Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = cosine directional response

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3247 KiB  
Article
Anisotropic Photoelectric Properties of Aligned P3HT Nanowire Arrays Fabricated via Solution Blade Coating and UV-Induced Molecular Ordering
by Qianxun Gong, Jin Luo, Chen Meng, Zuhong Xiong, Sijie Zhang and Tian Yu
Materials 2025, 18(11), 2649; https://doi.org/10.3390/ma18112649 - 5 Jun 2025
Viewed by 399
Abstract
This paper reports on the anisotropic optoelectronic properties of aligned poly(3-hexylthiophene) (P3HT) nanowire (NW) arrays fabricated via blade coating and UV irradiation, exhibiting a remarkably high electrical resistance anisotropy ratio of up to 8.05 between the parallel (0°) and perpendicular (90°) directions. This [...] Read more.
This paper reports on the anisotropic optoelectronic properties of aligned poly(3-hexylthiophene) (P3HT) nanowire (NW) arrays fabricated via blade coating and UV irradiation, exhibiting a remarkably high electrical resistance anisotropy ratio of up to 8.05 between the parallel (0°) and perpendicular (90°) directions. This resistance anisotropy originates from the advantage of directional charge transport. Optimized 5 mg/mL P3HT solutions under 32 min UV irradiation yielded unidirectional π-π*-stacked NWs with enhanced crystallinity. Polarized microscopy and atomic force microscopy confirmed high alignment and dense NW networks. The angular dependence of polarization exhibits a cosine-modulated response, while the angular anisotropy of the measured photocurrent points to structural alignment rather than trap-state control. The scalable fabrication and tunable anisotropy demonstrate potential for polarization-sensitive organic electronics and anisotropic logic devices. Full article
(This article belongs to the Section Optical and Photonic Materials)
Show Figures

Figure 1

20 pages, 12723 KiB  
Article
Line-of-Sight Stabilization and High-Precision Target Tracking Technology of the Risley Prism System on Motion Platforms
by Huayang Xia, Hongfeng Xia, Jinying Li, Yunxia Xia, Yihan Luo, Liangzhu Yuan, Haotong Ma, Piao Wen and Wenna Yuan
Actuators 2025, 14(5), 240; https://doi.org/10.3390/act14050240 - 9 May 2025
Viewed by 583
Abstract
The Risley prism system offers advantages such as compact structure and excellent dynamic performance, making it suitable for installation on static and motion platforms for target acquisition, aiming, and tracking. This paper presents a strapdown line-of-sight (LOS) stabilization method for the Risley prism [...] Read more.
The Risley prism system offers advantages such as compact structure and excellent dynamic performance, making it suitable for installation on static and motion platforms for target acquisition, aiming, and tracking. This paper presents a strapdown line-of-sight (LOS) stabilization method for the Risley prism system on motion platforms. The method establishes the coordinate transformation between the Risley prism and the motion platform. Real-time platform attitude angles from an inertial measurement unit (IMU) are used to compute the direction cosine matrix, which, combined with the coordinate transformation, determines the target’s actual guided position in the Risley prism’s coordinate. The Risley prism’s rotational angles are then calculated based on the target’s actual guided position to ensure LOS stability and capture the target. After LOS stabilization, an image-based closed-loop tracking cascade control system that integrates a Risley prism and a fast steering mirror with a single image detector (IBCLTCR-F), is used to enable fast and high-precision target tracking. Experimental results demonstrate that the proposed method achieves disturbance rejection of −32.8 dB, −28.8 dB, and −17.3 dB for platform disturbances at 0.05 Hz, 0.2 Hz, and 0.5 Hz, respectively. Furthermore, compared to the Risley prism system, the IBCLTCR-F system improves the dynamic response capability of target tracking in the nonlinear region by a factor of 10 and reduces the tracking error by 70%. Full article
(This article belongs to the Section Precision Actuators)
Show Figures

