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Abstract: Auscultation of heart sounds is important to perform cardiovascular assessment. External
noises may limit heart sound perception. In addition, heart sound bandwidth is concentrated at
very low frequencies, where the human ear has poor sensitivity. Therefore, the acoustic perception
of the operator can be significantly improved by shifting the heart sound spectrum toward higher
frequencies. This study proposes a real-time frequency shifter based on the Hilbert transform. Key
system components are the Hilbert transformer implemented as a Finite Impulse Response (FIR) filter,
and a Direct Digital Frequency Synthesizer (DDFS), which allows agile modification of the frequency
shift. The frequency shifter has been implemented on a VLIW Digital Signal Processor (DSP) by
devising a novel piecewise quadratic approximation technique for efficient DDFS implementation.
The performance has been compared with other DDFS implementations both considering piecewise
linear technique and sine/cosine standard library functions of the DSP. Piecewise techniques allow
a more than 50% reduction in execution time compared to the DSP library. Piecewise quadratic
technique also allows a more than 50% reduction in total required memory size in comparison to the
piecewise linear. The theoretical analysis of the dynamic power dissipation exhibits a more than 20%
reduction using piecewise techniques with respect to the DSP library. The real-time operation has been
also verified on the DSK6713 rapid prototyping board by Texas Instruments C6713 DSP. Audiologic
tests have also been performed to assess the actual improvement of heart sound perception. To this
aim, heart sound recordings were corrupted by additive white Gaussian noise, crowded street noise,
and helicopter noise, with different signal-to-noise ratios. All recordings were collected from public
databases. Statistical analyses of the audiological test results confirm that the proposed approach
provides a clear improvement in heartbeat perception in noisy environments.

Keywords: heart sounds; pitch shift; digital signal processor; real-time processing; DDFS; piecewise
approximation; VLIW

1. Introduction

Cardiac auscultation is still a very important technique for primary cardiovascular
assessment of patients. Heart sounds are generated by the flow of blood through the
heart chambers as the heart valves open and close during the heart cycle [1–4]. In healthy
subjects, two normal sounds can be perceived for each heartbeat, and are commonly,
onomatopoeically described as ‘lub’ and ‘dub’.

Normal body sounds have a very low sound level in the range of 22–30 dB in free space.
A simple stethoscope is able to render, for the operator’s ear, a significantly higher sound
level of 60–65 dB, while also attenuating the contribution of external noises (thus highly
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increasing the signal-to-noise ratio). Despite the simplicity of the instrument, efficiency
in mechanical transduction is very important in order to render the lower frequencies, at
the edge of audibility, of which heart sounds are composed. The spectral content of the
main heart sounds (S1 and S2) is confined to low frequencies, spanning up to about 100 Hz.
The human ear threshold of audibility in this frequency range is particularly high, then the
perceived heart sounds are particularly feeble. Figure 1 schematically shows the spectrum
of heart sounds in relation to the human ear threshold of audibility. Heart sounds are too
weak to be heard because the human ear is far less sensitive to them with respect to the
speech range (1000–2000 Hz).
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For this reason, the suppression of external noises from a stethoscope is an important
quality parameter along with audio amplification. With the advent of digital stethoscopes,
it has been possible to filter and amplify heart sounds to improve their perception [7–10].
Today it is also possible to use special processing [11] to improve diagnostics, as well as to
use devices to visualize signals [12]. Moreover, novel promising wearable devices have been
proposed, which could enable continuous, long-term monitoring of heart sounds [13–16].
Cardiac auscultation is an invaluable tool to assess the health status of a patient in emer-
gency medicine contexts, specifically in extramural settings, where other cardiac monitoring
devices, such as those for electrocardiography and photoplethysmography, or for wireless
monitoring of pacemakers [17], are more difficult or impossible to use.

1.1. Methods for Noise Suppression

Many researchers have proposed a variety of methods [18] for heart sound denoising,
either based on hardware or software solutions. Among software solutions, a first class of
algorithms is based on thresholding applied in transform domains, including Short Time
Fourier Transform [19–22], Fast Fourier Transform [23–25], Wavelet transform [19,26–35],
and Convolution Wavelet Packet Transform [36–39]. However, the choice of the threshold
function [35] strongly affects the denoising effect. In addition, with STFT it is impossible
to extract some useful clinical information, such as the time distance between aortic valve
closure and pulmonic valve closure [19]. A second class of algorithms is based on mode
decomposition methods, such as Empirical Mode Decomposition [40–42].

Ensemble Empirical Mode Decomposition [43,44], Complementary Ensemble Empiri-
cal Mode Decomposition [45,46], and Variational Mode Decomposition [47–49] are mode
decomposition methods that decompose the heart sound signal into a series of intrinsic
mode functions (IMFs) and specific algorithms must be designed to select and retain only
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the IMFs that capture the main information content of the signal, during the reconstruction
of the signal, while discarding those related to noise. However, this class of algorithms,
particularly the EMD, is affected by the mode mixing issue, which is caused by the inter-
mittency of signals and noises [42]. In addition, mode decomposition algorithms usually
require the a priori selection of the number of IMFs, which affects the decomposition results
and determines the impact of mode mixing. EEMD was first conceived to mitigate the
mode mixing observed in EMD; however, the reconstructed signal is usually affected by
residual noise [49]. CEEMD was proposed precisely to eliminate such residual noise. VMD
performs better than EMD and its variants, by realizing an adaptive decomposition of each
mode to overcome the mode mixing problem [47]. It has been used to separate heart sounds
and lung sounds and to improve the detection of the subtle third heart sound (S3) [48].
However, an accurate selection of the VMD parameters is instrumental in achieving a
good decomposition effect [49]. Additional algorithms for heart sound denoizing are Total
Variation filtering [50,51] and Blind Source Separation [52–54].

Hardware solutions are generally based on the use of additional microphones or PCG
sensors, which are used to obtain independent measurements of external noises, and allow
enhancing the quality of noisy heart sound recordings via subtractive techniques. This is the
case of the spectral subtraction algorithm described in [55], whose performance, however,
turned out to be heavily dependent on the characteristics of the additional microphone used
to pick up the external noises. A different approach was described in [56], where an array
of microphones, appropriately positioned in specific measurement points on the body, and
a frequency-domain Independent Component Analysis are used to implement Direction
of Arrival and Beamforming techniques for noise suppression in heart sound recordings.
The main limitation of such hardware solutions is precisely the need for additional sensors
that have to be placed on a subject’s body, possibly increasing the subject’s discomfort
(especially in the case of sensor arrays), and also requiring accurate positioning to ensure
effective results.

It is important to highlight that all the methods described above have not been de-
signed for real-time operation, nor to enhance human audibility, but rather to improve
computer analysis. For this reason, the ability of these methods to improve human audibil-
ity of heart sounds has not been tested on cohorts of human subjects.

