Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (105)

Search Parameters:
Keywords = copper aluminum composite material

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 4914 KB  
Article
Research on the Production of Methyltrioxorhenium and Heterogenous Catalysts from Waste Materials
by Joanna Malarz, Karolina Goc, Mateusz Ciszewski, Karolina Pianowska, Patrycja Wróbel, Łukasz Hawełek, Dorota Kopyto and Katarzyna Leszczyńska-Sejda
Crystals 2025, 15(8), 717; https://doi.org/10.3390/cryst15080717 - 8 Aug 2025
Viewed by 335
Abstract
This paper presents the research results on the synthesis of rhenium catalysts MTO, Re2O7/Al2O3, and M-Re2O7/Al2O3 (where M = Ni, Ag, Co, Cu) from rhenium compounds (ammonium perrhenate, [...] Read more.
This paper presents the research results on the synthesis of rhenium catalysts MTO, Re2O7/Al2O3, and M-Re2O7/Al2O3 (where M = Ni, Ag, Co, Cu) from rhenium compounds (ammonium perrhenate, perrhenic acid, nickel(II) perrhenate, cobalt(II) perrhenate, zinc perrhenate, silver perrhenate, and copper(II) perrhenate) derived from waste materials. Methyltrioxorhenium (MTO) was obtained from silver perrhenate with a yield of over 80%, whereas when using nickel(II), cobalt(II), and zinc perrhenates, the product was contaminated with tin compounds and the yield did not exceed 17%. The Re2O7/Al2O3 and M-Re2O7/Al2O3 catalysts were obtained from the above-mentioned rhenium compounds. Alumina obtained in a calcination process of aluminum nitrate nonahydrate was used as a support. The catalysts were characterized in terms of their chemical and phase composition and physicochemical properties. Catalytic activity in model reactions, such as cyclohexene epoxidation and hex-1-ene homometathesis, was also studied. MTO obtained from silver perrhenate showed >70% activity in the epoxidation reaction, thus surpassing commercial MTO (1.0 mol% MTO, room temperature, and reaction time—2 h). Ag-Re2O7/Al2O3, Cu-Re2O7/Al2O3, and H-Re2O7/Al2O3 catalysts were inactive, while Co-Re2O7/Al2O3 and Ni-Re2O7/Al2O3 showed low activity (<43%) in the hex-1-ene homometathesis reaction. Only Re2O7/Al2O3 catalysts achieved >70% activity in this reaction (2.5 wt% Re, room temperature, and reaction time—2 h). The results indicate the potential of using rhenium compounds derived from waste materials to synthesize active catalysts for chemical processes. Full article
Show Figures

Figure 1

15 pages, 3645 KB  
Article
PVP-Regulated Self-Assembly of High-Strength Micrometer-Scale Al/CuO/AP Energetic Microspheres with Enhanced Reactivity
by Xuyang Wu, Hongbao Wang, Chenglong Jiao, Benbo Zhao, Shixiong Sun and Yunjun Luo
Polymers 2025, 17(14), 1994; https://doi.org/10.3390/polym17141994 - 21 Jul 2025
Viewed by 350
Abstract
Al-based nanocomposite energetic materials have broad application prospects in explosives and propellants, owing to their excellent energy release efficiency. However, their insufficient reliability, poor stability, and difficulty of formation limit their practical application. This study employed self-assembly using a hydrophilic polymer polyvinylpyrrolidone (PVP) [...] Read more.
Al-based nanocomposite energetic materials have broad application prospects in explosives and propellants, owing to their excellent energy release efficiency. However, their insufficient reliability, poor stability, and difficulty of formation limit their practical application. This study employed self-assembly using a hydrophilic polymer polyvinylpyrrolidone (PVP) together with nano-aluminum powder (Al), copper oxide (CuO), and ammonium perchlorate (AP) to obtain high-strength and high-activity composite micrometer-sized microspheres. The influence of PVP concentration on the mechanical behavior of Al/AP composite microspheres was systematically investigated, and Al was replaced with ultrasonically dispersed Al/CuO to explore the mechanism of action of PVP in the system and the catalytic behavior of CuO. PVP significantly enhanced the interfacial bonding strength. The Al/AP/5%PVP microspheres achieved a strength of 8.4 MPa under 40% compressive strain, representing a 365% increase relative to Al/AP. The Al/CuO/AP/5%PVP microspheres achieved a strength of 10.2 MPa, representing a 309% increase relative to Al/CuO. The mechanical properties of the composite microspheres were improved by more than threefold, and their thermal reactivities were also higher. This study provides a new method for the controlled preparation of high-strength, high-activity, micrometer-sized energetic microspheres. These materials are expected to be applied in composite solid propellants to enhance their combustion efficiency. Full article
(This article belongs to the Special Issue Eco-Friendly Polymeric Coatings and Adhesive Technology, 2nd Edition)
Show Figures

