Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (537)

Search Parameters:
Keywords = copper (I) sulfide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1920 KiB  
Article
Optimization of the Froth Flotation Process for the Enrichment of Cu and Co Concentrate from Low-Grade Copper Sulfide Ore
by Michal Marcin, Martin Sisol, Martina Laubertová, Jakub Kurty and Ema Gánovská
Materials 2025, 18(15), 3704; https://doi.org/10.3390/ma18153704 - 6 Aug 2025
Abstract
The increasing demand for critical raw materials such as copper and cobalt highlights the need for efficient beneficiation of low-grade ores. This study investigates a copper–cobalt sulfide ore (0.99% Cu, 0.028% Co) using froth flotation to produce high-grade concentrates. Various types of surfactants [...] Read more.
The increasing demand for critical raw materials such as copper and cobalt highlights the need for efficient beneficiation of low-grade ores. This study investigates a copper–cobalt sulfide ore (0.99% Cu, 0.028% Co) using froth flotation to produce high-grade concentrates. Various types of surfactants are applied in different ways, each serving an essential function such as acting as collectors, frothers, froth stabilizers, depressants, activators, pH modifiers, and more. A series of flotation tests employing different collectors (SIPX, PBX, AERO, DF 507B) and process conditions was conducted to optimize recovery and selectivity. Methyl isobutyl carbinol (MIBC) was consistently used as the foaming agent, and 700 g/L was used as the slurry density at 25 °C. Dosages of 30 and 100 g/t1 were used in all tests. Notably, adjusting the pH to ~4 using HCl significantly improved cobalt concentrate separation. The optimized flotation conditions yielded concentrates with over 15% Cu and metal recoveries exceeding 80%. Mineralogical characterization confirmed the selective enrichment of target metals in the concentrate. The results demonstrate the potential of this beneficiation approach to contribute to the European Union’s supply of critical raw materials. Full article
(This article belongs to the Special Issue Advances in Process Metallurgy and Metal Recycling)
Show Figures

Figure 1

23 pages, 2657 KiB  
Article
Enrichment Cultures of Extreme Acidophiles with Biotechnological Potential
by Khussain Valiyev, Aliya Yskak, Elena Latyuk, Alena Artykova, Rakhimbayev Berik, Vadim Chashkov and Aleksandr Bulaev
Mining 2025, 5(3), 49; https://doi.org/10.3390/mining5030049 - 1 Aug 2025
Viewed by 101
Abstract
The purpose of this work was to obtain specialized enrichment cultures from an original extreme acidophilic consortium of extremely acidophilic microorganisms and to study their microbial community composition and biotechnological potential. At temperatures of 25, 35, 40 and 50 °C, distinct enrichments of [...] Read more.
The purpose of this work was to obtain specialized enrichment cultures from an original extreme acidophilic consortium of extremely acidophilic microorganisms and to study their microbial community composition and biotechnological potential. At temperatures of 25, 35, 40 and 50 °C, distinct enrichments of extremely acidophilic microorganisms used in the processes of bioleaching sulfide ores were obtained using nutrient media containing ferrous sulfate, elemental sulfur and a copper sulfide concentrate as nutrient inorganic substrates, with and without the addition of 0.02% yeast extract. The microbial community composition was studied using the sequencing of the V3–V4 hypervariable region of the 16S rRNA genes. The different growth conditions led to changes in the microbial composition and relative abundance of mesophilic and moderately thermophilic, strict autotrophic and mixotrophic microorganisms in members of the genera Acidithiobacillus, Sulfobacillus, Leptospirillum, Acidibacillus, Ferroplasma and Cuniculiplasma. The dynamics of the oxidation of ferrous iron, sulfur, and sulfide minerals (pyrite and chalcopyrite) by the enrichments was also studied in the temperature range of 25 to 50 °C. The study of enrichment cultures using the molecular biological method using the metabarcoding method of variable V3–24 V4 fragments of 16S rRNA genes showed that enrichment cultures obtained under different conditions differed in composition, which can be explained by differences in the physiological properties of the identified microorganisms. Regarding the dynamics of the oxidation of ferrous ions, sulfur, and sulfide minerals (pyrite and chalcopyrite), each enrichment culture was studied at a temperature range of 25 to 50 °C and indicated that all obtained enrichments were capable of oxidizing ferrous iron, sulfur and minerals at different rates. The obtained enrichment cultures may be used in further work to increase bioleaching by using the suitable inoculum for the temperature and process conditions. Full article
Show Figures