1.2. Pitch Shift Approaches

Another possibility for improving the perception of heart sounds can be achieved
by shifting the heart sounds to higher frequencies. In fact, as the frequency increases, the
threshold of audibility lowers, and sounds are perceived even better. Methods based on
this approach have proven effective in situations characterized by considerable external
noise, such as aboard helicopters [57,58], aircraft [59,60], ambulances [61] or other evac-
uation vehicles, emergency rooms [62,63], rural clinics [64], and crowded places such as
stadiums or crowded streets. Frequency translation can be achieved through digital signal
processing techniques. Signal modulation techniques, such as those used for radio or
telephone transmissions, can be used for this purpose. Some techniques for translating
sounds to the best frequencies perceived by the human ear realize a conspicuous frequency
translation of the heart sounds, either to the thousands of Hertz [65] or with a translation of
500 Hz [66], achieving considerable improvements in the acoustic perception of the opera-
tor. However, if the pitch is increased significantly, the sounds are perceived as artifactual
or unreal. Another study [67] has proposed an adjustable frequency modulator with a
significantly reduced frequency shift, realized using Hilbert transform. In this case, the
Hilbert transformer was implemented as a simple time delay, based on the assumption that
heart sounds have a narrow bandwidth. In addition to stethoscopes with frequency-shifting
capabilities, hybrid stethoscopes have been proposed, which embed ultrasonic sensors that
make the Doppler signal audible, so as to enable cardiac diagnostics in scenarios of intense
external noise [68,69]. The enhancements of human audibility of heart sounds provided
by the methods proposed in [66,67] have not been tested on an actual cohort of human



Electronics 2023, 12, 4359 4 of 22

subjects. The method proposed in [65] appears to have been tested on a cohort of human
subjects, but the kinds and levels of noise adopted have not been specified. The methods
proposed in [68,69] require very peculiar stethoscopes with ultrasonic sensors, which are
not very common.

In summary, there is a gap in the literature regarding an accurate, real-time method for
frequency shifting of heart sounds, where the ability to improve the human audibility of
heart sounds has been evaluated by experimental testing on a real cohort of human subjects.

The present study aimed to fill this gap and describes the design, implementation, and
experimental testing of a novel, real-time, frequency shifter for heart sounds, implemented
on a Very-Long-Instruction-Word (VLIW) Digital Signal Processor (DSP). The proposed
method is based on the Hilbert transform and provides two improvements with respect
to the solution of [67]: (i) the Hilbert transformer is implemented using an FIR filter
to improve signal quality; (ii) a Direct Digital Frequency Synthesizer (DDFS) is used to
allow the agile modification of the frequency shift. The proposed implementation allows
translating the spectrum of heart sounds even by only a few tens of Hertz. A novel piecewise
quadratic technique is also proposed for the implementation of the DDFS and demonstrates
the best trade-off between execution time, memory resources, and power consumption.
Auscultation tests were performed on 41 volunteers to assess the actual performance of the
proposed method. The results confirm the capability of the proposed method to enhance
the audibility of heart sounds in the presence of different kinds of noise. The frequency
shifter here described could be easily embedded in modern electronic stethoscopes at very
modest costs, thus providing valuable support in in emergency medicine contexts, such as
those described in [58–65], where heart sounds auscultation is fundamental to assess the
health status of a patient and could be seriously hindered by environmental noises.

2. Materials and Methods
2.1. Top-Level Algorithm

The top-level architecture of the algorithm used to implement the frequency shift op-
eration is shown in Figure 2. The operation is achieved using a single-sideband modulator
realized using the Hilbert transform. The behavior of this solution can be briefly explained
as follows. The Hilbert transform, which can be considered to be a linear system with a
frequency response:

H( f ) =
{
−j f > 0
j f < 0

(1)

is used to form the analytical signal xc(n) associated with x(n) as follows:

xc(n) = x(n) + j xH(n) (2)

xH(n) being the Hilbert transform of x(n). As is well-known, the Fourier transform of the
associated analytical signal includes only the positive-frequency axis components of X(n),
as follows:

Xc( f ) =
{

2X( f ) f > 0
0 f < 0

(3)

The frequency shift operation, therefore, can be computed by multiplying the complex
signal xc(t) by ej 2π fshi f t/ fs n, fshift being the desired frequency shift and fs being the sampling
frequency, and taking the real part, in order to re-obtain a real signal with Hermitian Fourier
Transform, obtaining the following:

Y( f ) =

{
X( f − fshi f t) f > fshi f t

0 0 ≤ f < fshi f t
(4)

where clearly:
y(n) = Re

[
xc(n) · ej 2π fshi f t/ fs n

]
(5)
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The architecture of Figure 2 implements (5) using a Direct Digital Frequency Synthe-
sizer (DDFS) to compute the two signals cos(2π fshift/fs n) and sin(2π fshift/fs n).

Electronics 2023, 12, x FOR PEER REVIEW 5 of 23 
 

 

 
Figure 2. Top-level architecture used to implement frequency shift operation. 

The frequency shift operation, therefore, can be computed by multiplying the com-
plex signal xc(t) by 2 /shift sj f f ne π , fshift being the desired frequency shift and fs being the sam-
pling frequency, and taking the real part, in order to re-obtain a real signal with Hermitian 
Fourier Transform, obtaining the following: 

( )
( )

0 0
shift shift

shift

X f f f f
Y f

f f

 − >=  ≤ <
  (4)

where clearly: 

2 /( ) Re ( ) shift sj f f n
cy n x n e π = ⋅    (5)

The architecture of Figure 2 implements (5) using a Direct Digital Frequency Synthe-
sizer (DDFS) to compute the two signals cos(2π fshift/fs n) and sin(2π fshift/fs n). 

Please note that a similar technique has been devised in [67], where, however, oscil-
lators are used to obtain sine/cosine signals and the Hilbert transform is approximated 
using a simple delay, chosen in order to realize the required π/2 phase shift (see (1)) only 
at a given frequency, fmid, chosen in the middle of the input signal bandwidth, i.e., by call-
ing δ the implemented delay, 2π·fmid·δ = π/2. This unfortunately leads to obtaining a not 
negligible output noise power at frequencies lower than fshift (low-sideband noise power) 
since in the architecture of Figure 2, the final adder which produces y(n) actually imple-
ments a cancellation between the two adder inputs for f < fshift and, when the Hilbert trans-
form is implemented with a simple delay, the cancellation is perfectly realized only at 
frequency fshift − fmid. As an example, Figure 3a shows the spectrum of a cardiac audio signal 
sampled with a frequency of 2 kHz and used as an input signal for the system of Figure 
2, and Figure 3b shows the corresponding elaborated signal when the Hilbert transform 
is implemented with a simple delay, using fmid = 50 Hz (this value has been chosen in order 
to minimize the low-sideband noise power). As it can be observed, the output spectrum 
nullifies only at frequency fshift − fmid = 50 Hz, and no negligible frequency components can 
be seen in the low-sideband. As reported in Table 1, the overall ratio between the low-side-
band noise power and the output power is −11.9 dB. 

Table 1. Ratio between low-sideband noise power and output power by considering different tech-
niques to implement the Hilbert transform. 