Figure 1

20 pages, 3918 KB  
Article
Engineered Cu0.5Ni0.5Al2O4/GCN Spinel Nanostructures for Dual-Functional Energy Storage and Electrocatalytic Water Splitting
by Abdus Sami, Sohail Ahmad, Ai-Dang Shan, Sijie Zhang, Liming Fu, Saima Farooq, Salam K. Al-Dawery, Hamed N. Harharah, Ramzi H. Harharah and Gasim Hayder
Processes 2025, 13(7), 2200; https://doi.org/10.3390/pr13072200 - 9 Jul 2025
Viewed by 403
Abstract
The rapid growth in population and industrialization have significantly increased global energy demand, placing immense pressure on finite and environmentally harmful conventional fossil fuel-based energy sources. In this context, the development of hybrid electrocatalysts presents a crucial solution for energy conversion and storage, [...] Read more.
The rapid growth in population and industrialization have significantly increased global energy demand, placing immense pressure on finite and environmentally harmful conventional fossil fuel-based energy sources. In this context, the development of hybrid electrocatalysts presents a crucial solution for energy conversion and storage, addressing environmental challenges while meeting rising energy needs. In this study, the fabrication of a novel bifunctional catalyst, copper nickel aluminum spinel (Cu0.5Ni0.5Al2O4) supported on graphitic carbon nitride (GCN), using a solid-state synthesis process is reported. Because of its effective interface design and spinel cubic structure, the Cu0.5Ni0.5Al2O4/GCN nanocomposite, as synthesized, performs exceptionally well in electrochemical energy conversion, such as the oxygen evolution reaction (OER), the hydrogen evolution reaction (HER), and energy storage. In particular, compared to noble metals, Pt/C- and IrO2-based water-splitting cells require higher voltages (1.70 V), while for the Cu0.5Ni0.5Al2O4/GCN nanocomposite, a voltage of 1.49 V is sufficient to generate a current density of 10 mA cm−2 in an alkaline solution. When used as supercapacitor electrode materials, Cu0.5Ni0.5Al2O4/GCN nanocomposites show a specific capacitance of 1290 F g−1 at a current density of 1 A g−1 and maintain a specific capacitance of 609 F g−1 even at a higher current density of 5 A g−1, suggesting exceptional rate performance and charge storage capacity. The electrode’s exceptional capacitive properties were further confirmed through the determination of the roughness factor (Rf), which represents surface heterogeneity and active area enhancement, with a value of 345.5. These distinctive characteristics render the Cu0.5Ni0.5Al2O4/GCN composite a compelling alternative to fossil fuels in the ongoing quest for a viable replacement. Undoubtedly, the creation of the Cu0.5Ni0.5Al2O4/GCN composite represents a significant breakthrough in addressing the energy crisis and environmental concerns. Owing to its unique composition and electrocatalytic characteristics, it is considered a feasible choice in the pursuit of ecologically sustainable alternatives to fossil fuels. Full article
Show Figures

