Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (105)

Search Parameters:
Keywords = copper silicate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 7713 KiB  
Article
Enrichment Regularity of Indium in the Dulong Mineral Processing Plant, Yunnan Province, China
by Peiqiang Fan, Xiong Tong, Xian Xie, Qiang Song, Ruiqi Xie, Bin Han, Haitao Fu and Zhiming Lu
Minerals 2025, 15(7), 672; https://doi.org/10.3390/min15070672 - 23 Jun 2025
Viewed by 260
Abstract
The Dulong deposit in Wenshan, southeastern Yunnan Province, is rich in zinc, tin, and copper resources, accompanied by rare metals such as indium and silver. It is a particularly important indium production base, with reserves of approximately 7000 tons, ranking first globally. Enrichment [...] Read more.
The Dulong deposit in Wenshan, southeastern Yunnan Province, is rich in zinc, tin, and copper resources, accompanied by rare metals such as indium and silver. It is a particularly important indium production base, with reserves of approximately 7000 tons, ranking first globally. Enrichment and recovery of indium-bearing minerals are mainly achieved through mineral processing technology. However, the recovery rate of indium in the Dulong concentrator remains relatively low, and there is an insufficient understanding of its occurrence state and distribution characteristics, resulting in marked indium resource wastage. Here, we conducted a systematic process mineralogy study on indium-bearing polymetallic ore in the Dulong concentrator. The average grade of indium in the ore is 43.87 g/t, mainly occurring in marmatite (63.63%), supplemented by that in silicate minerals (23.31%), chalcopyrite (7.84%), and pyrrhotite (4.22%). The indium has a relatively dispersed distribution, which is inconducive to enrichment and recovery. The substitution mechanism of indium in marmatite was investigated using laser ablation inductively coupled plasma mass spectrometry. This revealed a positive correlation between indium and copper, allowing us to revise the substitution relationship to: ZnxS+Cu++In3+Znx2CuInS+2Zn2+ or Znx1FeS+Cu++In3+Znx2CuInS+Zn2++Fe2+. Electron probe microanalysis revealed the presence of roquesite (CuInS2), an independent indium mineral not previously reported from this deposit. Our detailed investigation of the Dulong concentrator mineral processing technology showed that the recovery rate of indium from marmatite is currently poor, at only 48.01%. To improve the comprehensive utilization rate of indium resources, it will be necessary to further increase the recovery rate from marmatite and explore the flotation recovery of indium from chalcopyrite and pyrrhotite. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

20 pages, 3370 KiB  
Article
Reprocessing of Sulphide Flotation Tailings for Copper Recovery: Characterisation
by Richel Annan Dadzie, Massimiliano Zanin, William Skinner, Jonas Addai-Mensah, Richmond Asamoah and George Blankson Abaka-Wood
Minerals 2025, 15(6), 649; https://doi.org/10.3390/min15060649 - 16 Jun 2025
Viewed by 1061
Abstract
This study characterises low-grade copper ore tailings from a conventional flotation circuit to evaluate their feasibility for further processing. A suite of advanced analytical techniques, such as X-ray fluorescence (XRF), inductively coupled plasma (ICP), X-ray diffraction (XRD), and the quantitative evaluation of minerals [...] Read more.
This study characterises low-grade copper ore tailings from a conventional flotation circuit to evaluate their feasibility for further processing. A suite of advanced analytical techniques, such as X-ray fluorescence (XRF), inductively coupled plasma (ICP), X-ray diffraction (XRD), and the quantitative evaluation of minerals by scanning electron microscopy (QEMSCAN), was employed to assess the elemental, chemical, and mineralogical composition of the tailings. Chalcopyrite was identified as the dominant copper-bearing mineral phase, predominantly locked within iron oxides and silicate gangue minerals. The QEMSCAN results showed that chalcopyrite was only partially liberated, which highlights the complex mineral intergrowths that hinder efficient recovery. Based on the mineralogical characteristics, the applicability of various processing techniques, including conventional froth flotation, advanced flotation methods [including HydrofloatTM, Jameson, and the Reflux Flotation Cell (RFC)], magnetic separation, and gravity separation, was evaluated. Overall, this study indicates that incorporating HydroFloat™, the Jameson Cell, and the RFC into the flotation circuit could greatly improve copper recovery from tailings. This study also identified rare earth elements (REEs) as potential by-products of copper recovery, so it is an additional opportunity for resource recovery. This paper contributes to sustainable mining practices and resource optimization by highlighting the characteristics and recovery of valuable minerals from tailings. Full article
Show Figures