Technique Low-Sideband Noise Power/Output Power 
Simple delay approx. [67] −11.9 dB 
Proposed with 20-th order FIR filter −21.2 dB 
Proposed with 40-th order FIR filter −23.3 dB 
Proposed with 60-th order FIR filter −30.3 dB 
Proposed with 80-th order FIR filter −37.7 dB 
Proposed with 100-th order FIR filter −42.9 dB 

Figure 2. Top-level architecture used to implement frequency shift operation.

Please note that a similar technique has been devised in [67], where, however, oscil-
lators are used to obtain sine/cosine signals and the Hilbert transform is approximated
using a simple delay, chosen in order to realize the required π/2 phase shift (see (1)) only
at a given frequency, fmid, chosen in the middle of the input signal bandwidth, i.e., by
calling δ the implemented delay, 2π·fmid·δ = π/2. This unfortunately leads to obtaining
a not negligible output noise power at frequencies lower than fshift (low-sideband noise
power) since in the architecture of Figure 2, the final adder which produces y(n) actually
implements a cancellation between the two adder inputs for f < fshift and, when the Hilbert
transform is implemented with a simple delay, the cancellation is perfectly realized only
at frequency fshift − fmid. As an example, Figure 3a shows the spectrum of a cardiac audio
signal sampled with a frequency of 2 kHz and used as an input signal for the system
of Figure 2, and Figure 3b shows the corresponding elaborated signal when the Hilbert
transform is implemented with a simple delay, using fmid = 50 Hz (this value has been
chosen in order to minimize the low-sideband noise power). As it can be observed, the
output spectrum nullifies only at frequency fshift − fmid = 50 Hz, and no negligible frequency
components can be seen in the low-sideband. As reported in Table 1, the overall ratio
between the low-sideband noise power and the output power is −11.9 dB.

Table 1. Ratio between low-sideband noise power and output power by considering different
techniques to implement the Hilbert transform.

Technique Low-Sideband Noise Power/Output Power

Simple delay approx. [67] −11.9 dB
Proposed with 20-th order FIR filter −21.2 dB
Proposed with 40-th order FIR filter −23.3 dB
Proposed with 60-th order FIR filter −30.3 dB
Proposed with 80-th order FIR filter −37.7 dB
Proposed with 100-th order FIR filter −42.9 dB

To reduce the low-sideband noise, in this paper, we implemented the Hilbert transform
using a linear-phase FIR filter, whose coefficients have been obtained using the Parks–
McClellan optimal FIR filter design algorithm implemented in Matlab. Please note that in
this case, the FIR filter implements the Hilbert transform with a delay given by half of the
filter order. To compensate for this delay, a delay ∆ also equal to one-half the filter order is
added in Figure 2 at the input of the multiplier-driven by x(t). Figure 3c shows the obtained
output spectrum in the case of a 40th-order FIR filter. Table 1 summarizes the achieved
ratio between low-sideband noise power and output power in the case of FIR filter orders
20, 40, 60, 80, and 100. It can be observed that a significant reduction of the low-sideband
noise power can be achieved with respect to the previous approach of [67]. In the following
sections, we will investigate the implementation with a 40th-order filter.
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2.2. Implementation

In this paper, we will focus on an implementation using a Texas Instruments VLIW
DSP. In the following sections, we will describe in detail the implementation of the two
main components of the algorithm of Figure 2 that is the Hilbert transform, implemented
using a FIR filter, and the DDFS.

2.2.1. FIR Filter Implementation (Hilbert Transform)

As well-known DSPs are specifically designed to implement in an efficient way FIR
filters. The exploited implementation (shown in Figure 4) uses a simple direct form imple-
mentation of the filter, using an array managed as a linear buffer to store the input samples
x(n), x(n − 1), . . ., x(n −M), M being the filter order. Please note that the delay ∆ shown in
Figure 2 can be easily realized by taking the sample x(n −M/2) from the array.

In the figure, the notation Qm,n is used to indicate a signed 2’s complement representa-
tion with a most-significant bit of weight 2m and a less-significant bit of weight 2−n. As
can be observed, the input is assumed contained in the range [−1, 1) and is represented
in Q0,15 using 16 bits. This size fits the data-size of the inputs of the multiplier available
in the DSP. The filter coefficient, hi, is also assumed represented in Q0,15, using 16 bits. To
manage the overflow, the sum-of-products is computed using the guard-bits approach and
the available data-size provided by the DSP is computing the sum using 40 bits in Q9,30.
The filter output is obtained in Q0,15 (note that the 16-bits representation is also needed
to compute the multiplication between xH(n) and sin(2π fshift/fs n) in Figure 2) using a
rounding operation on the less-significant bits and a saturation operation to reduce the
most-significant bits. The employ of saturation helps in mitigating the limited overflow
cases that could happen whether a full-scale, large bandwidth input signal is applied.
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2.2.2. DDFS Implementation

The top-level DDFS implementation is shown in Figure 5. A phase accumulator is
used to compute instantaneous phase ϕ/2π encoded in an unsigned N-bits representation
(in our implementation N = 32 to fit DSP register size). This phase is then truncated to
P-bits. The heart of the DDFS is the two blocks that compute sine and cosine functions in
[0, π/4) interval that is the two functions:

ys(z) = Sin
[π

4
· z +ϕLSB

]
(6)

yc(z) = Cos
[π

4
· z +ϕLSB

]
(7)

for z ∈ [0, 1). The 1’s complement, the swapper, and the two inverters (inv.), driven by the
mapper, are used to reconstruct the output sine and cosine functions in the whole [0, 2π)
interval. Please note that in (6) and (7), ϕLSB represents the angle corresponding to the
one-half LSB of signal ϕ/2π after P-bits truncation, which is: ϕLSB = 2π·2−P/2.
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In the literature, many approaches have been proposed to implement (6) and (7),
including simple Lookup-Table (LUT) methods, LUT-compression techniques, piecewise
approximations, angle rotation approaches (CORDIC algorithm), and mixed LUT and
angle rotation techniques. In this paper, we introduce an extension of the piecewise linear
technique proposed in [70] to the piecewise quadratic case.