Figure 1

9 pages, 1841 KiB  
Proceeding Paper
Cu-Modified Zn6In2S9 Photocatalyst for Hydrogen Production Under Visible-Light Irradiation
by Shota Fukuishi, Hideyuki Katsumata, Ikki Tateishi, Mai Furukawa and Satoshi Kaneco
Chem. Proc. 2025, 17(1), 4; https://doi.org/10.3390/chemproc2025017004 - 29 Jul 2025
Viewed by 141
Abstract
Copper-doped indium zinc sulfides were synthesized by heating and stirring a mixture of zinc chloride, indium chloride tetrahydrate, thioacetamide, and copper chloride at 180 °C for 18 h. Among these, Zn5.7Cu0.3In2S9 exhibited a hydrogen-producing activity of [...] Read more.
Copper-doped indium zinc sulfides were synthesized by heating and stirring a mixture of zinc chloride, indium chloride tetrahydrate, thioacetamide, and copper chloride at 180 °C for 18 h. Among these, Zn5.7Cu0.3In2S9 exhibited a hydrogen-producing activity of 1660 μmol/g·h, which was approximately five times higher than that of pristine indium zinc sulfide. Therefore, the catalyst was characterized to investigate the effect of Cu addition. PL results revealed that the incorporation of Cu reduced the fluorescence intensity, indicating suppressed recombination of photogenerated electron–hole pairs. DRS showed that the Cu addition enhanced optical absorption in the visible-light region and narrowed the band gap. These findings suggest that the incorporation of copper into indium zinc sulfide improves its photocatalytic activity. Full article
Show Figures

Figure 1

10 pages, 404 KiB  
Article
Flotation Separation of Chalcopyrite and Molybdenite by Eco-Friendly Microorganism Depressant Bacillus tropicus
by Guanghua Ai, Guosheng Xiao and Bo Feng
Minerals 2025, 15(7), 762; https://doi.org/10.3390/min15070762 - 21 Jul 2025
Viewed by 258
Abstract
In this study, Bacillus tropicus (BT), a non-toxic and eco-friendly microorganism, was employed to substitute traditional inorganic depressants in the flotation separation of copper-molybdenum sulfides. Single mineral flotation tests were performed to examine BT’s impact on the flotation behavior of molybdenite and chalcopyrite. [...] Read more.
In this study, Bacillus tropicus (BT), a non-toxic and eco-friendly microorganism, was employed to substitute traditional inorganic depressants in the flotation separation of copper-molybdenum sulfides. Single mineral flotation tests were performed to examine BT’s impact on the flotation behavior of molybdenite and chalcopyrite. The results indicated that excessive BT inhibited the flotation of both minerals, reducing their recoveries below 40%. At a BT dosage of 2.5 kg/t and pH 9.0, chalcopyrite recovery was 74.10%, while molybdenite recovery was 20.47%, achieving an effective separation of the two minerals. BT’s adsorption mechanism on molybdenite and chalcopyrite was analyzed through contact angle tests, thermogravimetric analysis, and Fourier transform infrared spectroscopy. These analyses revealed that increased BT absorption on molybdenite enhanced its surface hydrophilicity. This research offers a novel perspective on utilizing microorganisms as efficient flotation reagents. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