Graphical abstract

12 pages, 2291 KB  
Article
Processing and Evaluation of an Aluminum Matrix Composite Material
by Calin-Octavian Miclosina, Remus Belu-Nica, Costel Relu Ciubotariu and Gabriela Marginean
J. Compos. Sci. 2025, 9(7), 335; https://doi.org/10.3390/jcs9070335 - 27 Jun 2025
Viewed by 554
Abstract
This study signifies the development and characterization of a composite material with a metallic matrix of aluminum reinforced with a steel mesh, utilizing centrifugal casting technology. An evaluation was conducted to ascertain the influence of the formulation process and the presence of the [...] Read more.
This study signifies the development and characterization of a composite material with a metallic matrix of aluminum reinforced with a steel mesh, utilizing centrifugal casting technology. An evaluation was conducted to ascertain the influence of the formulation process and the presence of the insert on the mechanical behavior with regard to tensile strength. The aluminum matrix was obtained from commercial and scrap alloys, elaborated by advanced methods of degassing and chemical modification. Meanwhile, the steel mesh reinforcement was cleaned, copper plated, and preheated to optimize wetting and, consequently, adhesion. The structural characterization was performed by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy analyses (EDX), which highlighted a well-defined interface and uniform copper distribution. The composite was produced by means of horizontal-axis centrifugal casting in a fiberglass mold, followed by cold rolling to obtain flat specimens. A total of eight tensile specimens were examined, with measured ultimate tensile strengths ranging from 78.5 to 119.8 (MPa). A thorough examination of the fractured specimens revealed a brittle fracture mechanism, devoid of substantial plastic deformation. The onset of failures was frequently observed at the interface between the aluminum matrix and the steel mesh. The use of SEM and EDX investigations led to the confirmation of the uniformity of the copper coating and the absence of significant porosity or interfacial defects. A bimodal distribution of tensile strength values was observed, a phenomenon that is likely attributable to variations in mesh positioning and local differences in solidification. A correlation was established between the experimental results and an analytical polynomial model, thereby confirming a reasonable fit. In sum, the present study provides a substantial foundation for the development of metal matrix composites with enhanced performance, specifically designed for challenging structural applications. This method also demonstrates potential for recycling aluminum scrap into high-performance composites with controlled microstructure and mechanical integrity. Full article
(This article belongs to the Special Issue Metal Composites, Volume II)
Show Figures

Figure 1

19 pages, 4579 KB  
Article
Effect of Heating Rate on the Properties and Mechanism of Nanocomposite Ceramic Coatings Prepared by Slurry Method
by Yuntian Zhang, Yinhui Li, Jiaqi Cao, Songyuchen Ma, Guangsong Chen, Kunquan Duan and Jie Liu
Appl. Sci. 2025, 15(12), 6561; https://doi.org/10.3390/app15126561 - 11 Jun 2025
Viewed by 492
Abstract
Nano-titanium dioxide ceramic coatings exhibit excellent wear resistance, corrosion resistance, and self-cleaning properties, showing great potential as multifunctional protective materials. This study proposes a synergistic reinforcement strategy by encapsulating micron-sized Al2O3 particles with nano-TiO2. A core-shell structured nanocomposite [...] Read more.
Nano-titanium dioxide ceramic coatings exhibit excellent wear resistance, corrosion resistance, and self-cleaning properties, showing great potential as multifunctional protective materials. This study proposes a synergistic reinforcement strategy by encapsulating micron-sized Al2O3 particles with nano-TiO2. A core-shell structured nanocomposite coating composed of 65 wt% nano-TiO2 encapsulating 30 wt% micron-Al2O3 was precisely designed and fabricated via a slurry dip-coating method on Q235 steel substrates. The microstructure and surface morphology of the coatings were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD). Comprehensive performance evaluations including densification, adhesion strength, wear resistance, and thermal shock resistance were conducted. Optimal coating properties were achieved under the conditions of a binder-to-solvent ratio of 1:15 (g/mL), a heating rate of 2 °C/min, and a sintering temperature of 400 °C. XRD analysis confirmed the formation of multiple crystalline phases during the 400 °C curing process, including titanium pyrophosphate (TiP2O7), aluminum phosphate (AlPO4), copper aluminate (Cu(AlO2)2), and a unique titanium phosphate phase (Ti3(PO4)4) exclusive to the 2 °C/min heating rate. Adhesion strength tests revealed that the coating sintered at 2 °C/min exhibited superior interfacial bonding strength and outstanding performance in wear resistance, hardness, and thermal shock resistance. The incorporation of nano-TiO2 into the 30 wt% Al2O3 matrix significantly enhanced the mechanical properties of the composite coating. Mechanistic studies indicated that the bonding between the nanocomposite coating and the metal substrate is primarily achieved through mechanical interlocking, forming a robust physical interface. These findings provide theoretical guidance for optimizing the fabrication process of metal-based ceramic coatings and expanding their engineering applications in various industries. Full article
Show Figures