In piecewise approximation techniques the interval [0, 1) of z is subdivided into 2H sub-
intervals, each of length h = 2−H. Since we consider a piecewise quadratic approximation, in
the generic i-th sub-interval, the two functions ys(z) and yc(z) are approximated as follows:

ys(z) ' a0 i + a1 i · zi + a2 i · z2
i + εs 2 i(zi) (8)

yc(z) ' b0 i + b1 i · zi + b2 i · z2
i + εc 2 i(zi) (9)

where zi represents the distance between z and the starting point of the sub-interval: zi = z
− i · h.
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By following the approach of [70], we consider a truncated Chebyshev expansion in
order to obtain the coefficients aji and bji of (8) and (9) which approximate (6) and (7) in the
quasi-minimum maximum error sense. To that purpose the variable zi is substituted by
variable w so that the interval [i·h, (i + 1)·h) of zi corresponds to the interval [−1, +1) of w
that is:

w =
2
h
· zi − 1 (10)

Using this substitution, the functions to be approximated in the i-the sub-interval
becomes:

ys i(w) = Sin
[

π

4
·
(

h
2
· w +

h
2
+ i · h

)
+ϕLSB

]
(11)

yc i(w) = Cos
[

π

4
·
(

h
2
· w +

h
2
+ i · h

)
+ϕLSB

]
(12)

These two functions are expanded in a series of Chebyshev polynomials of the first
kind (Tn(w)):

ys i(w) ' α0 i · T0(w) + α1 i · T1(w) + α2 i · T2(w) + α3 i · T3(w) + . . . (13)

yc i(w) ' β0 i · T0(w) + β1 i · T1(w) + β2 i · T2(w) + β3 i · T3(w) + . . . (14)

where we recall that Chebyshev polynomials of the first kind Tn(w) can be written using
the following recursion: 

T0(w) = 1
T1(w) = w
Tn+1(w) = 2w · Tn(w)− Tn−1(w)

(15)

Since Chebyshev polynomials are orthogonal in the general sense in [−1, +1] interval,
the coefficient in (13) and (14) can be obtained as follows:

αj i =

∫ +1
−1

1√
1−w2 · ys i(w) · Tj(w) dw∫ +1
−1

1√
1−w2 · T2

j (w) dw
(16)

βj i =

∫ +1
−1

1√
1−w2 · yc i(w) · Tj(w) dw∫ +1
−1

1√
1−w2 · T2

j (w) dw
(17)

By solving the integrals, we obtain:

α0 i = J0

(π

8
· h
)
· Sin

[
π

4
·
(

i · h +
h
2

)
+ϕLSB

]
(18)

α1 i = 2 · J1

(π

8
· h
)
·Cos

[
π

4
·
(

i · h +
h
2

)
+ϕLSB

]
(19)

α2 i = −2 · J2

(π

8
· h
)
· Sin

[
π

4
·
(

i · h +
h
2

)
+ϕLSB

]
(20)

α3 i = −2 · J3

(π

8
· h
)
·Cos

[
π

4
·
(

i · h +
h
2

)
+ϕLSB

]
(21)

β0 i = J0

(π

8
· h
)
·Cos

[
π

4
·
(

i · h +
h
2

)
+ϕLSB

]
(22)
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β1 i = −2 · J1

(π

8
· h
)
· Sin

[
π

4
·
(

i · h +
h
2

)
+ϕLSB

]
(23)

β2 i = −2 · J2

(π

8
· h
)
·Cos

[
π

4
·
(

i · h +
h
2

)
+ϕLSB

]
(24)

β3 i = 2 · J3

(π

8
· h
)
· Sin

[
π

4
·
(

i · h +
h
2

)
+ϕLSB

]
(25)

where Jn(x) represents the n-th order Bessel function of the first kind.
The quasi-minimum maximum error quadratic approximation of ys and yc can be

obtained by truncating (13) and (14) to the second order that is:

ys(z) ' α0 i · T0(w) + α1 i · T1(w) + α2 i · T2(w)|w= 2
h zi−1 (26)

yc(z) ' β0 i · T0(w) + β1 i · T1(w) + β2 i · T2(w)|w= 2
h zi−1 (27)

By comparing (26) and (27) with (8) and (9), and using (15) we obtain:

a0 i = α0 i − α1 i + α2 i a1 i =
2
h
· (α1 i − 4α2 i) a2 i =

8
h
· α2 i (28)

b0 i = β0 i − β1 i + β2 i b1 i =
2
h
· (β1 i − 4β2 i) b2 i =

8
h
· β2 i (29)

It is worth noting that the first-order approximation of [70] can be easily re-obtained
by imposing α2 i = β2 i = 0 in (28) and (29).

The approximation error in (8) and (9) can be approximated as the first term dropped
from the series (13) and (14):

εs 2 i(zi) ' α3 i · T3(w)|w= 2
h zi−1 ; εc 2 i(zi) ' β3 i · T3(w)|w= 2

h zi−1 (30)

Since every Chebyshev Polynomial Tj(ω) in contained in the interval [−1, +1], the
maximum errors are given by (see also (21) and (25)):

max|εs 2 i| ' |α3 i| = 2 · J3

(π

8
· h
)
·Cos

[
π

4
·
(

i · h +
h
2

)
+ϕLSB

]
(31)

max|εc 2 i| ' |β3 i| = 2 · J3

(π

8
· h
)
· Sin

[
π

4
·
(

i · h +
h
2

)
+ϕLSB

]
(32)

In this case, the worst-case error is obtained for the approximation of the sine function
in the first sub-interval (i = 0). Therefore, the overall maximum approximation error due to
piecewise quadratic approximation (εalg) is given by:

εalg = 2 · J3

(π

8
· h
)
' 1

192

(π

4
· h
)3

(33)

where we have used the approximation:

Jn(x) ' 1
n!
·
( x

2

)2
f or x� 1 (34)

By proceeding in a similar way for a piecewise linear approximation, we find:

εalg = 2 · J2

(π

8
· h
)
' 1

16

(π

4
· h
)2

(35)
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Table 2 reports the achieved εalg by varying the number of sub-intervals (2H). Please
note that according to DSP data-sizes, we plan to implement a DDFS with 16-bit outputs
with a weight of the less-significant bit LSBy = 2−15. For this reason, the error values
reported in the table are normalized to LSBy. By looking at reported values, it can be
observed that if we would like to achieve a εalg lower than 1/4 LSBy, the piecewise linear
approximation requires 128 sub-intervals. On the other hand, using the piecewise quadratic
approximation developed in this paper only eight sub-intervals can be used; this reduces
significantly the size of the arrays needed to store the coefficients (28) and (29).

Table 2. Achieved εalg by varying the number of sub-intervals (LSBy = 2−15). The values with grey
background are the ones that were used for the actual implementation.

Number of Sub-Intervals
(2H)

Piecewise Linear Approx Piecewise Quadratic Approx

εalg/LSBy εalg/LSBy

4 78.893 1.291
8 19.735 0.161
16 4.935 0.020
32 1.234 2.52 × 10−3

64 0.308 3.15 × 10−4

128 0.077 3.94 × 10−5

Figure 6 shows the implementation scheme for the sine computation block of the
DDFS shown in Figure 5 (a similar scheme applies also to the cosine block), where Figure 6a
considers the piecewise linear technique and Figure 6b focuses on the piecewise quadratic
approach. Signal representation is reported using the notation Um,n and Qm,n for unsigned
and signed representations, respectively. It is assumed that in both cases, 2m represents the
weight of the most-significant bit, while 2−n represents the weight of the less-significant bit.
Please note that the number of bits of all signals is chosen in order to meet the fixed-point
hardware operators of the DSP (that is 16-bit input and 32-bit output for the multipliers
and 32-bit input and output for the adders). If, for the sake of simplicity, we focus on
the piecewise quadratic implementation of Figure 6b, since the number of sub-intervals
is chosen equal to 2H, the H = 3 most-significant bits of z can be used to obtain the index
i which identifies the sub-interval; the remaining bits of z, represents zi = z − i · h. The
data-size of z is chosen in order to meet the 16-bit size of zi, since this signal is the input
of the following multipliers. The coefficients a1 i and a2 i are stored on 16 bits, resulting
in inputs of the multipliers. In this case, the unsigned representation is chosen since a1 i
and –a2 i results always positive. The coefficients a0 i, being required only at the input of an
adder, can be stored on 32 bits, in Q0,31 representation. A final rounding operation is used
to provide the output in Q0,15 representation.