Figure 1

13 pages, 2130 KiB  
Article
Terahertz Investigation of Cultural Heritage Synthetic Materials: A Case Study of Copper Silicate Pigments
by Candida Moffa, Anna Candida Felici and Massimo Petrarca
Minerals 2025, 15(5), 490; https://doi.org/10.3390/min15050490 - 6 May 2025
Cited by 1 | Viewed by 526
Abstract
The present study explores a multi-analytical non-invasive approach based on the application of terahertz continuous wave (THz-CW) spectroscopy for the non-invasive characterization of historically produced synthetic copper silicate pigments. For the first time, Han Blue, Han Purple and Egyptian Blue were examined within [...] Read more.
The present study explores a multi-analytical non-invasive approach based on the application of terahertz continuous wave (THz-CW) spectroscopy for the non-invasive characterization of historically produced synthetic copper silicate pigments. For the first time, Han Blue, Han Purple and Egyptian Blue were examined within the THz spectral region using a compact and portable THz-CW spectrometer. The three pigments exhibit distinct absorption features, which facilitate the differentiation of molecular structures within the same chemical and mineralogical category. Moreover, the same compound was analyzed using Energy Dispersive X-Ray Fluorescence (ED-XRF) to determine its elemental composition, alongside Fiber Optics Reflectance Spectroscopy (FORS) in the range 350–2500 nm, providing crucial insights into its optical properties and molecular structure. To the best of the authors’ knowledge, the present study presents the first spectra for these copper silicates at these wavelengths, thereby expanding the shortwave infrared spectral database of Cultural Heritage materials. This synergistic approach enables a comprehensive characterization, offering a deeper understanding of the compounds’ chemical nature and paving the way for potential applications in the Cultural Heritage domain. Furthermore, the findings underscore the potential of THz-CW spectroscopy as an innovative and effective tool for Cultural Heritage research, providing a non-destructive method to investigate artistic materials. Full article
(This article belongs to the Special Issue Spectral Behavior of Mineral Pigments, Volume II)
Show Figures

Figure 1

11 pages, 681 KiB  
Article
Assessment of Silicon and Rhenium Recovery Efficiency from Copper-Containing Tailings of Processing Plants
by Lyutsiya Karimova, Guldana Makasheva, Yelena Kharchenko and Adilet Magaz
Eng 2025, 6(4), 77; https://doi.org/10.3390/eng6040077 - 14 Apr 2025
Viewed by 317
Abstract
In the face of the global depletion of natural resources and increasing demand for sustainable development, processing industrial waste, such as tailings from processing plants, is becoming essential. This study focuses on combined processing technologies, including flotation concentration and concentrate processing, allowing the [...] Read more.
In the face of the global depletion of natural resources and increasing demand for sustainable development, processing industrial waste, such as tailings from processing plants, is becoming essential. This study focuses on combined processing technologies, including flotation concentration and concentrate processing, allowing the efficient recovery of valuable components. This study aims to investigate the possibility of thermochemical enrichment and the opening of low-grade copper tailings of processing plants with the transfer of silicon and rhenium in the form of silicate-ions and perrhenate-ions into a solution with the output of a multifactor multiplicative model and obtaining tabular nomograms. Multifactor experiments on the thermochemical enrichment of rough copper concentrates made it possible to construct partial dependences of silicon and rhenium extraction into a solution and to obtain multiplicative Protodyakonov–Malyshev models of these processes and multifactor nomograms over a wide range of temperatures, durations, and alkali-to-concentrate ratios to determine the maximum recovery rates. The developed multifactor models made it possible to establish the optimal intervals of changes in the concentrate sintering parameters, providing high recovery rates (over 85% of silicon and 98% of rhenium) during subsequent water leaching. Optimal sintering conditions (temperature of 350 °C, the duration of 90 min, and the ratio of NaOH to concentrate = 1:2) ensured a recovery of up to 85% of silicon and 98% of rhenium from the concentrate into the solution. This recovery rate reduces the need for primary raw materials and positively affects the production’s environmental performance because it minimizes the amount of industrial waste disposal. Full article
Show Figures