14 pages, 3147 KiB  
Article
Regulation of MXene Membranes with β-Lactoglobulin Nanofiber-Templated CuS Nanoparticles for Photothermal Antibacterial Effect
by Zhuang Liu, Chenxi Du, Xin Zhou and Gang Wei
Polymers 2025, 17(14), 1960; https://doi.org/10.3390/polym17141960 - 17 Jul 2025
Viewed by 294
Abstract
Developing advanced antimicrobial agents is critically imperative to address antibiotic-resistant infection crises. MXenes have emerged as a potential nanomedicine for antibacterial applications, but they suffer from suboptimal photothermal conversion efficiency and inherent cytotoxicity. Herein, we report the synthesis of MXene (Ti3C [...] Read more.
Developing advanced antimicrobial agents is critically imperative to address antibiotic-resistant infection crises. MXenes have emerged as a potential nanomedicine for antibacterial applications, but they suffer from suboptimal photothermal conversion efficiency and inherent cytotoxicity. Herein, we report the synthesis of MXene (Ti3C2)-based nanohybrids and hybrid membranes through firstly interfacial conjugation of self-assembled β-lactoglobulin nanofibers (β-LGNFs)-inspired copper sulfide nanoparticles (CuS NPs) onto MXene nanosheets, and subsequent vacuum filtration of the created β-LGNF-CuS/MXene nanohybrids. The constructed β-LGNF-CuS/MXene nanohybrids exhibit excellent photothermal conversion performances and satisfactory biocompatibility and minimal cytotoxicity toward mammalian cells, ascribing to the introduction of highly biocompatible β-LGNFs into the hybrid system. In addition, the fabricated β-LGNF-CuS/MXene hybrid membranes demonstrate high efficiency in antibacterial application through the synergistic photothermal and material-related antibacterial effects of both MXene and CuS NPs. Therefore, the ideas and findings shown in this study are useful for inspiring researchers to design and fabricate functional and biocompatible 2D material-based hybrid membranes for antimicrobial applications. Full article
Show Figures

Figure 1

14 pages, 1354 KiB  
Article
Assessment of the Interactions Between Hemicellulose Xylan and Kaolinite Clay: Structural Characterization and Adsorptive Behavior
by Enzo Díaz, Leopoldo Gutiérrez, Elizabeth Elgueta, Dariela Núñez, Isabel Carrillo-Varela and Vicente A. Hernández
Polymers 2025, 17(14), 1958; https://doi.org/10.3390/polym17141958 - 17 Jul 2025
Viewed by 314
Abstract
In this study, a methacrylic derivative of xylan (XYLMA) was synthesized through transesterification reactions, with the aim of evaluating its physicochemical behavior and its interaction with kaolinite particles. Structural characterization by FT-IR and NMR spectroscopy confirmed the incorporation of methacrylic groups into the [...] Read more.
In this study, a methacrylic derivative of xylan (XYLMA) was synthesized through transesterification reactions, with the aim of evaluating its physicochemical behavior and its interaction with kaolinite particles. Structural characterization by FT-IR and NMR spectroscopy confirmed the incorporation of methacrylic groups into the xylan (XYL) structure, with a degree of substitution of 0.67. Thermal analyses (TGA and DSC) showed a decrease in melting temperature and enthalpy in XYLMA compared to XYL, attributed to a loss of structural rigidity. Thermal analyses (TGA and DSC) revealed a decrease in the melting temperature and enthalpy of XYLMA compared to XYL, which is attributed to a loss of structural rigidity and a reduction in the crystalline order of the biopolymer. Aggregation tests in solution revealed that XYLMA exhibits amphiphilic behavior, forming micellar structures at a critical aggregation concentration (CAC) of 62 mg L−1. In adsorption studies on kaolinite, XYL showed greater affinity than XYLMA, especially at acidic pH, due to reduced electrostatic forces and a greater number of hydroxyl groups capable of forming hydrogen bonds with the mineral surface. In contrast, modification with methacrylic groups in XYLMA reduced its adsorption capacity, probably due to the formation of supramolecular aggregates. These results suggest that interactions between xylan and kaolinite clay are key to understanding the role that hemicelluloses play in increasing copper recovery when added to flotation cells during the processing of copper sulfide ores with high clay content. Full article
Show Figures