Figure 1

20 pages, 6287 KB  
Article
Analysis of the Wear and Corrosion Resistance on Cu-Ni-Al Composites Reinforced with CeO2 Nanoparticles
by Carola Martínez, Bárbara Valverde, Aurora Del Valle-Rodríguez, Brennie Bustos-De La Fuente, Izabel Fernanda Machado and Francisco Briones
Materials 2025, 18(11), 2438; https://doi.org/10.3390/ma18112438 - 23 May 2025
Cited by 1 | Viewed by 536
Abstract
This study evaluates the wear and corrosion resistance of the Cu-50Ni-5Al alloy reinforced with CeO2 nanoparticles for potential use as anodes in molten carbonate fuel cells (MCFCs). Cu–50Ni–5Al alloys were synthesized, with and without the incorporation of 1% CeO2 nanoparticles, by [...] Read more.
This study evaluates the wear and corrosion resistance of the Cu-50Ni-5Al alloy reinforced with CeO2 nanoparticles for potential use as anodes in molten carbonate fuel cells (MCFCs). Cu–50Ni–5Al alloys were synthesized, with and without the incorporation of 1% CeO2 nanoparticles, by the mechanical alloying method and spark plasma sintering (SPS). The samples were evaluated using a single scratch test with a cone-spherical diamond indenter under progressive normal loading conditions. A non-contact 3D surface profiler characterized the scratched surfaces to support the analysis. Progressive loading tests indicated a reduction of up to 50% in COF with 1% NPs, with specific values drop-ping from 0.48 in the unreinforced alloy to 0.25 in the CeO2-doped composite at 15 N of applied load. Furthermore, the introduction of CeO2 decreased scratch depths by 25%, indicating enhanced wear resistance. The electrochemical behavior of the samples was evaluated by electrochemical impedance spectroscopy (EIS) in a molten carbonate medium under a H2/N2 atmosphere at 550 °C for 120 h. Subsequently, the corrosion products were characterized using X-ray diffraction (XRD), scanning electron microscopy coupled with energy dispersive spectroscopy (SEM-EDS), and X-ray photoelectron spectroscopy (XPS). The results demonstrated that the CeO2-reinforced alloy exhibits superior electro-chemical stability in molten carbonate environments (Li2CO3-K2CO3) under an H2/N2 atmosphere at 550 °C for 120 h. A marked reduction in polarization resistance and a pronounced re-passivation effect were observed, suggesting enhanced anodic protection. This effect is attributed to the formation of aluminum and copper oxides in both compositions, together with the appearance of NiO as the predominant phase in the materials reinforced with nanoparticles in a hydrogen-reducing atmosphere. The addition of CeO2 nanoparticles significantly improves wear resistance and corrosion performance. Recognizing this effect is vital for creating strategies to enhance the material’s durability in challenging environments like MCFC. Full article
Show Figures

Figure 1

27 pages, 6493 KB  
Article
Technological Alloying Impact on Formation of Phase Composition of Al-Fe-Si-X Alloys
by Violetta Andreyachshenko and Lenka Kunčická
Materials 2025, 18(9), 2096; https://doi.org/10.3390/ma18092096 - 2 May 2025
Viewed by 636
Abstract
Given by their low weight and favorable combination of properties, Al-Fe-Si-based intermetallic and duplex alloys are widely used in mechanical engineering. The use of aluminum scrap for their production imparts the necessity for a thorough study of the impacts of presence of impurity/alloying [...] Read more.
Given by their low weight and favorable combination of properties, Al-Fe-Si-based intermetallic and duplex alloys are widely used in mechanical engineering. The use of aluminum scrap for their production imparts the necessity for a thorough study of the impacts of presence of impurity/alloying elements on the phase composition. By this reason, individual impacts of the impurity/alloying elements present in the majority of commercial alloys on phase compositions of the alloys were studied herein. Particular emphasis was on the formation of the α phase and features of the α↔β transformation, as well as on their effects on the solidus, liquidus, and phase transformation temperatures. Modeling was used to study the synergistic effect of the simultaneous introduction of 12 elements into aluminum. According to the results, magnesium, copper, and nickel have a tendency to form combined intermetallic phases, and beryllium, as a structurally free element, forms precipitates even at minimum concentrations. Verification of the modelled results was performed using a real alloy prepared experimentally from commercially available raw materials. The comparison of the results provided by computer modeling and the actual phase composition showed sufficient agreement. The herein acquired results contribute to a deeper understanding of the features of phase transitions occurring during alloying of aluminum alloys and will also be useful for predicting microstructures and phase compositions of intermetallic alloys. This research has potential to inspire further development in materials science and engineering. Full article
(This article belongs to the Special Issue Microstructure and Mechanical Properties of Alloys (2nd Edition))
Show Figures