Figure 1

10 pages, 2466 KiB  
Data Descriptor
Analysis of Minerals Using Handheld Laser-Induced Breakdown Spectroscopy Technology
by Naila Mezoued, Cécile Fabre, Jean Cauzid, YongHwi Kim and Marjolène Jatteau
Data 2025, 10(3), 40; https://doi.org/10.3390/data10030040 - 20 Mar 2025
Cited by 1 | Viewed by 1106
Abstract
Laser-induced breakdown spectroscopy (LIBS), a rapid and versatile analytical technique, is becoming increasingly widespread within the geoscience community. Suitable for fieldwork analyses using handheld analyzers, the elemental composition of a sample is revealed by generating plasma using a high-energy laser, providing a practical [...] Read more.
Laser-induced breakdown spectroscopy (LIBS), a rapid and versatile analytical technique, is becoming increasingly widespread within the geoscience community. Suitable for fieldwork analyses using handheld analyzers, the elemental composition of a sample is revealed by generating plasma using a high-energy laser, providing a practical solution to numerous geological challenges, including identifying and discriminating between different mineral phases. This data paper presents over 12,000 reference mineral spectra acquired using a handheld LIBS analyzer (© SciAps), including those of silicates (e.g., beryl, quartz, micas, spodumene, vesuvianite, etc.), carbonates (e.g., dolomite, magnesite, aragonite), phosphates (e.g., amblygonite, apatite, topaz), oxides (e.g., hematite, magnetite, rutile, chromite, wolframite), sulfates (e.g., baryte, gypsum), sulfides (e.g., chalcopyrite, pyrite, pyrrhotite), halides (e.g., fluorite), and native elements (e.g., sulfur and copper). The datasets were collected from 170 pure mineral samples in the form of crystals, powders, and rock specimens, during three research projects: NEXT, Labex Ressources 21, and ARTeMIS. The extensive spectral range covered by the analyzer spectrometers (190–950 nm) allowed for the detection of both major (>1 wt.%) and trace (<1 wt.%) elements, recording a unique spectral signature for each mineral. Mineral spectra can serve as reference data to (i) identify relevant emission lines and spectral ranges for specific minerals, (ii) be compared to unknown LIBS spectra for mineral identification, or (iii) constitute input data for machine learning algorithms. Full article
Show Figures

Figure 1

18 pages, 32050 KiB  
Article
Mineralogical and Micro-Computer Tomographic (μCT) Texture Investigations of Egyptian Blue Spheres (Aguntum, East Tyrol; Retznei and Wagna, Flavia Solva, South Styria)
by Gerald Degenhart, Julius Heinemann, Peter Tropper, Alexandra Rodler-Rørbo, Bianca Zerobin, Martin Auer and Gert Goldenberg
Minerals 2025, 15(3), 302; https://doi.org/10.3390/min15030302 - 15 Mar 2025
Cited by 1 | Viewed by 1013
Abstract
Egyptian Blue was the first synthetic pigment by humankind. It contains of cuprorivaite, which is a calcium-copper-silicate (CaCuSi4O10). This study reports the results of a mineralogical and computer tomographic study of Egyptian Blue finds from Aguntum in East Tyrol [...] Read more.
Egyptian Blue was the first synthetic pigment by humankind. It contains of cuprorivaite, which is a calcium-copper-silicate (CaCuSi4O10). This study reports the results of a mineralogical and computer tomographic study of Egyptian Blue finds from Aguntum in East Tyrol along with Retznei and Wagna (formerly Flavia Solva) from southern Styria in Austria. The present work aims to extend our understanding of the processes involved in the production of the artificial pigment Egyptian Blue. The samples were investigated with respect to their elemental composition and spatial distribution of the calcium-copper-silicate cuprorivaite CaCuSi4O10 and then compared with data from previous studies. Thin sections of an Egyptian Blue sphere from Aguntum were examined using optical microscopy (OP), micro-X-ray fluorescence analysis (μ-XRF) and scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDX). The pigment’s initial mixture as well as the manufacturing process seem to be the decisive factor for the quality of the final product. A relationship between the presence of trace iron (Fe) and titanium (Ti) with the quartz and copper source of the initial mixture is discussed. SEM-EDX analysis revealed that cuprite (Cu2O) was used as a copper source. In addition, micro-computed tomography (µCT) of the Egyptian Blue finds (Aguntum, Retznei, Wagna-Flavia Solva) was performed. Hence, revealing several concise differences between the samples. Texture and volumetric results show a distinctive difference in cuprorivaite content and particle size. To better analyse the spatial distribution, µCT-3D images of the individual mineral phases identified within each sample were obtained. The clear differences in the results may not only enable a differentiation of the production process but also show another potential of non-destructive µCT for assessment of archaeological findings. Full article
Show Figures