Figure 1

21 pages, 8512 KiB  
Article
Geogenic and Anthropogenic Origins of Mercury and Other Potentially Toxic Elements in the Ponce Enriquez Artisanal and Small-Scale Gold Mining District, Southern Ecuador
by Silvia Fornasaro, Paolo Fulignati, Anna Gioncada, Daniel Garces and Maurizio Mulas
Minerals 2025, 15(7), 725; https://doi.org/10.3390/min15070725 - 11 Jul 2025
Viewed by 558
Abstract
Artisanal and small-scale gold mining (ASGM) poses significant environmental challenges globally, particularly due to mercury (Hg) use. As an example, in Ecuador, Hg use still persists, despite its official ban in 2015. This study investigated the geogenic and anthropogenic contributions of potentially toxic [...] Read more.
Artisanal and small-scale gold mining (ASGM) poses significant environmental challenges globally, particularly due to mercury (Hg) use. As an example, in Ecuador, Hg use still persists, despite its official ban in 2015. This study investigated the geogenic and anthropogenic contributions of potentially toxic elements (PTEs) in the Ponce Enriquez Mining District (PEMD), a region characterized by hydrothermally altered basaltic bedrock and Au-mineralized quartz veins. To assess local baseline values and identify PTE-bearing minerals, a comprehensive geochemical, mineralogical, and petrographic analysis was conducted on bedrock and mineralized veins. These findings reveal distinct origins for the studied PTEs, which include Hg, As, Cu, Ni, Cr, Co, Sb, Zn, and V. Specifically, Hg concentrations in stream sediments downstream (up to 50 ppm) far exceed natural bedrock levels (0.03–0.707 ppm), unequivocally indicating significant anthropogenic input from gold amalgamation. Furthermore, copper shows elevated concentration primarily linked to gold extraction. Conversely, other elements like As, Ni, Cr, Co, Sb, Zn, and V are primarily exhibited to be naturally abundant in basalts due to the presence of primary mafic minerals and to hydrothermal alterations, with elevated concentrations particularly seen in sulfides like pyrite and arsenopyrite. To distinguish natural geochemical anomalies from mining-related contamination, especially in volcanic terrains, this study utilizes Upper Continental Crust (UCC) normalization and local bedrock baselines. This multi-faceted approach effectively helped to differentiate basalt subgroups and assess natural concentrations, thereby avoiding misinterpretations of naturally elevated element concentrations as mining-related pollution. Crucially, this work establishes a robust local geochemical baseline for the PEMD area, providing a critical framework for accurate environmental risk assessments and sustainable mineral resource management, and informing national environmental quality standards and remediation efforts in Ecuador. It underscores the necessity of evaluating local geology, including inherent mineralization, when defining environmental baselines and understanding the fate of PTEs in mining-impacted environments. Full article
Show Figures

Figure 1

15 pages, 2832 KiB  
Article
Processing of Low-Grade Cu–Pb–Zn Sulfide Polymetallic Ore Stockpiles for Sustainable Raw Material Recovery by Froth Flotation
by Michal Marcin, Martin Sisol, Martina Laubertová, Dominika Marcin Behunová and Igor Ďuriška
Processes 2025, 13(7), 2158; https://doi.org/10.3390/pr13072158 - 7 Jul 2025
Viewed by 362
Abstract
This study demonstrated the successful recovery of zinc, lead, and copper collective concentrates from historical metal-bearing mine tailings (sulfide–polymetallic ore with a composition of 7.38% Zn, 1.45% Pb, and 0.49% Cu) using froth flotation techniques, which were originally developed during uranium ore mining. [...] Read more.
This study demonstrated the successful recovery of zinc, lead, and copper collective concentrates from historical metal-bearing mine tailings (sulfide–polymetallic ore with a composition of 7.38% Zn, 1.45% Pb, and 0.49% Cu) using froth flotation techniques, which were originally developed during uranium ore mining. Froth flotation techniques were used to justify suitability for recovering metals. The effects of a dosage of the foaming agent Polyethylene glycol (PEG 600) at 50 and 100 g t−1, collector types Aerophine 3418A (AERO), Danafloat 067 (DF), and potassium ethyl xanthate (KEX) at 50 and 80 g t−1, and a suspension density of 300 and 500 g L−1 on froth flotation collective concentrates were investigated. The final collective concentrate achieved recoveries exceeding 91% for lead (Pb), 88% for copper (Cu), and 87% for zinc (Zn). The obtained concentrates were analyzed using Atomic Absorption Spectroscopy (AAS) and X-ray Fluorescence Spectrometry (XRF), while selected samples were further examined via Scanning Electron Microscopy (SEM) with Energy Dispersive X-ray Spectroscopy (EDS). The resulting sulfide concentrates can subsequently be treated using suitable hydrometallurgical techniques. The application of these concentrates in metal production would help reduce the environmental burden of mining activities. Full article
(This article belongs to the Special Issue Non-ferrous Metal Metallurgy and Its Cleaner Production)
Show Figures