Figure 1

19 pages, 6624 KiB  
Article
A Low-Frequency Multi-Band Piezoelectric MEMS Acoustic Sensor Inspired by Ormia ochracea
by Yi Liu, Liye Zhao and Xukai Ding
Micromachines 2025, 16(4), 451; https://doi.org/10.3390/mi16040451 - 10 Apr 2025
Viewed by 2214
Abstract
Since the discovery of the unique auditory system of the Ormia ochracea fly, researchers have designed various directional acoustic sensors inspired by its principles. However, most of these sensors operate only within a single- or dual-frequency band and typically exhibit high eigenfrequencies, making [...] Read more.
Since the discovery of the unique auditory system of the Ormia ochracea fly, researchers have designed various directional acoustic sensors inspired by its principles. However, most of these sensors operate only within a single- or dual-frequency band and typically exhibit high eigenfrequencies, making them unsuitable for low-frequency applications. This paper proposes a low-frequency, multi-band piezoelectric MEMS acoustic sensor that incorporates an improved coupling structure within the inner diaphragm to enable low-frequency signal detection in a compact design. Additionally, an asymmetric wing and coupled structure are introduced in both the inner and outer diaphragms to achieve multi-band frequency response. Aluminum nitride (AlN), a material with low dielectric and acoustic losses, is selected as the piezoelectric material. The sensor operates in the d₃₃ mode and employs a branched comb-like interdigitated electrode design to enhance the signal-to-noise ratio (SNR). Simulation results demonstrate that the four eigenfrequencies of the sensor are evenly distributed below 2000 Hz, and at all eigenfrequencies, the sensor exhibits a consistent cosine response to variations in the incident elevation angle of the sound source. Full article
Show Figures

Figure 1

19 pages, 4832 KiB  
Article
Research on Acceleration Algorithm for Source Measurement Unit Based on BA-Informer
by Hongtao Chen, Yantian Shen, Yunlong Duan, Hongjun Wang, Yang Yang, Jinbang Wang, Peixiang Xue, Hua Li and Fang Li
Electronics 2025, 14(4), 698; https://doi.org/10.3390/electronics14040698 - 11 Feb 2025
Viewed by 738
Abstract
With the rapid development of the semiconductor industry, the demand for high-speed testing in the large-scale production of semiconductor devices and integrated circuit production lines continues to grow. As one of the key tools in semiconductor device performance testing and integrated circuit testing, [...] Read more.
With the rapid development of the semiconductor industry, the demand for high-speed testing in the large-scale production of semiconductor devices and integrated circuit production lines continues to grow. As one of the key tools in semiconductor device performance testing and integrated circuit testing, source measure unit (SMU) plays a crucial role in high-precision transient response testing scenarios. In high-precision measurement scenarios, multiple measurements are often required and averaged to improve measurement accuracy, but this can slow down the measurement speed. This article proposes a measurement acceleration algorithm based on BA-Informer time series prediction to solve the problem of decreased measurement speed in high-precision measurement. On the one hand, this algorithm improves the encoder structure. Traditional time series prediction models may have limitations in handling long-term dependencies and trend extraction. BiRNN is an extended version of recurrent neural network (RNN), which consists of two directional RNN. One forward RNN processes data from the beginning to the end of the sequence, while the other reverse RNN processes data from the end to the beginning of the sequence. In the end, the outputs from both directions are merged at each time step. Compared to traditional one-way RNN, BiRNN can more effectively handle data with before and after dependencies. Based on its characteristics, this article integrates BiRNN into the encoder structure. This algorithm can simultaneously process input sequences from both positive and negative directions, effectively limiting the bidirectional contextual information of data and significantly enhancing the model’s ability to capture time series trends. In this paper, BiRNN is integrated into the encoder structure, and the algorithm can simultaneously process input sequences from both positive and negative directions, more effectively capturing the bidirectional contextual information of data and significantly enhancing the model’s ability to capture time series trends. This improvement enables the model to more accurately grasp the overall trend of data changes during prediction, thereby improving prediction accuracy. On the other hand, an attention discrete cosine transform (ADCT) module is introduced between the encoder and decoder to convert time-domain signals into frequency-domain representations. This not only reveals the spectral characteristics of the signal but also reduces data redundancy and improves the efficiency of subsequent processing by combining attention mechanisms. Finally, the algorithm performance is analyzed by analyzing the output characteristic curves of loads with different properties. The experiment shows that the prediction algorithm and the combination of measurement and prediction method proposed in this article save half of the measurement time by combining measurement and prediction while ensuring the same amount of data obtained, verifying the effectiveness of the proposed method. Full article
Show Figures