Figure 1

44 pages, 14026 KiB  
Review
Coastal Environments: LiDAR Mapping of Copper Tailings Impacts, Particle Retention of Copper, Leaching, and Toxicity
by W. Charles Kerfoot, Gary Swain, Robert Regis, Varsha K. Raman, Colin N. Brooks, Chris Cook and Molly Reif
Remote Sens. 2025, 17(5), 922; https://doi.org/10.3390/rs17050922 - 5 Mar 2025
Viewed by 1579
Abstract
Tailings generated by mining account for the largest world-wide waste from industrial activities. As an element, copper is relatively uncommon, with low concentrations in sediments and waters, yet is very elevated around mining operations. On the Keweenaw Peninsula of Michigan, USA, jutting out [...] Read more.
Tailings generated by mining account for the largest world-wide waste from industrial activities. As an element, copper is relatively uncommon, with low concentrations in sediments and waters, yet is very elevated around mining operations. On the Keweenaw Peninsula of Michigan, USA, jutting out into Lake Superior, 140 mines extracted native copper from the Portage Lake Volcanic Series, part of an intercontinental rift system. Between 1901 and 1932, two mills at Gay (Mohawk, Wolverine) sluiced 22.7 million metric tonnes (MMT) of copper-rich tailings (stamp sands) into Grand (Big) Traverse Bay. About 10 MMT formed a beach that has migrated 7 km from the original Gay pile to the Traverse River Seawall. Another 11 MMT are moving underwater along the coastal shelf, threatening Buffalo Reef, an important lake trout and whitefish breeding ground. Here we use remote sensing techniques to document geospatial environmental impacts and initial phases of remediation. Aerial photos, multiple ALS (crewed aeroplane) LiDAR/MSS surveys, and recent UAS (uncrewed aircraft system) overflights aid comprehensive mapping efforts. Because natural beach quartz and basalt stamp sands are silicates of similar size and density, percentage stamp sand determinations utilise microscopic procedures. Studies show that stamp sand beaches contrast greatly with natural sand beaches in physical, chemical, and biological characteristics. Dispersed stamp sand particles retain copper, and release toxic levels of dissolved concentrations. Moreover, copper leaching is elevated by exposure to high DOC and low pH waters, characteristic of riparian environments. Lab and field toxicity experiments, plus benthic sampling, all confirm serious impacts of tailings on aquatic organisms, supporting stamp sand removal. Not only should mining companies end coastal discharges, we advocate that they should adopt the UNEP “Global Tailings Management Standard for the Mining Industry”. Full article
(This article belongs to the Special Issue GIS and Remote Sensing in Ocean and Coastal Ecology)
Show Figures