Figure 1

14 pages, 10319 KB  
Article
Effect of Transition Layers on the Microstructure and Properties of CMT Additively Manufactured Steel/Copper Specimens
by Xuyang Guo, Yulang Xu, Jingyong Li and Cheng Zhang
Materials 2025, 18(8), 1734; https://doi.org/10.3390/ma18081734 - 10 Apr 2025
Viewed by 531
Abstract
During the cold metal transfer (CMT) arc additive manufacturing process of steel/copper bimetallic materials, interfacial penetration cracks have been observed due to the significant differences in thermal and physical properties between steel and copper. To mitigate the occurrence of these penetration cracks and [...] Read more.
During the cold metal transfer (CMT) arc additive manufacturing process of steel/copper bimetallic materials, interfacial penetration cracks have been observed due to the significant differences in thermal and physical properties between steel and copper. To mitigate the occurrence of these penetration cracks and enhance the interfacial elemental diffusion at the steel/copper junction, this study aims to fabricate high-performance steel/copper bimetallic materials with a uniform microstructure using CMT arc additive manufacturing techniques. A reciprocating additive sequence was adopted, with steel deposited first, followed by copper. Four different interlayer compositions, Cu-Ni, Fe-Ni, Cu-Cr, and Ni-Cr, were applied to the steel surface before the deposition of aluminum bronze. These interlayers served as a transition between the steel and copper materials. The manufacturing process then continued with the deposition of aluminum bronze to achieve the desired bimetallic structure. After the addition of interlayers, all four sets of samples exhibited excellent macroscopic formability, with clear and smooth interlayer contours and no visible cracks or collapse defects at the junction interfaces. The mechanical properties of the composite walls were enhanced following the addition of the interlayers, with an increase in tensile strength observed across the samples. The sample with the Fe-Ni interlayer showed the most significant improvement, with a 52% increase in impact energy absorption. Furthermore, the sample with the Fe-Ni interlayer demonstrated a higher average hardness level than the other groups, which was associated with the distribution and content of the iron-rich phase and the β′ phase. Full article
Show Figures

Figure 1

15 pages, 4549 KB  
Article
Polytetrafluoroethylene and Aluminum Powder as an Alternative to Copper in Car Brakes Composite Friction Materials
by Andrzej Borawski, Dariusz Szpica and Grzegorz Mieczkowski
Materials 2025, 18(3), 589; https://doi.org/10.3390/ma18030589 - 28 Jan 2025
Viewed by 893
Abstract
Brakes are one of the most important systems of every vehicle. They have an undoubted impact on safety. Their effects produce wear products, which in the case of conventional composition of friction materials also means the content of copper in compounds emitted into [...] Read more.
Brakes are one of the most important systems of every vehicle. They have an undoubted impact on safety. Their effects produce wear products, which in the case of conventional composition of friction materials also means the content of copper in compounds emitted into the atmosphere. Its harmful effect makes it necessary to look for an alternative that will replace its excellent lubricating and thermal properties. This article presents prototype materials in which attempts were made to replace copper with powdered aluminum and polytetrafluoroethylene. Four types of samples were prepared—one group with a conventional composition, and three groups with an alternative composition, in different proportions. Using the previously developed methodology, friction tests were performed. As a result, the values of friction coefficients and abrasive wear rate were determined. The results show that the proposed material is characterized by lower values of the coefficient of friction and a higher value of the abrasive wear rate coefficient. Full article
Show Figures