Figure 1

22 pages, 2375 KiB  
Article
Incorporating Multimodal Directional Interpersonal Synchrony into Empathetic Response Generation
by Jingyu Quan, Yoshihiro Miyake and Takayuki Nozawa
Sensors 2025, 25(2), 434; https://doi.org/10.3390/s25020434 - 13 Jan 2025
Viewed by 1322
Abstract
This study investigates how interpersonal (speaker–partner) synchrony contributes to empathetic response generation in communication scenarios. To perform this investigation, we propose a model that incorporates multimodal directional (positive and negative) interpersonal synchrony, operationalized using the cosine similarity measure, into empathetic response generation. We [...] Read more.
This study investigates how interpersonal (speaker–partner) synchrony contributes to empathetic response generation in communication scenarios. To perform this investigation, we propose a model that incorporates multimodal directional (positive and negative) interpersonal synchrony, operationalized using the cosine similarity measure, into empathetic response generation. We evaluate how incorporating specific synchrony affects the generated responses at the language and empathy levels. Based on comparison experiments, models with multimodal synchrony generate responses that are closer to ground truth responses and more diverse than models without synchrony. This demonstrates that these features are successfully integrated into the models. Additionally, we find that positive synchrony is linked to enhanced emotional reactions, reduced exploration, and improved interpretation. Negative synchrony is associated with reduced exploration and increased interpretation. These findings shed light on the connections between multimodal directional interpersonal synchrony and empathy’s emotional and cognitive aspects in artificial intelligence applications. Full article
(This article belongs to the Special Issue Multi-Modal Data Sensing and Processing)
Show Figures

Figure 1

49 pages, 33277 KiB  
Article
Efficient Frequency Management for Hybrid AC/DC Power Systems Based on an Optimized Fuzzy Cascaded PI−PD Controller
by Awadh Ba Wazir, Sultan Alghamdi, Abdulraheem Alobaidi, Abdullah Ali Alhussainy and Ahmad H. Milyani
Energies 2024, 17(24), 6402; https://doi.org/10.3390/en17246402 - 19 Dec 2024
Cited by 5 | Viewed by 1283
Abstract
A fuzzy cascaded PI−PD (FCPIPD) controller is proposed in this paper to optimize load frequency control (LFC) in the linked electrical network. The FCPIPD controller is composed of fuzzy logic, proportional integral, and proportional derivative with filtered derivative mode controllers. Utilizing renewable energy [...] Read more.
A fuzzy cascaded PI−PD (FCPIPD) controller is proposed in this paper to optimize load frequency control (LFC) in the linked electrical network. The FCPIPD controller is composed of fuzzy logic, proportional integral, and proportional derivative with filtered derivative mode controllers. Utilizing renewable energy sources (RESs), a dual-area hybrid AC/DC electrical network is used, and the FCPIPD controller gains are designed via secretary bird optimization algorithm (SBOA) with aid of a novel objective function. Unlike the conventional objective functions, the proposed objective function is able to specify the desired LFCs response. Under different load disturbance situations, a comparison study is conducted to compare the performance of the SBOA-based FCPIPD controller with the one-to-one (OOBO)-based FCPIPD controller and the earlier LFC controllers published in the literature. The simulation’s outcomes demonstrate that the SBOA-FCPIPD controller outperforms the existing LFC controllers. For instance, in the case of variable load change and variable RESs profile, the SBOA-FCPIPD controller has the best integral time absolute error (ITAE) value. The SBOA-FCPIPD controller’s ITAE value is 0.5101, while sine cosine adopted an improved equilibrium optimization algorithm-based adaptive type 2 fuzzy PID controller and obtained 4.3142. Furthermore, the work is expanded to include electric vehicle (EV), high voltage direct current (HVDC), generation rate constraint (GRC), governor dead band (GDB), and communication time delay (CTD). The result showed that the SBOA-FCPIPD controller performs well when these components are equipped to the system with/without reset its gains. Also, the work is expanded to include a four-area microgrid system (MGS), and the SBOA-FCPIPD controller excelled the SBOA-CPIPD and SBOAPID controllers. Finally, the SBOA-FCPIPD controller showed its superiority against various controllers for the two-area conventionally linked electrical network. Full article
(This article belongs to the Section F2: Distributed Energy System)
Show Figures

