two N-fertigation levels during deficit irrigation on plant gas exchange, root morphology and WUE remain largely elusive. The objective of this study was to explore the physiological and growth responses of ambient [CO2] (a[CO2], 400 ppm) and e[CO2] (800 ppm) tomato plant exposed to two N-fertigation regimes: (1) full irrigation during N-fertigation (FIN); (2) deficit irrigation during N-fertigation (DIN) under two N fertilizer levels (reduced N (N1, 0.5 g pot−1) and adequate N (N2, 1.0 g pot−1). The results indicated that e[CO2] associated with DIN regime induced the lower N2 plant water use (7.28 L plant−1), maintained leaf water potential (−5.07 MPa) and hydraulic conductivity (0.49 mol m−2 s−1 MPa−1), greater tomato growth in terms of leaf area (7152.75 cm2), specific leaf area (223.61 cm2 g−1), stem and total dry matter (19.54 g and 55.48 g). Specific root length and specific root surface area were increased under N1 fertilization, and root tissue density was promoted in both e[CO2] and DIN environments. Moreover, a smaller and denser leaf stomata (4.96 µm2 and 5.37 mm−2) of N1 plant was obtained at e[CO2] integrated with DIN strategy. Meanwhile, this combination would simultaneously reduce stomatal conductance (0.13 mol m−2 s−1) and transpiration rate (1.91 mmol m−2 s−1), enhance leaf ABA concentration (133.05 ng g−1 FW), contributing to an improvement in WUE from stomatal to whole-plant scale under each N level, especially for applying N1 fertilization (125.95 µmol mol−1, 8.41 µmol mmol−1 and 7.15 g L−1). These findings provide valuable information to optimize water and nitrogen fertilizer management and improve plant water use efficiency, responding to the potential resource-limited and CO2-enriched scenario. Full article
Show Figures

Figure 1

Back to TopTop