Figure 1

14 pages, 10429 KB  
Article
Studies of Thermal Conductivity of Graphite Foil-Based Composite Materials
by Vladimir A. Shulyak, Nikolai S. Morozov, Roman A. Minushkin, Viktor Yu. Gubin, Dmitriy V. Vakhrushin, Alexandra V. Gracheva, Ildar Kh. Nigmatullin, Sergei N. Chebotarev and Viktor V. Avdeev
Materials 2025, 18(2), 233; https://doi.org/10.3390/ma18020233 - 8 Jan 2025
Cited by 2 | Viewed by 1250
Abstract
We have proposed and developed a method for measuring the thermal conductivity of highly efficient thermal conductors. The measurement method was tested on pure metals with high thermal conductivity coefficients: aluminum (99.999 wt.% Al) and copper (99.990 wt.% Cu). It was demonstrated that [...] Read more.
We have proposed and developed a method for measuring the thermal conductivity of highly efficient thermal conductors. The measurement method was tested on pure metals with high thermal conductivity coefficients: aluminum (99.999 wt.% Al) and copper (99.990 wt.% Cu). It was demonstrated that their thermal conductivities at a temperature of T = 22 ± 1 °C were <λAl> = 243 ± 3 W/m·K and <λCu> = 405 ± 4 W/m·K, which was in good agreement with values reported in the literature. Artificial graphite (ρG1 = 1.8 g/cm3) and natural graphite (ρG2 = 1.7 g/cm3) were used as reference carbon materials; the measured thermal conductivities were <λG1> = 87 ± 1 W/m·K and <λG2> = 145 ± 3 W/m·K, respectively. It is well established that measuring the thermal conductivity coefficient of thin flexible graphite foils is a complex metrological task. We have proposed to manufacture a solid rectangular sample formed by alternating layers of thin graphite foils connected by layers of ultra-thin polyethylene films. Computer modelling showed that, for equal thermal conductivities of solid products made of compacted thermally exfoliated graphite and products made of a composite material consisting of 100 layers of thin graphite foil and 99 layers of polyethylene, the differences in temperature fields did not exceed 1%. The obtained result substantiates our proposed approach to measuring thermal conductivity of flexible graphite foil by creating a multi-layer composite material. The thermal conductivity coefficient of such a composite at room temperature was <λGF> = 184 ± 6 W/m·K, which aligns well with measurements by the laser flash method. Full article
(This article belongs to the Section Carbon Materials)
Show Figures

Figure 1

16 pages, 32102 KB  
Article
Graphene/Metal Composites Decorated with Ni Nanoclusters: Mechanical Properties
by Vyacheslav Kolesnikov, Roman Mironov and Julia Baimova
Materials 2024, 17(23), 5753; https://doi.org/10.3390/ma17235753 - 24 Nov 2024
Viewed by 913
Abstract
With the developments in nanotechnology, the elaborate regulation of microstructure shows attractive potential in the design of new composite materials. Herein, composite materials composed of graphene network filled with metal nanoparticles are analyzed to optimize the fabrication process and mechanical properties. In the [...] Read more.
With the developments in nanotechnology, the elaborate regulation of microstructure shows attractive potential in the design of new composite materials. Herein, composite materials composed of graphene network filled with metal nanoparticles are analyzed to optimize the fabrication process and mechanical properties. In the present work, molecular dynamic simulations are used to analyze the possibility of obtaining a composite structure with Ni-decorated graphene. The weak bonding at the graphene–copper and graphene–aluminum interfaces is manipulated by functionalizing graphene with nickel nanoclusters. It is found that Ni decoration considerably increases interfacial bonding and, at the same time, prevents the formation of a strong graphene network. It is found that Ni decoration for the Al/graphene composite increases the its ductility by 0.6, while increasing it for the Cu/graphene composite by about 0.5. Ultimate tensile strength of the composite with Al and Cu is close and equal to 22 GPa, respectively. The strength of the composite with Ni-decorated graphene is much lower and equal to 13 GPa for Cu/graphene/Ni and 17 GPa for Al/graphene/Ni. While Young’s modulus for the Cu/graphene composite is 18 GPA, for Al/graphene, Al/graphene/Ni, and Cu/graphene/Ni, it is 12 GPa. The obtained results demonstrate the future prospects of the graphene modification for better composite enhancement. Full article
(This article belongs to the Special Issue Mechanical Behaviour of Advanced Metal and Composite Materials)
Show Figures