Figure 1

21 pages, 5316 KiB  
Article
Superlattice Symmetries Reveal Electronic Topological Transition in CaC6 with Pressure
by Bruce Wang, Antonio Bianconi, Ian D. R. Mackinnon and Jose A. Alarco
Crystals 2024, 14(6), 554; https://doi.org/10.3390/cryst14060554 - 14 Jun 2024
Cited by 2 | Viewed by 1941
Abstract
The electronic properties of calcium-intercalated graphite (CaC6) as a function of pressure are revisited using density functional theory (DFT). The electronic band structures of CaC6, like many other layered superconducting materials, display cosine-shaped bands at or near the Fermi [...] Read more.
The electronic properties of calcium-intercalated graphite (CaC6) as a function of pressure are revisited using density functional theory (DFT). The electronic band structures of CaC6, like many other layered superconducting materials, display cosine-shaped bands at or near the Fermi level (FL). Such bands encompass bonding/antibonding information with a strong connection to superconducting properties. Using a hexagonal cell representation for CaC6, the construction of a double supercell in the c-direction effects six-folding in the reciprocal space of the full cosine function, explicitly revealing the bonding/antibonding relationship divide at the cosine midpoint. Similarly, folding of the Fermi surface (FS) reveals physical phenomena relevant to electronic topological transitions (ETTs) with the application of pressure. The ETT is characterised by a transition of open FS loops to closed loops as a function of pressure. As the highest transition temperature is reached with pressure, the dominant continuous, open FS loops shift to a different region of the FS. For CaC6, the peak value for the superconducting transition temperature, Tc, occurs at about 7.5 GPa, near the observed pressure of the calculated ETT. At this pressure, the radius of the nearly spherical Ca 4s-orbital FS coincides with three times the distance from the Γ centre point to the Brillouin zone (BZ) boundary of the 2c supercell. In addition, the ETT coincides with the alignment of the nonbonding (inflection) point of the cosine band with the FL. At other calculated pressure conditions, the Ca 4s-orbital FS undergoes topological changes that correspond and can be correlated with experimentally determined changes in Tc. The ETT is a key mechanism that circumscribes the known significant drop in Tc for CaC6 as a function of increasing pressure. Consistent calculated responses of the ETT to pressure match experimental measurements and validate the examination of superlattices as important criteria for understanding mechanisms driving superconductivity. Full article
Show Figures

Figure 1

37 pages, 14719 KiB  
Review
Comprehensive Study of Compression and Texture Integration for Digital Imaging and Communications in Medicine Data Analysis
by Amit Kumar Shakya and Anurag Vidyarthi
Technologies 2024, 12(2), 17; https://doi.org/10.3390/technologies12020017 - 24 Jan 2024
Cited by 25 | Viewed by 4102
Abstract
In response to the COVID-19 pandemic and its strain on healthcare resources, this study presents a comprehensive review of various techniques that can be used to integrate image compression techniques and statistical texture analysis to optimize the storage of Digital Imaging and Communications [...] Read more.
In response to the COVID-19 pandemic and its strain on healthcare resources, this study presents a comprehensive review of various techniques that can be used to integrate image compression techniques and statistical texture analysis to optimize the storage of Digital Imaging and Communications in Medicine (DICOM) files. In evaluating four predominant image compression algorithms, i.e., discrete cosine transform (DCT), discrete wavelet transform (DWT), the fractal compression algorithm (FCA), and the vector quantization algorithm (VQA), this study focuses on their ability to compress data while preserving essential texture features such as contrast, correlation, angular second moment (ASM), and inverse difference moment (IDM). A pivotal observation concerns the direction-independent Grey Level Co-occurrence Matrix (GLCM) in DICOM analysis, which reveals intriguing variations between two intermediate scans measured with texture characteristics. Performance-wise, the DCT, DWT, FCA, and VQA algorithms achieved minimum compression ratios (CRs) of 27.87, 37.91, 33.26, and 27.39, respectively, with maximum CRs at 34.48, 68.96, 60.60, and 38.74. This study also undertook a statistical analysis of distinct CT chest scans from COVID-19 patients, highlighting evolving texture patterns. Finally, this work underscores the potential of coupling image compression and texture feature quantification for monitoring changes related to human chest conditions, offering a promising avenue for efficient storage and diagnostic assessment of critical medical imaging. Full article
(This article belongs to the Topic Smart Healthcare: Technologies and Applications)
Show Figures