The results of the complete error analysis of the two DDFS implementations (using
piecewise linear or piecewise quadratic approximations), are reported in Table 3. It is worth
noting that rounding on z signal is implemented by initializing the phase accumulator in
Figure 2 to the rounding constant 0.5 · 2−P. It can be observed that some error components
are almost negligible, and this allows us to employ the simpler approach of truncation in
place of rounding both at the output of the multiplier computing z2 in Figure 6b and at
the inputs of the adder in Figure 6a,b. The theoretical overall maximum absolute error of
piecewise linear DDFS is 0.581 LSBy, while in the case of piecewise quadratic approximation
the error is slightly higher (0.722 LSBy). In both cases, the overall error close to 0.5 LSBy
confirms the accurate sizing described in Figure 6. We have also simulated the two DDFS
implementations and the simulated values are reported in the last column of Table 3. It
can be observed that in the case of piecewise quadratic DDFS, the simulated maximum
error is slightly lower than the theoretical one; this is due to the fact that the theoretical
error components considered in Table 3 tend to compensate for each other: as an example
the error of a1 i coefficient is maximum for maximum zi and is positive while in the same
condition, the error due to piecewise quadratic approximation is maximum in modulus
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but negative. In the following section, we will consider the simulated values of the DDFS
errors.
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Table 3. DDFS error analysis and simulation. The total errors columns are highlighted in grey.

Maximum Absolute Errors Normalized to LSBy

Piecewise
Approx.

(εalg)
a0 i Coeff. a1 i Coeff. a2 i Coeff. z Signal z2 Signal

Inputs of
the Adder
in Figure 6

Adder
Output

in Figure 6

Total
Error

Total
Error

(Simulat.)

LSB Reduction
Method - Rounding Rounding Rounding Rounding Trunc. Trunc. Rounding - -

Piecewise linear
technique 0.077 7.63 × 10−6 0.002 - 0.002 - 1.53 × 10−5 0.500 0.581 0.576

Piecewise
quadratic
technique

0.161 7.63 × 10−6 0.031 5.96 × 10−8 0.025 0.005 3.05 × 10−5 0.500 0.722 0.684

If we call εDDFS the total maximum absolute value of the DDFS error (reported in the
last column of Table 3), the overall maximum absolute error of the whole elaboration of
Figure 2 can be written as:

εelab total = 2 · εDDFS ·max|x(n)|+ εFIR + 0.5 · LSBy (36)

where εFIR represents the total error of the FIR filter used to implement the Hilbert transform
and the final contribution of 0.5 LSBy is due to the final rounding operation needed to
obtain the final output y(n) in Q0,15 representation. Please note, however, that this simple
relationship describes a worst-case behavior: as an example, if we look at (31) and (32) the
sum of the absolute errors due to piecewise approximation at the two outputs of the DDFS
is equal to

√
2 times the error of the single W output, not to two times this error.

Since the only approximation in Figure 4 is the final rounding, we have that also εFIR
is equal to 0.5 LSBy. As a consequence, εelab total can be written as:

εelab total = LSBy + 2 · εDDFS ·max|x(n)| (37)
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For a worst-case input signal, with maximum value equal to 1, εelab total is therefore
equal to 2.15 LSBy and 2.37 LSBy for piecewise linear and quadratic DDFS, respectively.
The error becomes lower for an input signal that is not at full-scale. As an example, for a
maximum absolute input value of 1/3, the errors for piecewise linear and quadratic DDFS
implementations becomes 1.38 LSBy and 1.46 LSBy, respectively. These theoretical values
describe again a worst-case condition since error components in the real system tend not
to be at the maximum at the same time or tend to cancel each other out. As an example,
by simulating the whole algorithm using a random input signal with 1/3 maximum abso-
lute value, the simulated maximum absolute error results were 1.13 LSBy and 1.18 LSBy,
respectively.

2.3. Experimental Auscultation Tests

The actual performance of the proposed frequency shift enhancement was assessed by
carrying out specific auscultation tests. To this aim, 41 participants (23 males, 18 females, age
34.3 ± 11.6) not skilled in medical auscultation and with no history of hearing impairment
were enrolled. Each participant was asked to listen to short audio clips consisting of a
heart sound recording (from the public database “Classification of Heart Sound Recordings:
The PhysioNet/Computing in Cardiology Challenge 2016” [71]) corrupted by noise, either
unprocessed, or processed with the proposed frequency shift enhancement. Three noise
sources were considered, namely additive white Gaussian noise (AWGN), crowded avenue
noise (publicly available at [72]), and helicopter noise (publicly available at [73]). For
each noise source, several noisy audio clips were created by corrupting each heart sound
recording, either unprocessed or processed via the proposed algorithm, with different noise
levels, so as to obtain values of signal-to-noise ratio (SNR) ranging from 0.025 to 1 (steps of
0.025 up to 0.3, and steps of 0.1 from 0.3 up to 1). In the case of processed heart sounds,
two frequency shift (fshift) values were considered, namely 50 Hz and 100 Hz. For each
noise source, three sets of 19 audio clips were obtained, namely unprocessed (referred to
as “no_elab”), processed with 50 Hz shift (referred to as “elab_50”), and processed with
100 Hz shift (referred to as “elab_100”). Therefore, each participant listened to 171 audio
clips, divided into three sessions (one for each noise source), with 5-min breaks in between.
In each session, the sets of unprocessed and processed audio clips were administered
separately, with a random sequence of SNR values. The participants, who were blind to the
specific set being administered, were asked to acknowledge their ability to reliably perceive
the heart sounds; the lowest SNR (SNRmin) value for which a participant confirmed the
ability to hear the heart sounds was considered to be the minimum hearing level for the
related set and noise source. At the end of the experimental auscultation tests, for each
participant, the SNRmin values for no_elab, elab_50, and elab_100 sets of clips were obtained
for each noise source (i.e., AWGN, crowded avenue, helicopter).