Graphical abstract

17 pages, 12866 KB  
Article
Influence of Ag-18Cu-10Zn Filler Material on Microstructure and Properties of Laser-Welded Al/Cu Dissimilar Butt Joints
by Ziquan He, Fei Liu, Ping Gao, Lihui Pang and Yong Su
Materials 2024, 17(23), 5726; https://doi.org/10.3390/ma17235726 - 22 Nov 2024
Cited by 2 | Viewed by 1031
Abstract
Dissimilar welding between aluminum and copper poses significant challenges, primarily due to differences in their thermal and mechanical properties, resulting in brittle intermetallic compounds, limited joint strength, and high electrical resistivity. This study aims to overcome these issues by employing Ag-18Cu-10Zn filler material [...] Read more.
Dissimilar welding between aluminum and copper poses significant challenges, primarily due to differences in their thermal and mechanical properties, resulting in brittle intermetallic compounds, limited joint strength, and high electrical resistivity. This study aims to overcome these issues by employing Ag-18Cu-10Zn filler material and optimizing laser power with a focus on improving joint strength and electrical conductivity. The results indicate that the incorporation of silver and zinc enhances the phase composition and microstructure of the weld. By forming solid solution phases such as Ag2Al and Cu5Zn8, the brittle Al2Cu phase commonly found in traditional Al/Cu welding is replaced. This not only promotes the heterogeneous nucleation of fine silver-rich grains but also restricts the excessive growth of silver-poor grains, resulting in a uniform distribution of fine grains throughout the weld. These modifications contribute to both fine-grain strengthening and dispersion strengthening. At an optimal laser power of 750 W, joint strength reaches 109 MPa, while joint resistivity decreases to 3.19 μΩ·cm, 12.6% lower than that of the aluminum alloy base material. This study proposes a process for achieving highly conductive, reliable Al/Cu dissimilar metal joints, potentially impacting the aluminum–copper connections in battery modules for new energy vehicles. Full article
Show Figures

Figure 1

40 pages, 49163 KB  
Article
Investigations on Microstructure, Mechanical, and Wear Properties, with Strengthening Mechanisms of Al6061-CuO Composites
by Subrahmanya Ranga Viswanath Mantha, Gonal Basavaraja Veeresh Kumar, Ramakrishna Pramod and Chilakalapalli Surya Prakasha Rao
J. Manuf. Mater. Process. 2024, 8(6), 245; https://doi.org/10.3390/jmmp8060245 - 5 Nov 2024
Cited by 5 | Viewed by 1515
Abstract
Metal matrix composites (MMCs) reinforced with Copper Oxide (CuO) and Aluminum (Al) 6061 (Al6061) alloys are being studied to determine their mechanical, physical, and dry sliding wear properties. The liquid metallurgical stir casting method with ultrasonication was employed for fabricating Al6061-CuO microparticle-reinforced composite [...] Read more.
Metal matrix composites (MMCs) reinforced with Copper Oxide (CuO) and Aluminum (Al) 6061 (Al6061) alloys are being studied to determine their mechanical, physical, and dry sliding wear properties. The liquid metallurgical stir casting method with ultrasonication was employed for fabricating Al6061-CuO microparticle-reinforced composite specimens by incorporating 2–6 weight percent (wt.%) CuO particles into the matrix. Physical, mechanical, and dry sliding wear properties were investigated in Al6061-CuO MMCs, adopting ASTM standards. The experimental results show that adding CuO to an Al6061 alloy increases its density by 7.54%, hardness by 45.78%, and tensile strength by 35.02%, reducing percentage elongation by 40.03%. Dry wear measurements on a pin-on-disc apparatus show that Al6061-CuO MMCs outperform the Al6061 alloy in wear resistance. Al6061-CuO MMCs’ strength has been predicted using many strengthening mechanism models and its elastic modulus through several models. The strengthening of Al6061-CuO MMCs is predominantly influenced by thermal mismatch, more so than by Hall–Petch, Orowan strengthening, and load transfer mechanisms. As the CuO content in the composite increases, the strengthening effects due to dislocation interactions between the matrix and reinforcement particles, the coefficient of thermal expansion (CTE) difference, grain refinement, and load transfer consistently improve. The Al6061-CuO MMCs were also examined using an optical microscope (OM), energy-dispersive spectroscopy (EDS), X-ray diffraction (XRD), and scanning electron microscopy (SEM) before and after fracture and wear tests. The investigation shows that an Al6061-CuO composite material with increased CuO reinforcement showed higher mechanical and tribological characteristics. Full article
Show Figures