Graphical abstract

22 pages, 5219 KiB  
Article
Real-Time Implementation of a Frequency Shifter for Enhancement of Heart Sounds Perception on VLIW DSP Platform
by Vincenzo Muto, Emilio Andreozzi, Carmela Cappelli, Jessica Centracchio, Gennaro Di Meo, Daniele Esposito, Paolo Bifulco and Davide De Caro
Electronics 2023, 12(20), 4359; https://doi.org/10.3390/electronics12204359 - 20 Oct 2023
Cited by 2 | Viewed by 1962
Abstract
Auscultation of heart sounds is important to perform cardiovascular assessment. External noises may limit heart sound perception. In addition, heart sound bandwidth is concentrated at very low frequencies, where the human ear has poor sensitivity. Therefore, the acoustic perception of the operator can [...] Read more.
Auscultation of heart sounds is important to perform cardiovascular assessment. External noises may limit heart sound perception. In addition, heart sound bandwidth is concentrated at very low frequencies, where the human ear has poor sensitivity. Therefore, the acoustic perception of the operator can be significantly improved by shifting the heart sound spectrum toward higher frequencies. This study proposes a real-time frequency shifter based on the Hilbert transform. Key system components are the Hilbert transformer implemented as a Finite Impulse Response (FIR) filter, and a Direct Digital Frequency Synthesizer (DDFS), which allows agile modification of the frequency shift. The frequency shifter has been implemented on a VLIW Digital Signal Processor (DSP) by devising a novel piecewise quadratic approximation technique for efficient DDFS implementation. The performance has been compared with other DDFS implementations both considering piecewise linear technique and sine/cosine standard library functions of the DSP. Piecewise techniques allow a more than 50% reduction in execution time compared to the DSP library. Piecewise quadratic technique also allows a more than 50% reduction in total required memory size in comparison to the piecewise linear. The theoretical analysis of the dynamic power dissipation exhibits a more than 20% reduction using piecewise techniques with respect to the DSP library. The real-time operation has been also verified on the DSK6713 rapid prototyping board by Texas Instruments C6713 DSP. Audiologic tests have also been performed to assess the actual improvement of heart sound perception. To this aim, heart sound recordings were corrupted by additive white Gaussian noise, crowded street noise, and helicopter noise, with different signal-to-noise ratios. All recordings were collected from public databases. Statistical analyses of the audiological test results confirm that the proposed approach provides a clear improvement in heartbeat perception in noisy environments. Full article
(This article belongs to the Special Issue Feature Papers in Circuit and Signal Processing)
Show Figures

Figure 1

15 pages, 6551 KiB  
Article
Research on Very-Low-Frequency Hydroacoustic Acoustic Velocity Sensor Based on DFB Fiber Laser
by Chenxia Ruan, Mo Chen, Yang Yu, Yichi Zhang, Jianfei Wang, Zhenrong Zhang, Junbo Yang, Shuolong Zhu and Boyuan Qu
Photonics 2023, 10(4), 463; https://doi.org/10.3390/photonics10040463 - 18 Apr 2023
Cited by 4 | Viewed by 1795
Abstract
We have conducted a study on a very-low-frequency acoustic-velocity sensor which is based on a cantilever of distributed-feedback (DFB) fiber laser immersed in castor oil. A mathematical model of the frequency dependent response of the proposed sensor to the acoustic pressure signal influenced [...] Read more.
We have conducted a study on a very-low-frequency acoustic-velocity sensor which is based on a cantilever of distributed-feedback (DFB) fiber laser immersed in castor oil. A mathematical model of the frequency dependent response of the proposed sensor to the acoustic pressure signal influenced by the fluid viscosity is established. We have fabricated the proposed sensor and conducted experimental measurements in the standing wave tube. The results show that the sensor has an average phase sensitivity of −179.5 dB (0 dB = 1 rad/μPa) with ±1.45 dB fluctuation over the frequency range of 20–38 Hz. It has good cosine directivity with a directivity index of 32.5 dB and axial maximum asymmetry of 0.4 dB. The sensor presents promising applications for detecting very-low-frequency underwater acoustic signals. Full article
Show Figures