Figure 1

21 pages, 8306 KiB  
Article
Magmatic–Hydrothermal Processes of the Pulang Giant Porphyry Cu (–Mo–Au) Deposit, Western Yunnan: A Perspective from Different Generations of Titanite
by Mengmeng Li, Xue Gao, Guohui Gu and Sheng Guan
Minerals 2025, 15(3), 263; https://doi.org/10.3390/min15030263 - 3 Mar 2025
Viewed by 757
Abstract
The Yidun island arc was formed in response to the Late Triassic westward subduction of the Ganzi–Litang oceanic plate, a branch of the Paleo-Tethys Ocean. The Zhongdian arc, located in the south of the Yidun island arc, has relatively large number of porphyry [...] Read more.
The Yidun island arc was formed in response to the Late Triassic westward subduction of the Ganzi–Litang oceanic plate, a branch of the Paleo-Tethys Ocean. The Zhongdian arc, located in the south of the Yidun island arc, has relatively large number of porphyry (skarn) type Cu–Mo ± Au polymetallic deposits, the largest of which is the Pulang Cu (–Mo–Au) deposit with proven Cu reserves of 5.11 Mt, Au reserves of 113 t, and 0.17 Mt of molybdenum. However, the relationship between mineralization and the potassic alteration zone, phyllic zone, and propylitic zone of the Pulang porphyry deposit is still controversial and needs further study. Titanite (CaTiSiO5) is a common accessory mineral in acidic, intermediate, and alkaline igneous rocks. It is widely developed in various types of metamorphic rocks, hydrothermally altered rocks, and a few sedimentary rocks. It is a dominant Mo-bearing phase in igneous rocks and contains abundant rare earth elements and high-field-strength elements. As an effective geochronometer, thermobarometer, oxybarometer, and metallogenic potential indicator mineral, titanite is ideal to reveal the magmatic–hydrothermal evolution and the mechanism of metal enrichment and precipitation. In this paper, major and trace element contents of the titanite grains from different alteration zones were obtained using electron probe microanalysis (EPMA) and laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to define the changes in physicochemical conditions and the behavior of these elements during the process of hydrothermal alteration at Pulang. Titanite in the potassic alteration zone is usually shaped like an envelope. It occurs discretely or is enclosed by feldspar, with lower contents of CaO, Al, Sr, Zr and Hf; a low Nb/Ta ratio; high ∑REE + Y, U, Th, Ta, Nb, and Ga content; and high FeO/Al2O3 and LREE/HREE ratios. This is consistent with the characteristics of magmatic titanite from fresh quartz monzonite porphyry in Pulang and other porphyry Cu deposits. Titanite in the potassium silicate alteration zone has more negative Eu anomaly and a higher U content and Th/U ratio, indicating that the oxygen fugacity decreased during the transformation to phyllic alteration and propylitic alteration in Pulang. High oxygen fugacity is favorable for the enrichment of copper, gold, and other metallogenic elements. Therefore, the enrichment of copper is more closely related to the potassium silicate alteration. The molybdenum content of titanite in the potassium silicate alteration zone is 102–104 times that of the phyllic alteration zone and propylitic alteration zone, while the copper content is indistinctive, indicating that molybdenum was dissolved into the fluid or deposited in the form of sulfide before the medium- to low-temperature hydrothermal alteration, which may lead to the further separation and deposition of copper and molybdenum. Full article
Show Figures

Figure 1

16 pages, 4726 KiB  
Article
Refining Surface Copper Species on Cu/SiO2 Catalysts to Boost Furfural Hydrogenation to Furfuryl Alcohol
by Jieqiong Wang, Jingyi Yang, Zezheng Bing, Yuanyuan Gao, Tao Yang, Qiaoyun Liu, Meng Zhang and Zhongyi Liu
Molecules 2025, 30(2), 225; https://doi.org/10.3390/molecules30020225 - 8 Jan 2025
Cited by 3 | Viewed by 1735
Abstract
Controllable hydrogenation of carbonyl groups (C=O) is crucial for converting furfural into high-value furfuryl alcohol. Instead of traditional impregnation method, a novel Cu-based catalyst (Cu/SiO2) is prepared using the ammonia evaporation method (AE) for the efficient hydrogenation of furfural to furfuryl [...] Read more.
Controllable hydrogenation of carbonyl groups (C=O) is crucial for converting furfural into high-value furfuryl alcohol. Instead of traditional impregnation method, a novel Cu-based catalyst (Cu/SiO2) is prepared using the ammonia evaporation method (AE) for the efficient hydrogenation of furfural to furfuryl alcohol under mild conditions. At the reaction conditions of 90 °C and 1 MPa H2, the 5Cu/SiO2-AE sample showed optimal performance with higher turnover frequency (36.0 h−1) and furfuryl alcohol selectivity (>99.9%). After five cycles, the catalyst recycled still showed a high reaction activity and selectivity for furfuryl alcohol. Characterization results such as XRD, H2-TPR, FT-IR, and XPS showed that the excellent catalytic performance of 5Cu/SiO2-AE catalyst was attributed to the formation of layered copper silicate and the high dispersion of Cu species. Furthermore, the formation of layered copper silicate resulted in a higher ratio of Cu+/(Cu0+Cu+) at a reduction temperature of 250 °C, which was also responsible for the optimum activity. This work showed the importance of controllable synthesis of layered copper silicate in improving the catalytic performance of copper-containing catalyst. Full article
Show Figures