2.4. Statistical Analyses

Statistical analyses of the results of the experimental auscultation tests were carried
out to verify if the proposed method enhanced the participants’ ability to perceive heart
sounds in the presence of different kinds of noise. An enhancement in hearing ability for a
specific noise source would result in a reduction in the SNRmin obtained for the processed
clips (elab_50, elab_100) with respect to the unprocessed clips (no_elab). Considering that the
effects of the proposed frequency shift could change between the participants, specific tests
were performed to assess if the differences between the SNRmin values of processed and
unprocessed clips were statistically lower than 0. In particular, for each noise source, the
Wilcoxon Signed-Rank Test was applied to SNRmin matched pairs of elab_50 and no_elab
clips, and to SNRmin matched pairs of elab_100 and no_elab clips.
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3. Results
3.1. DSP Implementation Results

The algorithm presented in the previous section has been described in the C program-
ming language and optimized for implementation on Texas Instruments C67xx DSPs (Texas
Instruments, Dallas, TX, USA). Table 4 reports the achieved performance by considering
the DDFS implementation. In this case, the execution time was obtained by simulating the
code on a DSP simulator with an ideal memory model (i.e., without considering cache).
It can be observed that a total of five implementations were considered. The first imple-
mentation used the piecewise linear approximation technique described in the previous
section and exploited a “far allocation” approach to implement the Lookup Table (LUT)
needed to store aji and bji coefficients. The second implementation still used a piecewise
linear approximation technique, but in this case, the LUT employed a “near allocation”
technique, i.e., it was stored in the BSS data section (as well-known, this approach reduces
the time needed to access the coefficients). The third implementation used the piecewise
quadratic approach described in the previous section; in this case, only “near allocation”
was considered since the required LUT size was very small (only 128 bytes). The last two
implementations used the DDFS architecture of Figure 5 and computed the required sine
and cosine functions using the optimized floating-point functions available in the FastRTS
Library provided with the DSP. In this case, two implementations were considered, one
using single-precision sine/cosine functions, and one using double-precision functions.
Considering the total memory size required to implement the DDFS, it can be noted that
the best solution is the piecewise quadratic implementation, which requires only 384 bytes.
The piecewise linear implementation resulted in the largest required memory size, which is
dominated by the required LUT size (1536 bytes). In addition, the piecewise linear DDFS
using near allocation required also a non-negligible 4.7% of the total BSS section size, which
was used precisely to store variables using “near allocation”. By considering, on the other
hand, the execution time, the fastest implementation was the piecewise linear DDFS using
“near allocation”, which was executed in only 19 clock cycles. Also remarkable is the
performance of the piecewise quadratic implementation, which was executed in 21 clock
cycles and turned out to be also faster than the piecewise linear DDFS with “far allocation”.
The two implementations using library functions, with single and double precision, were
much slower than other implementations, requiring 177 and 346.5 clock cycles, respectively.
Please note that this last value is not an integer because the execution time turned out to
also be data-dependent. It is also interesting to observe that the proposed fixed-point im-
plementations outperform standard floating-point implementations using FastRTS Library,
despite the DSP being able to implement floating-point arithmetic in hardware.

Table 4. DDFS implementation results (C67xx DSP—ideal memory model).

Sin/Cos Computation
Technique

LUT Storage
Tech.

LUT Size
(Bytes)

Code Size
(Bytes)

Total Memory
Size (Bytes)

Percentage
BSS Section
Occupation

Execution Time
(Clock Cycles)

Piecewise Lineax Approx. far alloc. 1536 224 1760 - 25.0
Piecewise Lineax Approx. near alloc. 1536 224 1760 4.7% 19.0
Piecewise Quadratic Approx. near alloc. 128 256 384 0.4% 21.0
Library
functions—Single-Precision - - 928 928 - 177.0

Library
functions—Double-Precision - - 1120 1120 - 346.5

Table 5 summarizes the performances achieved by considering the whole elaboration
algorithm described in the previous sections, by considering the five possible DDFS imple-
mentations, also outlined in Table 4. As in Table 4, a DSP simulator with an ideal memory
model was considered. By looking at the execution time of the FIR filter, it can be observed
that the performances achieved are coherent with the approach used to realize and optimize
the filter, which is using a linear buffer algorithm for filter input and implementing the
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sum-of-products with a software-pipelined loop using 2× unrolling (the considered filter
order is 40). Overall, the data presented confirm that the piecewise quadratic implementa-
tion resulted in the best tradeoff between memory size and execution time, with a required
memory size of about 1.1 KB and a total execution time of only 124 clock cycles for the
whole algorithm. The fastest implementation is again the one using the piecewise linear
technique with “near allocation”, which achieves an execution time of 122 clock cycles,
but requires a total memory size of about 2.5 KB. Implementations using FastRTS Library
functions, with single- or double-precision arithmetic, are the slowest, with execution times
of 280 and 445 clock cycles, respectively.

Table 5. Full elaboration algorithm implementation results (C67xx DSP—ideal memory model). The
columns related to total memory size and execution time are highlighted in grey.

Sin/Cos Computation
Technique

LUT
Storage Tech.

Memory Size (Bytes) Execution Time (Clock Cycles)

DDFS
LUT

FIR
LUT

DDFS
Code

FIR
Code

Code
Other Total DDFS

FIR
Sum-of-

Prod.

FIR
Buffer
Update

Other Total

Piecewise Lineax Approx. far alloc. 1536 84 224 64 640 2548 25.0 28.0 46.0 29.0 128.0
Piecewise Lineax Approx. near alloc. 1536 84 224 64 640 2548 19.0 28.0 46.0 29.0 122.0
Piecewise Quadratic
Approx. near alloc. 128 84 256 64 640 1172 21.0 28.0 46.0 29.0 124.0

Library
functions—Single-Precision - - 84 928 64 640 1716 177.0 28.0 46.0 29.0 280.0

Library
functions—Double-Precision - - 84 1120 64 640 1908 342.0 28.0 46.0 29.0 445.0

To test the developed algorithm, we used a DSK6713 rapid prototyping board, shown
in Figure 7. The board is equipped with a Texas Instruments C6713 DSP, which uses a
225 MHz internal core clock frequency and provides a 256 KB internal memory. The board
also includes a 16 MB external SDRAM, 512 KB flash memory, and a TLV320AIC23B (AIC23)
Audio CODEC. In our experiments, the analog audio input is provided to the Codec using
the “line in” 3.5 mm input jack, and the elaborated audio output is obtained using either
the “line out” or the “headphone” 3.5 mm output jacks.
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The minimum sampling frequency that can be configured in the Codec is 8 kHz;
however, in the considered application, a sampling frequency of 2 kHz is more than
adequate to sample cardiac audio signal (in fact fs = 2 kHz is the design value considered in
the previous section). Therefore, in the realized tests, the Codec is configured for an 8 kHz
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sampling frequency, and digital down and up sampling is implemented on the input and
output signals, respectively, in order to keep a sampling frequency of 2 kHz for the core
elaboration algorithm (which implement the frequency shift operation). Anti-aliasing and
reconstruction filtering of digital down and up conversions is realized using a 39th-order
FIR filter.