Figure 1

14 pages, 15598 KB  
Article
Properties of Wedge Wire Bonded Connection Between a Composite Copper Core Aluminum Shell Wire and an 18650 Cylindrical Lithium-Ion Battery Cell
by Krzysztof Bieliszczuk and Tomasz M. Chmielewski
Materials 2024, 17(21), 5237; https://doi.org/10.3390/ma17215237 - 28 Oct 2024
Cited by 2 | Viewed by 1335
Abstract
Wedge wire bonding is a solid-state joining process that uses ultrasonic vibrations in combination with compression of the materials to establish an electrical connection. In the battery industry, this process is used to interconnect cylindrical battery cells due to its ease of implementation, [...] Read more.
Wedge wire bonding is a solid-state joining process that uses ultrasonic vibrations in combination with compression of the materials to establish an electrical connection. In the battery industry, this process is used to interconnect cylindrical battery cells due to its ease of implementation, high flexibility and ease of automation. Wire materials typically used in battery pack manufacturing are pure or alloyed aluminum and copper. While copper wires possess better electrical properties, the force used in the bonding process can lead to cell isolator damage and cell thermal runaway. This is an unacceptable result of the bonding process and has led to the development of new types of composite wires containing a copper core embedded in an aluminum shell. This material has the advantage of high copper electrical and thermal conductivity combined with less aggressive bonding parameters of the aluminum wire. The aim of this study was to establish a process window for the wedge wire bonding of 400 µm composite copper–aluminum Heraeus CucorAl Plus wire on the surface of a BAK 18650 battery cell. This study was conducted using a Hesse Bondjet BJ985 CNC wire bonder fitted with an RBK03 bond head designed for the bonding of copper wires. The methods used in this study included light and scanning electron microscopy of bond and battery cell cross-sections, shear testing on the XYZtec Sigma bond tester system, and energy dispersive spectroscopy. The results were compared with a previous study conducted using a wire of the same diameter and made out of high-purity aluminum. Full article
(This article belongs to the Special Issue Advances in Solid-State Welding Processes)
Show Figures

Figure 1

18 pages, 8433 KB  
Article
Towards More Sustainable Schiff Base Carboxylate Anodes for Sodium-Ion Batteries
by Irene Gómez-Berenguer, Bernardo Herradón, José Manuel Amarilla and Elizabeth Castillo-Martínez
Materials 2024, 17(19), 4918; https://doi.org/10.3390/ma17194918 - 8 Oct 2024
Viewed by 1297
Abstract
Bismine sodium salt (BSNa), a Schiff base with two sodium carboxylates, has shown promising electrochemical performance as an anode material. However, its synthesis involves toxic reagents and generates impurities, requiring significant solvent use for purification. This study introduces a novel synthetic method using [...] Read more.
Bismine sodium salt (BSNa), a Schiff base with two sodium carboxylates, has shown promising electrochemical performance as an anode material. However, its synthesis involves toxic reagents and generates impurities, requiring significant solvent use for purification. This study introduces a novel synthetic method using sodium hydroxide as the sole reagent, which acts as both a base and Na source in the ion exchange step. With this procedure, we reduce the amounts of chemicals, diminish toxicity, improve the purity of the target compound, and use less solvent while maintaining comparable electrochemical performance. Additionally, the procedure is carried out under anhydrous conditions that avoid the undesirable hydrolysis of the imine linkages. In a previous report, the processing of the composite electrode was not established. In this article, we address this issue; the electrochemical performance, specifically the rate capability, is enhanced by processing the electrodes in laminate form rather than powder. As alternative to N-methyl-2-pyrrolidone (NMP), a common but disadvantageous solvent in laminate processing, other solvents were explored by testing acetone (DMK), methylisopropylketone (MIPK), and a DMK-NMP mixture. The remarkable electrochemical performance (specific capacity of 260–280 mAh/g, and capacity retentions higher than 84% at 1C (260 mA/g) remained consistent across these solvents. Furthermore, we investigated replacing copper with aluminum as the current collector to reduce costs and increase the energy density of the battery. While aluminum performed comparably to copper at low specific currents C/10 (26 mA/g), it showed a significant shift in the redox process potentials at higher specific currents. Full article
(This article belongs to the Special Issue Advanced Anode Materials for Alkali-Ion Batteries)
Show Figures

Figure 1

Back to TopTop