Graphical abstract

28 pages, 8560 KiB  
Article
Methyl Mercaptan Removal from Methane Using Metal-Oxides and Aluminosilicate Materials
by Gerson Martinez-Zuniga, Samuel Antwi, Percival Soni-Castro, Olatunji Olayiwola, Maksym Chuprin, William E. Holmes, Prashanth Buchireddy, Daniel Gang, Emmanuel Revellame, Mark E. Zappi and Rafael Hernandez
Catalysts 2024, 14(12), 907; https://doi.org/10.3390/catal14120907 - 10 Dec 2024
Cited by 2 | Viewed by 1941 | Correction
Abstract
Methyl mercaptan is a sulfur-based chemical found as a co-product in produced natural gas and it causes corrosion in pipelines, storage tanks, catalysts, and solid adsorption beds. To improve the quality of methane produced, researchers have studied the use of metal oxides and [...] Read more.
Methyl mercaptan is a sulfur-based chemical found as a co-product in produced natural gas and it causes corrosion in pipelines, storage tanks, catalysts, and solid adsorption beds. To improve the quality of methane produced, researchers have studied the use of metal oxides and aluminum silicates as catalysts for removing mercaptan. However, there are restrictive limitations on the efficiency of metal oxides or aluminum silicates as adsorbents for this application. Therefore, this study investigated the performance of these materials in a fixed-bed reactor with simulated natural gas streams under various operating conditions. The testing procedure includes a detailed assessment of the adsorbent/catalysts by several techniques, such as Braeuer–Emmett–Teller (BET), Scanning Electron Microscope (SEM), Energy-Dispersive X-ray Spectrometry (EDS), and X-ray Photoelectron Spectroscopy. The results revealed that metal oxides such as copper, manganese, and zinc performed well in methyl mercaptan elimination. The addition of manganese, copper, and zinc oxides to the aluminum silicate surface resulted in a sulfur capacity of 1226 mg S/g of catalyst. These findings provide critical insights for the development of catalysts that combine metal oxides to increase adsorption while reducing the production of byproducts like dimethyl sulfide (DMS) and dimethyl disulfide (DMDS) during methyl mercaptan removal. Full article
Show Figures

Figure 1

35 pages, 7861 KiB  
Article
Statistical Evaluation of Flotation Behavior of Chalcopyrite in the Presence of SIPX and Acetoacetic Acid n-Octyl Ester as a Novel Collector Blend: A Sustainable Approach
by Imkong Rathi and Shravan Kumar
Minerals 2024, 14(10), 1003; https://doi.org/10.3390/min14101003 - 2 Oct 2024
Cited by 1 | Viewed by 1401
Abstract
The chalcopyrite deposit in Malanjkhand, India, is the largest copper ore producer in the country. However, its flotation performance has room for improvement. This study used standard flotation experiments using a mechanical flotation cell using a conventional collecting reagent and a collector blend [...] Read more.
The chalcopyrite deposit in Malanjkhand, India, is the largest copper ore producer in the country. However, its flotation performance has room for improvement. This study used standard flotation experiments using a mechanical flotation cell using a conventional collecting reagent and a collector blend consisting of xanthate and ester. A three-factor, three-level Box-Behnken design was used to statistically evaluate the experimental design. The obtained data were analyzed using an ANOVA, cubic plots, and response surface methods. The goal was to evaluate the effects and interactions of three key process parameters in chalcopyrite flotation: the dosages of sodium silicate (depressant), sodium isopropyl xanthate (collector), and acetoacetic acid n-Octyl ester (co-collector/modifier). The results implied that introducing acetoacetic acid n-Octyl ester along with minor tweaks in the dosages of sodium isopropyl xanthate helped increase copper grades by at least 15%, with good recovery percentiles. Among the three parameters tested, the copper’s grade and recovery were considerably positively influenced by the AoE dosage in the collector blend. Employing 0.006 kg/t sodium silicate and 0.0065 kg/t sodium isopropyl xanthate with 0.005 kg/t of acetoacetic acid n-Octyl ester, an optimum copper recovery of 88.87% could be achieved. However, with a sodium silicate dosage of 0.0048 kg/t, a SIPX dosage of 0.008 kg/t, and an AoE dosage of 0.005 kg/t, optimized copper grade (1.55%) could be achieved, which is a 78.1% increase from the feed sample grade. To validate the expected results, verification experiments were carried out, and the experimental findings were found to be on at par with the statistical model predictions. Furthermore, the calculated SPI value of 0.0000147cap Kg−1 for a global index per resident lies between 0 and 1. Full article
(This article belongs to the Special Issue Development of Flotation of Chalcopyrite)
Show Figures