To realize the experiments, the code has been implemented using Code Composer
Studio developing environment of Texas Instruments. The communication between the
DSP and the AIC23 Codec of the board is realized using the McBSP interfaces of the DSP
and employing a block processing approach with a block size of four samples. The EDMA
unit of the DSP is used to transfer the blocks of data between the McBSP interfaces and the
internal memory of the DSP, using a ping-pong buffering approach. The block size (equal
to 4) has been chosen in order to match the ratio between the Codec sampling frequency
(8 kHz) and core elaboration sampling frequency (2 kHz): this results in keeping a stream
processing elaboration approach for core elaboration. Since the DSK6713 has on-board
JTAG Emulation, the board is connected to the PC running Code Composer Studio by
simply using a USB cable. Code Composer Studio is used for debugging and profiling.
Realtime audio input and output are achieved using the 3.5 mm jacks of the board.

The results of the profiling achieved using the DSK6713 board are reported in Table 6.
If we compare the execution time of the core elaboration with the data obtained in Table 5,
we can observe that the execution time obtained by the profiling is very close to the value
obtained by the simulator in the case of piecewise DDFS implementations. In this case, in
fact, we have verified that the number of cache misses results is very low. A larger number
of cache misses was observed in the implementations using single- and double-precision
library functions, specifically considering program memory, and this corresponds to an
evident increase in the execution time, with respect to the results of Table 5. This behavior
can be explained by considering the code size reported in Table 7, and observing that in the
case of implementations using single- and double-precision library functions, the code size
of frequency shift elaboration (1632 and 1824 bytes, respectively) represents a consistent
portion of the DSP Program Cache memory (4 KB). In this case, moreover, the total code
size results are also equal to or larger than the Program Cache memory size.

Table 6. Experimental profiling results obtained using the DSK6713 board. The column related to
total execution time is highlighted in grey.

Sin/Cos Computation
Technique

LUT
Storage Tech.

Execution Time (Clock Cycles)
Core Elaboration
(Frequency Shift)

Down/Up
Sampling ISRs Total

Piecewise Lineax Approx. far alloc. 128.2 221.0 63.0 412.2
Piecewise Lineax Approx. near alloc. 122.2 215.0 62.3 399.5
Piecewise Quadratic Approx. near alloc. 124.1 218.2 62.3 404.7
Library functions—Single-Precision - 285.2 214.1 62.6 561.9
Library
functions—Double-Precision - 510.2 228.2 69.4 807.8

Table 7. Required memory size in DSK6713 board implementation. The columns related to total code
size and data size are highlighted in grey.

Sin/Cos Computation
Technique

LUT
Storage

Tech.

Code Size (Bytes) Data Size (Bytes)
Core Elaboration

(Frequency
Shift)

Down/Up
Sampling ISRs Total

Core Elaboration
(Frequency

Shift)

Down/Up
Sampling ISRs Total

Piecewise Lineax Approx. far alloc. 928 1280 1184 3392 1620 280 70 1970
Piecewise Lineax Approx. near alloc. 928 1280 1184 3392 1620 280 70 1970
Piecewise Quadratic Approx. near alloc. 960 1280 1184 3424 212 280 70 562
Library
functions—Single-Precision - 1632 1280 1184 4096 84 280 70 434

Library
functions—Double-Precision - 1824 1280 1184 4288 84 280 70 434
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Please note that in this application the total execution times reported in Table 6
results are much lower than the available time for real-time elaboration, considering
the DSP clock frequency (225 MHz) and sampling frequency (2 kHz) is about
225 MHz/2 kHz = 112,500 clock cycles. This calls for a possible sensible reduction in
DSP clock frequency that could be beneficial to reduce power dissipation. Since the DSP
clock input frequency cannot be changed in the DSK6713 board, we performed this analysis
using the DSP power model provided by Texas Instruments [74]. The power analysis
results are reported in Table 8. In this table, the first column reports the minimum possible
DSP core clock frequency which allows respecting the real-time constraint (C/fclock = 1/fs,
C being the total execution time in clock cycles reported in Table 6). The power analysis is
performed by assuming that in each case, the DSP is clocked using the minimum possible
clock frequency. To conduct an accurate power analysis, the DSP percentage core utilization
has been evaluated using the profiler of the cycle-accurate simulator of C6713 DSP; in this
context, the percentage core utilization has been obtained as the ratio between the average
number of instructions executed per clock cycle (computed as total number of instructions
executed divided by the total cycle count, value also reported in Table 8) and 8, which
represents the number of functional units of the DSP (maximum number of instructions
per execution packet). The obtained dynamic power dissipation is reported in the last
three columns of the table. It can be observed that piecewise techniques allow achieving
a remarkable power dissipation reduction with respect to single- and double-precision
implementations, with a power saving that is close to 25% with respect to single precision
and 44% with respect to double precision. The lowest power dissipation is obtained using
piecewise linear implementation with near allocation of the LUT.

Table 8. Power Analysis results (DSP TI C6713, VDD = 1.2 V). The column related to total dynamic
power is highlighted in grey.

Sin/Cos Computation
Technique

LUT
Storage

Tech.

Minimum
DSP Clock

Freq. (MHz)

Power estimation

Avg. Istr. Executed
per Clock Cycle

DSP Core
Utilization (%)

Dynamic Power (mW)
Activity
Power

Clock
Tree

Total
Power

Piecewise Lineax Approx. far alloc. 0.824 4.02 50.2% 0.58 1.76 2.35
Piecewise Lineax Approx. near alloc. 0.799 4.09 51.1% 0.57 1.71 2.28
Piecewise Quadratic
Approx. near alloc. 0.809 4.11 51.4% 0.58 1.73 2.31

Library functions—
Single-Precision - 1.124 2.95 36.8% 0.61 2.40 3.01

Library functions—
Double-Precision - 1.616 2.20 27.5% 0.69 3.46 4.14

3.2. Auscultation Tests Results

Table 9 shows some descriptive statistics of the SNRmin values obtained for no_elab,
elab_50, and elab_100 clips, for each noise source. For each experimental setting, Figure 8
displays the pairwise violin plots of the SNRmin values, by comparing the results obtained
for processed and unprocessed audio clips. In particular, the panels of the left column
compare the results related to elab_50 and no_elab clips, while the panels of the right column
compare the results related to elab_100 and no_elab clips; the panels of each row show the
results obtained for a specific noise source. The plots provide evidence that the distributions
of the SNRmin values related to the signals elaborated with the proposed frequency shifter
are different, always showing lower central location values and overall, less variability.
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Table 9. Descriptive statistics of SNRmin values obtained for unprocessed (no_elab) and processed
(elab_50, elab_100) audio clips, for each noise source.

