Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (337)

Search Parameters:
Keywords = cooperative wireless communication

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 902 KiB  
Article
A Fuzzy-Based Relay Security Algorithm for Wireless Sensor Networks
by Nan-I Wu, Tung-Huang Feng and Min-Shiang Hwang
Sensors 2025, 25(14), 4422; https://doi.org/10.3390/s25144422 - 16 Jul 2025
Viewed by 303
Abstract
Wireless sensor network data is an important source of big data. A sensor node cooperatively transmits or forwards data through intermediate nodes to a collection center, which is then aggregated for big data analysis and application. The relay selection algorithm selects the best [...] Read more.
Wireless sensor network data is an important source of big data. A sensor node cooperatively transmits or forwards data through intermediate nodes to a collection center, which is then aggregated for big data analysis and application. The relay selection algorithm selects the best transmissible node among the candidate nodes to fully exploit the limited resources of the sense nodes and extend the network lifecycle. A wireless sensor network relay selection algorithm based on a fuzzy inference system often uses sorting methods or random methods as the selection mechanism to choose when the fuzzy system outputs the same result. However, in the state of communication, networks often face the retransmission of lost packets, which consumes excess electricity. This study proposes a contraindicated safety selection mechanism algorithm to address equal output values in fuzzy systems. The proposed algorithm effectively reduces the retransmission probability to achieve benefits that isolate destructive or malicious nodes, thereby maintaining a higher network lifespan and safety. Full article
Show Figures

Figure 1

35 pages, 2297 KiB  
Article
Secure Cooperative Dual-RIS-Aided V2V Communication: An Evolutionary Transformer–GRU Framework for Secrecy Rate Maximization in Vehicular Networks
by Elnaz Bashir, Francisco Hernando-Gallego, Diego Martín and Farzaneh Shoushtari
World Electr. Veh. J. 2025, 16(7), 396; https://doi.org/10.3390/wevj16070396 - 14 Jul 2025
Viewed by 239
Abstract
The growing demand for reliable and secure vehicle-to-vehicle (V2V) communication in next-generation intelligent transportation systems has accelerated the adoption of reconfigurable intelligent surfaces (RIS) as a means of enhancing link quality, spectral efficiency, and physical layer security. In this paper, we investigate the [...] Read more.
The growing demand for reliable and secure vehicle-to-vehicle (V2V) communication in next-generation intelligent transportation systems has accelerated the adoption of reconfigurable intelligent surfaces (RIS) as a means of enhancing link quality, spectral efficiency, and physical layer security. In this paper, we investigate the problem of secrecy rate maximization in a cooperative dual-RIS-aided V2V communication network, where two cascaded RISs are deployed to collaboratively assist with secure data transmission between mobile vehicular nodes in the presence of eavesdroppers. To address the inherent complexity of time-varying wireless channels, we propose a novel evolutionary transformer-gated recurrent unit (Evo-Transformer-GRU) framework that jointly learns temporal channel patterns and optimizes the RIS reflection coefficients, beam-forming vectors, and cooperative communication strategies. Our model integrates the sequence modeling strength of GRUs with the global attention mechanism of transformer encoders, enabling the efficient representation of time-series channel behavior and long-range dependencies. To further enhance convergence and secrecy performance, we incorporate an improved gray wolf optimizer (IGWO) to adaptively regulate the model’s hyper-parameters and fine-tune the RIS phase shifts, resulting in a more stable and optimized learning process. Extensive simulations demonstrate the superiority of the proposed framework compared to existing baselines, such as transformer, bidirectional encoder representations from transformers (BERT), deep reinforcement learning (DRL), long short-term memory (LSTM), and GRU models. Specifically, our method achieves an up to 32.6% improvement in average secrecy rate and a 28.4% lower convergence time under varying channel conditions and eavesdropper locations. In addition to secrecy rate improvements, the proposed model achieved a root mean square error (RMSE) of 0.05, coefficient of determination (R2) score of 0.96, and mean absolute percentage error (MAPE) of just 0.73%, outperforming all baseline methods in prediction accuracy and robustness. Furthermore, Evo-Transformer-GRU demonstrated rapid convergence within 100 epochs, the lowest variance across multiple runs. Full article
Show Figures