Graphical abstract

17 pages, 1301 KiB  
Article
The Testing Results of ACORGA, LIX Extractants and CR60 Crud Mitigation Reagent Influence during SX-EW Copper Extraction
by Tatyana Chepushtanova, Meiyrbek Yessirkegenov, Yelena Bochevskaya, Ainash Sharipova, Omirserik Baigenzhenov, Yerik Merkibayev and Aliya Altmyshbayeva
Sustainability 2024, 16(17), 7815; https://doi.org/10.3390/su16177815 - 8 Sep 2024
Viewed by 2424
Abstract
Research analysis reveals factors influencing third-phase crud formation and composition during metal extraction, including solution composition, solid suspensions, organic compounds, colloidal compounds (e.g., silicic acid), and extractant purity. Compositional analysis of copper-containing sulfuric acid solutions (1.25 g/dm3 copper) identifies principal sulfate-forming components. [...] Read more.
Research analysis reveals factors influencing third-phase crud formation and composition during metal extraction, including solution composition, solid suspensions, organic compounds, colloidal compounds (e.g., silicic acid), and extractant purity. Compositional analysis of copper-containing sulfuric acid solutions (1.25 g/dm3 copper) identifies principal sulfate-forming components. Copper extraction was studied using extractants LIX 984N, ACORGA M5774, and M5640 at different ratios of the organic phase to the aqueous O:A (from 1:2 to 1:10). Suppressive impact of 10 vol.% CR60 additive on third-phase crud formation during copper extraction with LIX 984N, ACORGA M5774, and M5640 is analyzed, with ACORGA M5774 being the most effective. Physicochemical analysis characterizes CR60’s active substance as poly(sodium 4-styrenesulfonate) with steel-suppression properties, and its structural formula is determined. Optimal copper extraction conditions establish ACORGA M5640’s 24% efficiency, followed by ACORGA M5774 at 15%. CR60 reduces crud formation, with 5 cm3 of ACORGA CR60 added to sulfuric acid solution reducing interfacial crud formation by 2–3 times. Optimal extraction parameters include 1:2 O:A ratio, 20 ± 5 °C temperature, 5 cm3 CR60 additive, 5 min process duration, and 1-day settling time. ACORGA M5774 (10 vol.% in kerosene) is recommended as an extractant, with 2–3 stages of countercurrent extraction. Full article
(This article belongs to the Collection Waste Utilization and Resource Recovery)
Show Figures

Figure 1

26 pages, 2961 KiB  
Article
Tellurium Enrichment in Copper Tailings: A Mineralogical and Processing Study
by José L. Corchado-Albelo and Lana Alagha
Minerals 2024, 14(8), 761; https://doi.org/10.3390/min14080761 - 27 Jul 2024
Cited by 4 | Viewed by 2227
Abstract
As the global demand for tellurium (Te) increases, it is crucial to develop efficient recovery methods that consider existing supply streams. This research combines gravity separation and froth flotation processes to enhance the recovery of Te minerals from tailings produced during the beneficiation [...] Read more.
As the global demand for tellurium (Te) increases, it is crucial to develop efficient recovery methods that consider existing supply streams. This research combines gravity separation and froth flotation processes to enhance the recovery of Te minerals from tailings produced during the beneficiation of copper porphyry ores. Prior to processing, a systematic and comprehensive characterization study of copper tailing (CT) samples was conducted to examine the deportment of Te minerals in different mineral phases and to understand their locking and liberation behavior. Characterization techniques included inductively coupled plasma mass spectrometry (ICP-MS) and TESCAN’s integrated mineral analysis (TIMA). Copper tailing characterization showed that minerals with gold (Au), silver (Ag), bismuth (Bi), and Te were present in various forms, including native Au, electrum, tellurides, and sulfosalts. TIMA revealed that >90% of these minerals were primarily hosted in pyrite as less than 10 µm inclusions in the CT. TIMA also revealed that Te minerals exhibited fine-grained liberation of less than 20 μm. Moreover, TIMA results showed that >80% of mica and other silicate minerals were concentrated in size fractions < 38 μm, suggesting that desliming processes would positively impact Te enrichment. The results from the processing tests showed a Te recovery rate of ~77% and a Te enrichment ratio of 13 when using the combination of gravity separation and froth flotation at 90 g/t xanthate collector and 50 g/t glycol frother. The findings from this study show a significant potential for Te recovery from unconventional sources if appropriate physical beneficiation approaches are adopted. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