Noise Source Processing Min 1st Quartile Median Mean 3rd Quartile Max SD

AWGN
no_elab 0.125 0.150 0.175 0.195 0.225 0.300 0.05038
elab_50 0.075 0.100 0.125 0.124 0.150 0.200 0.02766
elab_100 0.075 0.100 0.125 0.124 0.150 0.175 0.02468

CROWDED
STREET

no_elab 0.200 0.300 0.400 0.423 0.500 0.700 0.15236
elab_50 0.075 0.125 0.150 0.158 0.175 0.250 0.04087
elab_100 0.150 0.225 0.275 0.282 0.300 0.500 0.09087

HELICOPTER
no_elab 0.100 0.175 0.200 0.259 0.275 0.700 0.15550
elab_50 0.050 0.100 0.100 0.114 0.125 0.225 0.03309
elab_100 0.075 0.125 0.150 0.161 0.200 0.300 0.05392
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elaborated signal (fshift = 100 Hz) vs. AWGN not elaborated signal; (c) Crowded street elaborated
signal (fshift = 50 Hz) vs. Crowded street not elaborated signal; (d) Crowded street elaborated
signal (fshift = 100 Hz) vs. Crowded street not elaborated signal; (e) Helicopter elaborated signal
(fshift = 50 Hz) vs. Helicopter not elaborated signal; (f) Helicopter elaborated signal (fshift = 100 Hz) vs.
Helicopter not elaborated signal.
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The results of the Wilcoxon Signed-Rank tests are outlined in Table 10. As it can be
observed, all tests show very small p-values (p < 0.001) supporting the conclusion that
there is large statistical evidence against the null hypothesis that there is no difference
between the median SNRmin of the elaborated and not elaborated signals in favor of the
alternative that the SNRmin is higher in the case of the not elaborated signals. As higher
SNRmin values indicate worse audibility, the tests confirm that the elaboration algorithm
reduces the SNRmin, thus improving the audibility of heart sounds. In addition, the effect
size has been evaluated by means of the matched pairs rank biserial correlation coefficient
(rrb). It always reached a value of 1, thus highlighting the high practical relevance of the
research outcomes. The analyses confirm the usefulness of the proposed method, which
proved capable of enhancing the audibility of heart sounds in the presence of noise.

Table 10. Results of the Wilcoxon Signed-Rank Test performed on matched pairs of SNRmin values
related to processed (elab_50 or elab_100) vs. unprocessed (no_elab) audio clips. The z-statistic used
for computing approximate p-value (z-val) and the matched pairs rank biserial correlation coefficient
(rrb) are also reported.

Noise Source Comparison W z-val p-Value rrb # Pairs

AWGN
elab_50 Hz vs. no_elab 861 5.61 1.005 × 10−8 1.00 41
elab_100 Hz vs. no_elab 861 5.60 1.057 × 10−8 1.00 41

CROWDED
STREET

elab_50 Hz vs. no_elab 861 5.58 1.212 × 10−8 1.00 41
elab_100 Hz vs. no_elab 861 5.59 1.107 × 10−8 1.00 41

HELICOPTER
elab_50 Hz vs. no_elab 861 5.60 1.066 × 10−8 1.00 41
elab_100 Hz vs. no_elab 780 5.47 2.210 × 10−8 1.00 39

4. Discussion

This study presented a novel algorithm to enhance the acoustic perception of heart
sounds in noisy environments in real time. The proposed approach shifts the frequency
spectrum of heart sounds to slightly higher frequencies (from tens of Hz up to 100 Hz)
in order to achieve two conditions at the same time: moving the heart sounds spectrum
in a frequency range corresponding to higher human audibility, and also moving such
spectrum away from environmental low-frequency noises (e.g., vehicles engines, crowded
streets), which are the ones that most affect the perception of heart sounds. The frequency
shift is performed via a single-sideband modulation based on the Hilbert transform. The
proposed algorithm was implemented on a VLIW DSP platform, which allowed real-
time operation. At the core of the DSP implementation is a novel piecewise quadratic
approximation approach for the implementation of the DDFS. This approach was compared
with a piecewise linear approximation method and with library functions, in terms of
required memory size, execution time, and power dissipation.

Both piecewise approximations provided a remarkable decrease of about 90% in the
execution time of the DDFS as compared to library functions with single and double
precision. The piecewise quadratic approximation also provided a remarkable reduction
in required memory size, namely about 60% with respect to the library functions, and
about 80% with respect to the piecewise linear approximation, which in fact, required
higher memory resources than the library functions. Considering the whole algorithm
implementation, the piecewise quadratic approximation ensured a 30% to 40% reduction
in memory size, a 55% to 72% reduction in execution time, and a 25% to 44% reduction in
power consumption, as compared to library functions. It also provided a more than 50%
reduction in memory size, as compared to the piecewise linear approximation, as well as
similar execution time and power consumption. According to these results, the proposed
novel piecewise quadratic approximation for the DDFS provided the best tradeoff between
memory size, execution time, and power consumption.

The actual performance of the proposed algorithm in enhancing the acoustic percep-
tion of heart sounds for a human operator in noisy environments was assessed by carrying
out specific auscultation tests on 41 volunteers. Several audio clips consisting of heart
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sound recordings (either unprocessed or processed via the proposed frequency shifter) cor-
rupted with different kinds of noise, at different signal-to-noise ratios, were administered
to the volunteers. In the case of processed signals, two shift frequencies, namely 50 Hz
and 100 Hz, were considered. The volunteers were asked to acknowledge their ability
to reliably perceive the heart sounds, in order to determine the minimum SNR values
for reliable audibility. The minimum SNR values annotated for all the volunteers were
analyzed and Wilcoxon Signed-Rank tests were performed to verify that the minimum SNR
values obtained for the audio clips processed with the proposed algorithm were statistically
lower than the minimum SNR values obtained for the unprocessed audio clips. The tests
confirmed that the proposed algorithm, both with 50 Hz and 100 Hz frequency shifts,
enhanced the audibility of heart sounds, as it allowed the volunteers to reliably perceive
the heart sounds for lower SNR values, i.e., in the presence of higher noise levels.

This study has some limitations, essentially regarding the cohort of volunteers. Indeed,
the enrollment did not account for the age of the volunteers, which has some relationship
with the general hearing ability of a subject and may have an impact on the actual enhance-
ment that the proposed method could provide. Future studies will focus on additional
experiments on a larger cohort of subjects, with a good representation of sex, age, and
other characteristics that may impact the hearing ability of a human subject. Further tests
are also envisioned to be performed on a large number of cardiologists skilled in cardiac
auscultation, in order to evaluate the ability of the proposed method to maintain essential
diagnostic features of heart sounds.

5. Conclusions

The frequency shift of heart sounds via single-sideband modulation based on the
Hilbert transform enhances the acoustic perception of heart sounds corrupted by different
levels of AWGN, crowded avenues, and helicopter noises, according to the results of aus-
cultation tests carried out on 41 volunteers. The algorithm was implemented in real time
on a Very-Long-Instruction-Word Digital Signal Processor with hardware floating-point
operations support. A novel fixed-point piecewise quadratic approximation approach was
proposed for the implementation of the Direct Digital Frequency Synthesizer at the core
of the single-sideband modulator, demonstrating to provide the best tradeoff between re-
quired memory size, execution time, and power consumption, as compared to a fixed-point
piecewise linear approximation, and optimized floating-point library functions provided
with the DSP. The proposed frequency shifter could be equipped in modern electronic
stethoscopes at very modest costs, and could provide valuable support in all those situa-
tions where heart sounds auscultation is fundamental to assess the health status of a patient,
and has to be performed in noisy environments, as an example, in emergency medicine
contexts such as roadside or helicopter rescue.
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