Figure 1

21 pages, 23263 KiB  
Article
Optical Panel Inspection Using Explicit Band Gaussian Filtering Methods in Discrete Cosine Domain
by Hong-Dar Lin, Huan-Hua Tsai, Chou-Hsien Lin and Hung-Tso Chang
Sensors 2023, 23(3), 1737; https://doi.org/10.3390/s23031737 - 3 Feb 2023
Cited by 2 | Viewed by 1939
Abstract
Capacitive touch panels (CTPs) have the merits of being waterproof, antifouling, scratch resistant, and capable of rapid response, making them more popular in various touch electronic products. However, the CTP has a multilayer structure, and the background is a directional texture. The inspection [...] Read more.
Capacitive touch panels (CTPs) have the merits of being waterproof, antifouling, scratch resistant, and capable of rapid response, making them more popular in various touch electronic products. However, the CTP has a multilayer structure, and the background is a directional texture. The inspection work is more difficult when the defect area is small and occurs in the textured background. This study focused mainly on the automated defect inspection of CTPs with structural texture on the surface, using the spectral attributes of the discrete cosine transform (DCT) with the proposed three-way double-band Gaussian filtering (3W-DBGF) method. With consideration to the bandwidth and angle of the high-energy region combined with the characteristics of band filtering, threshold filtering, and Gaussian distribution filtering, the frequency values with higher energy are removed, and after reversal to the spatial space, the textured background can be weakened and the defects enhanced. Finally, we use simple statistics to set binarization threshold limits that can accurately separate defects from the background. The detection outcomes showed that the flaw detection rate of the DCT-based 3W-DBGF approach was 94.21%, the false-positive rate of the normal area was 1.97%, and the correct classification rate was 98.04%. Full article
Show Figures

Figure 1

25 pages, 5687 KiB  
Article
Static Response of 2D FG Porous Plates Resting on Elastic Foundation Using Midplane and Neutral Surfaces with Movable Constraints
by Ammar Melaibari, Salwa A. Mohamed, Amr E. Assie, Rabab A. Shanab and Mohamed A. Eltaher
Mathematics 2022, 10(24), 4784; https://doi.org/10.3390/math10244784 - 15 Dec 2022
Cited by 20 | Viewed by 2122
Abstract
The current manuscript develops a novel mathematical formulation to portray the static deflection of a bi-directional functionally graded (BDFG) porous plate resting on an elastic foundation. The correctness of the static response produced by middle surface (MS) vs. neutral surface (NS) formulations, and [...] Read more.
The current manuscript develops a novel mathematical formulation to portray the static deflection of a bi-directional functionally graded (BDFG) porous plate resting on an elastic foundation. The correctness of the static response produced by middle surface (MS) vs. neutral surface (NS) formulations, and the position of the boundary conditions, are derived in detail. The relation between in-plane displacement field variables on NS and on MS are derived. Bi-directional gradation through the thickness and axial direction are described by the power function; however, the porosity is depicted by cosine function. The displacement field of a plate is controlled by four variables higher order shear deformation theory to satisfy the zero shear at upper and lower surfaces. Elastic foundation is described by the Winkler–Pasternak model. The equilibrium equations are derived by Hamilton’s principles and then solved numerically by being discretized by the differential quadrature method (DQM). The proposed model is confirmed with former published analyses. The numerical parametric studies discuss the effects of porosity type, porosity coefficient, elastic foundations variables, axial and transverse gradation indices, formulation with respect to MS and NS, and position of boundary conditions (BCs) on the static deflection and stresses. Full article
(This article belongs to the Section E2: Control Theory and Mechanics)
Show Figures

Figure 1

10 pages, 3007 KiB  
Article
MEMS Underwater Directional Acoustic Sensor in Near Neutral Buoyancy Configuration
by Fabio Alves, Jaehyun Park, Leland McCarty, Renato Rabelo and Gamani Karunasiri
Sensors 2022, 22(4), 1337; https://doi.org/10.3390/s22041337 - 10 Feb 2022
Cited by 6 | Viewed by 2939
Abstract
A MEMS directional acoustic sensor housed in an air cavity and operated underwater in a near-neutral buoyancy configuration is demonstrated. The sensor consists of two wings connected by a bridge and attached to a substrate by two centrally mounted torsional legs. The frequency [...] Read more.
A MEMS directional acoustic sensor housed in an air cavity and operated underwater in a near-neutral buoyancy configuration is demonstrated. The sensor consists of two wings connected by a bridge and attached to a substrate by two centrally mounted torsional legs. The frequency response showed two resonant peaks corresponding to a rocking mode (wings moving in opposite directions) and a bending mode (wings moving in the same direction). Initial tests of the sensor using a shaker table showed that the response is highly dependent on the vibration direction. In air, the sensor showed a maximum sensitivity of about 95 mV/Pa with a cosine directional response. Underwater, the maximum sensitivity was about 37 mV/Pa with a similar cosine directional response. The measured maximum SNR was about 38 dB for a signal generated by a sound stimulus of 1 Pa when the sensor is operated near the bending resonance. The results indicate that this type of MEMS sensor can be operated in a near-neutral buoyant configuration and achieve a good directional response. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