Figure 1

20 pages, 9762 KiB  
Article
Wet Chemical-Synthesized Low-Loss Dielectric Composite Material Based on CuCl-Cu7S4 Nanoparticles and PVDF Copolymer
by Alexander A. Maltsev, Andrey A. Vodyashkin, Evgenia L. Buryanskaya, Olga Yu. Koval, Alexander V. Syuy, Sergei B. Bibikov, Irina E. Maltseva, Bogdan A. Parshin, Anastasia M. Stoynova, Pavel A. Mikhalev and Mstislav O. Makeev
Polymers 2025, 17(13), 1845; https://doi.org/10.3390/polym17131845 - 30 Jun 2025
Viewed by 302
Abstract
Polymer composites with high dielectric permittivity (>10) and low dielectric loss are critical for energy storage and microelectronic applications. This study reports on a semi-transparent composite of a PVDF copolymer filled with Cu7S4 nanoparticles synthesized via a wet chemical route. [...] Read more.
Polymer composites with high dielectric permittivity (>10) and low dielectric loss are critical for energy storage and microelectronic applications. This study reports on a semi-transparent composite of a PVDF copolymer filled with Cu7S4 nanoparticles synthesized via a wet chemical route. Only a small content (6%) of copper sulfide increases the dielectric permittivity of the material from 10.4 to 15.9 (1 kHz), maintaining a low dielectric loss coefficient (less than 0.1). The incorporated nanoparticles affect the morphology of the composite film surface and crystalline phases in the whole volume, which was studied with FTIR spectroscopy, differential scanning calorimetry and scanning probe microscopy. Full article
(This article belongs to the Special Issue Polymeric Composites: Manufacturing, Processing and Applications)
Show Figures

Figure 1

39 pages, 8474 KiB  
Article
Between Heritage Conservation and Forensic Science: An Analytical Study of Personal Items Found in Mass Graves of the Francoism (1939–1956) (Spain)
by María Teresa Doménech-Carbó, Trinidad Pasíes Oviedo, Ramón Canal Roca and Janire Múgica Mestanza
Molecules 2025, 30(13), 2783; https://doi.org/10.3390/molecules30132783 - 27 Jun 2025
Viewed by 322
Abstract
This article describes the case of the personal items found in common graves dated between 1939 and 1956 after the Spanish Civil War (1936–1939), located in Paterna’s cemetery (Spain). It was important in this study to know the state of the conservation of [...] Read more.
This article describes the case of the personal items found in common graves dated between 1939 and 1956 after the Spanish Civil War (1936–1939), located in Paterna’s cemetery (Spain). It was important in this study to know the state of the conservation of the objects and to obtain clues about their origin and use just as in a forensic study. This would allow the moral restitution of the historical memory of the victims of the war conflict. The multi-technique strategy has included light and electron microscopy, infrared spectroscopy and X-ray diffraction. Materials of the early 20th century used in pencil sharpeners, glasses, cutlery, lighters, rings, and buttons or medications contained in small bottles and boxes have been identified and have enabled the lives of their owners to be reconstructed during their imprisonment and execution. All these objects exhibited a thin layer of adipocere, a well-known compound in forensic science formed during the decomposition of human and animal corpses. Interestingly, rare corrosion processes have been identified in two of the objects analyzed, which are linked to their proximity to the decomposing corpses of the deceased. Copper sulfides and/or sulfates have been identified in the lighter, and scholzite, a zinc and calcium phosphate, has been identified in the glasses. Full article
Show Figures

Figure 1

15 pages, 2320 KiB  
Article
Enhanced Assessment of Transition Metal Copper Sulfides via Classification of Density of States Spectra
by Md Tohidul Islam, Catalina Victoria Ruiz, Claudia Loyola, Joaquin Peralta and Scott R. Broderick
Solids 2025, 6(3), 32; https://doi.org/10.3390/solids6030032 - 25 Jun 2025
Viewed by 465
Abstract
Understanding how crystal structure influences electronic properties is crucial for discovering new functional materials. In this study, we utilized Kernel Principal Component Analysis (KPCA) to classify and analyze the Density of States (DOS) of transition metal sulfide (TMS) compounds, particularly copper-based sulfides. By [...] Read more.
Understanding how crystal structure influences electronic properties is crucial for discovering new functional materials. In this study, we utilized Kernel Principal Component Analysis (KPCA) to classify and analyze the Density of States (DOS) of transition metal sulfide (TMS) compounds, particularly copper-based sulfides. By mapping high-dimensional DOS data into a lower-dimensional space, we identify clusters corresponding to different crystal systems and detect outliers with significant deviations from their expected groups. These outliers exhibit unusual electronic configurations, suggesting potential applications in semiconductors, thermoelectric devices, and optoelectronic devices. Projected Density of States (PDOS) analysis further reveals how orbital hybridization governs the electronic structure of these materials, highlighting key differences between structurally similar compounds. Additionally, we analyze phase stability through inter-cluster distance measurements, identifying potential phase transformations between closely related structures. The implications for this work in terms of modifying chemistries and generalized DOS predictions are discussed. Full article
Show Figures