Figure 1

24 pages, 1307 KiB  
Article
A Self-Supervised Specific Emitter Identification Method Based on Contrastive Asymmetric Masked Learning
by Dong Wang, Yonghui Huang, Tianshu Cui and Yan Zhu
Sensors 2025, 25(13), 4023; https://doi.org/10.3390/s25134023 - 27 Jun 2025
Viewed by 303
Abstract
Specific emitter identification (SEI) is a core technology for wireless device security that plays a crucial role in protecting wireless communication systems from various security threats. However, current deep learning-based SEI methods heavily rely on large amounts of labeled data for supervised training, [...] Read more.
Specific emitter identification (SEI) is a core technology for wireless device security that plays a crucial role in protecting wireless communication systems from various security threats. However, current deep learning-based SEI methods heavily rely on large amounts of labeled data for supervised training, facing challenges in non-cooperative communication scenarios. To address these issues, this paper proposes a novel contrastive asymmetric masked learning-based SEI (CAML-SEI) method, effectively solving the problem of SEI under scarce labeled samples. The proposed method constructs an asymmetric auto-encoder architecture, comprising an encoder network based on channel squeeze-and-excitation residual blocks to capture radio frequency fingerprint (RFF) features embedded in signals, while employing a lightweight single-layer convolutional decoder for masked signal reconstruction. This design promotes the learning of fine-grained local feature representations. To further enhance feature discriminability, a learnable non-linear mapping is introduced to compress high-dimensional encoded features into a compact low-dimensional space, accompanied by a contrastive loss function that simultaneously achieves feature aggregation of positive samples and feature separation of negative samples. Finally, the network is jointly optimized by combining signal reconstruction and feature contrast tasks. Experiments conducted on real-world ADS-B and Wi-Fi datasets demonstrate that the proposed method effectively learns generalized RFF features, and the results show superior performance compared with other SEI methods. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

22 pages, 1423 KiB  
Article
On the Performance of Non-Lambertian Relay-Assisted 6G Visible Light Communication Applications
by Jupeng Ding, Chih-Lin I, Jintao Wang and Hui Yang
Photonics 2025, 12(6), 541; https://doi.org/10.3390/photonics12060541 - 26 May 2025
Viewed by 317
Abstract
Visible light communication (VLC) has become one important candidate technology for beyond 5G and even 6G wireless networks, mainly thanks to its abundant unregulated light spectrum resource and the ubiquitous deployment of light-emitting diodes (LED)-based illumination infrastructures. Due to the high directivity of [...] Read more.
Visible light communication (VLC) has become one important candidate technology for beyond 5G and even 6G wireless networks, mainly thanks to its abundant unregulated light spectrum resource and the ubiquitous deployment of light-emitting diodes (LED)-based illumination infrastructures. Due to the high directivity of VLC channel propagation, relay-based cooperative techniques have been introduced and explored to enhance the transmission performance of VLC links. Nevertheless, almost all current works are limited to scenarios adopting well-known Lambertian transmitter and relay, which fail to characterize the scenarios with distinctive non-Lambertian transmitter or relay. For filling this gap, in this article, relay-assisted VLC employing diverse non-Lambertian optical beam configurations is proposed. Unlike the conventional Lambertian transmitter and relay-based research paradigm, the presented scheme employs the commercially available non-Lambertian transmitter and relay to configure the cooperative VLC links. Numerical results illustrate that up to 40.63 dB SNR could be provided by the proposed non-Lambertian relay-assisted VLC scheme, compared with about a 34.22 dB signal-to-noise ratio (SNR) of the benchmark Lambertian configuration. Full article
Show Figures