13 pages, 4841 KiB  
Article
Static and Dynamic Analysis of Electrostatically Actuated MEMS Shallow Arches for Various Air-Gap Configurations
by Hassen M. Ouakad, Nouha Alcheikh and Mohammad I. Younis
Micromachines 2021, 12(8), 930; https://doi.org/10.3390/mi12080930 - 5 Aug 2021
Cited by 12 | Viewed by 3152
Abstract
In this research, we investigate the structural behavior, including the snap-through and pull-in instabilities, of in-plane microelectromechanical COSINE-shaped and electrically actuated clamped-clamped micro-beams resonators. The work examines various electrostatic actuation patterns including uniform and non-uniform parallel-plates airgap arrangements, which offer options to actuate [...] Read more.
In this research, we investigate the structural behavior, including the snap-through and pull-in instabilities, of in-plane microelectromechanical COSINE-shaped and electrically actuated clamped-clamped micro-beams resonators. The work examines various electrostatic actuation patterns including uniform and non-uniform parallel-plates airgap arrangements, which offer options to actuate the arches in the opposite and same direction of their curvature. The nonlinear equation of motion of a shallow arch is discretized into a reduced-order model based on the Galerkin’s expansion method, which is then numerically solved. Static responses are examined for various DC electrostatic loads starting from small values to large values near pull-in and snap-through instability ranges, if any. The eigenvalue problem of the micro-beam is solved revealing the variations of the first four natural frequencies as varying the DC load. Various simulations are carried out for several case studies of shallow arches of various geometrical parameters and airgap arrangements, which demonstrate rich and diverse static and dynamic behaviors. Results show few cases with multi-states and hysteresis behaviors where some with only the pull-in instability and others with both snap-through buckling and pull-in instabilities. It is found that the micro-arches behaviors are very sensitive to the electrode’s configuration. The studied configurations reveal different possibilities to control the pull-in and snap-through instabilities, which can be used for improving arches static stroke range as actuators and for realizing wide-range tunable micro-resonators. Full article
(This article belongs to the Special Issue New Advances in Micromachined Resonators)
Show Figures

Figure 1

26 pages, 11041 KiB  
Article
Use of Electronic UV Dosimeters in Measuring Personal UV Exposures and Public Health Education
by Martin W. Allen, Neil Swift, Kathryn M. Nield, Ben Liley and Richard L. McKenzie
Atmosphere 2020, 11(7), 744; https://doi.org/10.3390/atmos11070744 - 14 Jul 2020
Cited by 21 | Viewed by 5331
Abstract
The performance limits of electronic ultraviolet (EUV) dosimeters, which use AlGaN Schottky photodiodes as the ultraviolet radiation (UVR) sensing element to measure personal erythemally weighted UVR exposures, were investigated via a direct comparison with meteorological-grade reference instruments. EUV dosimeters with two types of [...] Read more.
The performance limits of electronic ultraviolet (EUV) dosimeters, which use AlGaN Schottky photodiodes as the ultraviolet radiation (UVR) sensing element to measure personal erythemally weighted UVR exposures, were investigated via a direct comparison with meteorological-grade reference instruments. EUV dosimeters with two types of AlGaN Schottky photodiode were compared to second-generation ‘Robertson–Berger type’ broadband erythemal radiometers. This comparison was done by calculating correction factors for the deviations of the spectral responsivity of each instrument from the CIE erythemal action spectrum and for deviations in their angular response from the ideal cosine response of flat surfaces and human skin. Correction factors were also calculated to convert the output of these instruments to vitamin D-weighted UV irradiances. These comparisons showed that EUV dosimeters can be engineered with spectral responsivities and cosine response errors approaching those of Robertson–Berger type radiometers, making them very acceptable for use in human UVR exposure and sun safety behaviour studies, provided appropriate side-by-side calibrations are performed. Examples of these calibrations and the effect of EUV dosimeter sampling rates on the calculation of received erythemal UVR doses and erythemal UVR dose rates are provided, as well as brief descriptions of their use in primary skin cancer prevention programmes, handheld meters, and public health displays. Full article
Show Figures

Graphical abstract

Back to TopTop