Figure 1

24 pages, 6692 KiB  
Article
Application of Flotation Tailings as a Substitute for Cement in Concrete Structures for Environmental Protection and Sustainable Development—Part I: Sulfide Neutralization
by Vanja Đurđevac, Novica Staletović, Lidija Đurđevac Ignjatović, Violeta Jovanović, Nikola Vuković and Vesna Krstić
Materials 2025, 18(12), 2804; https://doi.org/10.3390/ma18122804 - 14 Jun 2025
Viewed by 456
Abstract
Flotation tailings (FT), as a product of the exploitation and processing of copper ore, represent a significant environmental and health risk due to the high content of heavy metals and sulfide compounds. Contemporary concepts of sustainable development and circular economy increasingly emphasize the [...] Read more.
Flotation tailings (FT), as a product of the exploitation and processing of copper ore, represent a significant environmental and health risk due to the high content of heavy metals and sulfide compounds. Contemporary concepts of sustainable development and circular economy increasingly emphasize the need for rational use of resources and minimization of all types of waste, including mining waste. In this context, the reuse of flotation tailings in the construction industry represents a significant step towards closing the material flow in the mining and construction sectors. In order to reduce the negative impact of FT on the environment, the possibility of its application as a substitute for a portion of cement in the production of concrete was investigated. The main challenge is to reduce the negative impact of sulfides, originating from sulfide compounds, in order to achieve the desired concrete quality. Limestone aggregates of different size fractions (0/4, 4/8, 8/16 mm) were used for sulfide neutralization. Pyrite concentrate was used as a sulfide source, which together with FT provides the mixtures FT-7, FT-14, FT-25, and FT-40, with sulfur contents of 7.56, 13.84, 25.02, and 39.82%, respectively. FT mixtures were used as a substitute for Portland cement (PC) in the preparation of concrete. Test methods included XRD (X-ray diffraction), XRF (X-ray fluorescence), SEM (scanning electron microscopy), LP (leaching procedure), TCLP (toxicity characterization leaching procedure), assessment of acid eluate generation potential (AP—acid potential, NP—neutralization potential, and NNP—net neutralization potential), NEN (determination of heavy metals in cured concrete eluate), and UCS (uniaxial compressive strength of cured concrete). The results showed that the chemical characteristics of FT, as well as the chemical and mechanical properties of hardened concrete, allow the efficient use of these tailings in concrete mixes, which significantly utilizes FT, reduces the generation of mining waste, and contributes to the reduction of the negative impact on the environment and achieving sustainable development in mining. Full article
Show Figures

Figure 1

36 pages, 5500 KiB  
Article
Metasomatic Mineral Systems with IOA, IOCG, and Affiliated Deposits: Ontology, Taxonomy, Lexicons, and Field Geology Data Collection Strategy
by Louise Corriveau, Jean-François Montreuil, Gabriel Huot-Vézina and Olivier Blein
Minerals 2025, 15(6), 638; https://doi.org/10.3390/min15060638 - 11 Jun 2025
Viewed by 413
Abstract
Metasomatic iron and alkali-calcic (MIAC) mineral systems form district-scale metasomatic footprints in the upper crust that are genetically associated with iron oxide–apatite (IOA), iron oxide and iron sulfide copper–gold (IOCG, ISCG), skarn, and affiliated critical and precious metal deposits. The development of MIAC [...] Read more.
Metasomatic iron and alkali-calcic (MIAC) mineral systems form district-scale metasomatic footprints in the upper crust that are genetically associated with iron oxide–apatite (IOA), iron oxide and iron sulfide copper–gold (IOCG, ISCG), skarn, and affiliated critical and precious metal deposits. The development of MIAC systems is characterized by series of alteration facies that form key mappable entities in the field and along drill cores. Each facies can precipitate deposit types specific to the facies or host deposits formed at a subsequent facies. Defining the spatial and temporal relations between alteration facies and host rocks as well as with pre, syn, and post MIAC magmatic, tectonic, and mineralization events is essential to understanding the evolution of a MIAC system and to evaluating its overall mineral prospectivity. This paper proposes an ontology for MIAC systems that frames the key characteristics of the main alteration facies described and links it to a taxonomy and descriptive lexicons that allow the user to build an efficient data collection system tailored to the description of MIAC systems. The application developed by the Geological Survey of Canada for collecting field data is used as an example. The data collection system, including the application for collecting field data and the lexicons, are applicable to regional- and deposit-scale geological mapping as well as to drill core logging. They respond to the need for the metallogenic mapping of mineral systems and the development of more robust mineral prospectivity maps and exploration strategies for the discovery of critical and precious metal resources in MIAC systems. Full article
Show Figures