21 pages, 2501 KiB  
Review
Ex Situ Stabilization/Solidification Approaches of Marine Sediments Using Green Cement Admixtures
by Pravendra Yadav, Andrea Petrella, Francesco Todaro, Sabino De Gisi, Claudia Vitone, Rossella Petti and Michele Notarnicola
Materials 2024, 17(14), 3597; https://doi.org/10.3390/ma17143597 - 21 Jul 2024
Cited by 4 | Viewed by 1782
Abstract
The routine dredging of waterways produces huge volumes of sediments. Handling contaminated dredged sediments poses significant and diverse challenges around the world. In recent years, novel and sustainable ex situ remediation technologies for contaminated sediments have been developed and applied. This review article [...] Read more.
The routine dredging of waterways produces huge volumes of sediments. Handling contaminated dredged sediments poses significant and diverse challenges around the world. In recent years, novel and sustainable ex situ remediation technologies for contaminated sediments have been developed and applied. This review article focuses on cement-based binders in stabilizing contaminants through the stabilization/solidification (S/S) technique and the utilization of contaminated sediments as a resource. Through S/S techniques, heavy metals can be solidified and stabilized in dense and durable solid matrices, reducing their permeability and restricting their release into the environment. Industrial by-products like red mud (RM), soda residue (SR), pulverized fly ash (PFA), and alkaline granulated blast furnace slag (GGBS) can immobilize heavy metal ions such as lead, zinc, cadmium, copper, and chromium by precipitation. However, in a strong alkali environment, certain heavy metal ions might dissolve again. To address this, immobilization in low pH media can be achieved using materials like GGBS, metakaolin (MK), and incinerated sewage sludge ash (ISSA). Additionally, heavy metals can be also immobilized through the formation of silicate gels and ettringites during pozzolanic reactions by mechanisms such as adsorption, ion exchanges, and encapsulation. It is foreseeable that, in the future, the scientific community will increasingly turn towards multidisciplinary studies on novel materials, also after an evaluation of the effects on long-term heavy metal stabilization. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

14 pages, 6941 KiB  
Article
Reduction of Copper Smelting Slag by Carbon for Smelting Cu-Fe Alloy
by Weijun Huang, Yajing Liu and Tao Jiang
Alloys 2024, 3(3), 164-177; https://doi.org/10.3390/alloys3030010 - 20 Jul 2024
Viewed by 2524
Abstract
An innovative technology for the direct reduction of copper slag was studied while smelting Cu-Fe alloy by carbon to recover the main valuable elements from the copper smelting slag. The melting temperature of samples first decreased, followed by an increase in Fe3 [...] Read more.
An innovative technology for the direct reduction of copper slag was studied while smelting Cu-Fe alloy by carbon to recover the main valuable elements from the copper smelting slag. The melting temperature of samples first decreased, followed by an increase in Fe3O4 content in slag. The melting temperature reached the minimum temperature of 1157 °C once the Fe3O4 content was about 8 wt%. The recovery rate of copper and iron first increased gradually, followed by a rapid increase in the modifier (CaO). Subsequently, the rise in the recovery rate slowed down. The reduction rate of copper and iron only increased by 1.61% and 1.05% from 5 wt% CaO to 10 wt% CaO, but significantly increased by 8.89% and 14.21% from 10 wt% CaO to 25 wt% CaO, and remained almost unchanged beyond 25 wt% CaO. This could be attributed to the reaction between modifier (CaO) and silicate in acidic copper slag to generate low melting point composite oxide while replacing free iron oxides, improving the melting properties and reduction reaction. Meanwhile, the recovery rates of copper and iron increased with the increase of reaction time, reaction temperature, and reduction agent in a certain range. To obtain good element yield, the optimum conditions for reducing copper and iron from the molten copper slag were determined to be 1500 °C, 14 wt% C, 20–25 wt% CaO, and 60–80 min. The recovery rates of iron and copper reached about 90% and 85%, and the contents of iron and copper in alloy reached about 91–93 wt% and 5–7 wt%, respectively. The tailing was mainly composed of Ca3Si3O9, Ca(Mg,Al)(Si,Al)2O6, and SiO2, which could be used as a raw material for cement and pelletizing. Full article
Show Figures

Figure 1

Back to TopTop