Graphical abstract

15 pages, 1981 KiB  
Article
Substrate-Dependent Characteristics of CuSbS2 Solar Absorber Layers Grown by Spray Pyrolysis
by Samaneh Shapouri, Elnaz Irani, Payam Rajabi Kalvani, Stefano Pasini, Gianluca Foti, Antonella Parisini and Alessio Bosio
Coatings 2025, 15(6), 683; https://doi.org/10.3390/coatings15060683 - 6 Jun 2025
Viewed by 655
Abstract
Copper antimony sulfide (CuSbS2) is an affordable and eco-friendly solar absorber with an optimal bandgap and high absorption coefficient, and it stands out as a promising candidate for thin-film solar cells. This study investigates the effects of indium tin oxide (ITO), [...] Read more.
Copper antimony sulfide (CuSbS2) is an affordable and eco-friendly solar absorber with an optimal bandgap and high absorption coefficient, and it stands out as a promising candidate for thin-film solar cells. This study investigates the effects of indium tin oxide (ITO), fluorine-doped tin oxide (FTO), and glass substrates on the microstructural, morphological, and optical properties of CuSbS2 (CAS) layers synthesized via spray pyrolysis. X-ray Diffraction (XRD) and Raman spectroscopy analyses revealed that CAS phases formed on ITO and FTO substrates exhibited a phase composition without additional copper phases. However, the CAS layer on glass contained a copper sulfide (CuS) phase, which can be detrimental for solar cell applications. Furthermore, the influences of the substrate morphology and contact angle on the growth mechanisms of CAS layers was examined, highlighting the relationship between the substrate micromorphology and the resultant film characteristics. Advanced image processing techniques applied to Atomic Force Microscopy (AFM) images of the substrate surfaces facilitated a comprehensive comparison with the surface characteristics of the CAS films grown on those substrates. Field Emission Scanning Electron Microscopy (FESEM) indicated that CAS layers on ITO possessed larger grains than FTO, whereas those on FTO exhibited lower roughness with a more uniform grain distribution. Notably, the optical properties of the CAS layers correlated strongly with their microstructural and morphological characteristics. This work highlights the critical influence of substrate choice on the growth and characteristics of CAS layers through a comparative analysis. Full article
Show Figures

Graphical abstract

14 pages, 1486 KiB  
Article
Synthesis of Ethynyl Trifluoromethyl Sulfide and Its Application to the Synthesis of CF3S-Containing Triazoles
by Alejandra Riesco-Domínguez, Hussein Hammoudeh, Daniel Blanco-Ania and Floris P. J. T. Rutjes
Molecules 2025, 30(11), 2358; https://doi.org/10.3390/molecules30112358 - 28 May 2025
Viewed by 1014
Abstract
The unprecedented use of ethynyl trifluoromethyl sulfide (CF3S–C≡CH) as a synthetically useful building block has been described for the first time. It was reacted with various aromatic and aliphatic azides under copper-catalyzed conditions to yield a novel class of 1,4-disubstituted triazoles [...] Read more.
The unprecedented use of ethynyl trifluoromethyl sulfide (CF3S–C≡CH) as a synthetically useful building block has been described for the first time. It was reacted with various aromatic and aliphatic azides under copper-catalyzed conditions to yield a novel class of 1,4-disubstituted triazoles bearing the SCF3 group (15 examples, up to 86% yield). Full article
(This article belongs to the Special Issue Synthesis, Modification and Application of Heterocyclic Compounds)
Show Figures

Graphical abstract

Back to TopTop