Figure 1

23 pages, 2331 KiB  
Article
A Secure Data Collection Method Based on Deep Reinforcement Learning and Lightweight Authentication
by Yunlong Wang, Jie Zhang, Guangjie Han and Dugui Chen
World Electr. Veh. J. 2025, 16(5), 281; https://doi.org/10.3390/wevj16050281 - 19 May 2025
Viewed by 574
Abstract
Cooperative Unmanned Aerial Vehicle (UAV) technology can significantly improve data acquisition in Internet of Things (IoT) environments, which are characterized by wide distribution and limited capacity of ground-based devices. However, due to the open nature of wireless communications, such applications face security threats [...] Read more.
Cooperative Unmanned Aerial Vehicle (UAV) technology can significantly improve data acquisition in Internet of Things (IoT) environments, which are characterized by wide distribution and limited capacity of ground-based devices. However, due to the open nature of wireless communications, such applications face security threats posed by UAV authentication, especially in scalable IoT environments. To address such challenges, we propose a lightweight chain authentication protocol for scalable IoT environments (LCAP-SIoT), which uses Physical Unclonable Functions (PUFs) and distributed authentication to secure communications, and a secure data collection algorithm, named LS-QMIX, which fuses the LCAP-SIoT and Q-learning Mixer (QMIX) algorithm to optimize the path planning and cooperation efficiency of the multi-UAV system. According to simulation analysis, LCAP-SIoT outperforms existing solutions in terms of computing and communication costs, and LS-QMIX results in superior performance in terms of data collection rate, task completion time, and the success rate of authentication for newly joined UAVs, indicating the feasibility of LS-QMIX in dynamic expansion scenarios. Full article
Show Figures

Figure 1

17 pages, 2156 KiB  
Article
Data-Driven Distributed Model-Free Adaptive Predictive Control for Multiple High-Speed Trains Under False Data Injection Attacks
by Bin Zhang, Dan Wang and Fuzhong Wang
Algorithms 2025, 18(5), 267; https://doi.org/10.3390/a18050267 - 4 May 2025
Viewed by 357
Abstract
This paper investigates the problem of ensuring the stable operation of multiple high-speed train systems under the threat of False Data Injection (FDI) attacks. Due to the wireless communication characteristics of railway networks, high-speed train systems are particularly vulnerable to FDI attacks, which [...] Read more.
This paper investigates the problem of ensuring the stable operation of multiple high-speed train systems under the threat of False Data Injection (FDI) attacks. Due to the wireless communication characteristics of railway networks, high-speed train systems are particularly vulnerable to FDI attacks, which can compromise the accuracy of train data and disrupt cooperative control strategies. To mitigate this risk, we propose a Distributed Model-Free Adaptive Predictive Control (DMFAPC) scheme, which is data-driven and does not rely on an accurate system model. First, by using a dynamic linearization method, we transform the nonlinear high-speed train system model into a dynamically linearized model. Then, based on the above linearized model, we design a DMFAPC control strategy that ensures bounded train velocity tracking errors even in the presence of FDI attacks. Finally, the stability of the proposed scheme is rigorously analyzed using the contraction mapping method, and simulation results demonstrate that the scheme exhibits excellent robustness and stability under attack conditions. Full article
Show Figures

Figure 1

29 pages, 3403 KiB  
Review
A Review of Physical Layer Security in Aerial–Terrestrial Integrated Internet of Things: Emerging Techniques, Potential Applications, and Future Trends
by Yixin He, Jingwen Wu, Lijun Zhu, Fanghui Huang, Baolei Wang, Deshan Yang and Dawei Wang
Drones 2025, 9(4), 312; https://doi.org/10.3390/drones9040312 - 16 Apr 2025
Viewed by 1117
Abstract
The aerial–terrestrial integrated Internet of Things (ATI-IoT) utilizes both aerial platforms (e.g., drones and high-altitude platform stations) and terrestrial networks to establish comprehensive and seamless connectivity across diverse geographical regions. The integration offers significant advantages, including expanded coverage in remote and underserved areas, [...] Read more.
The aerial–terrestrial integrated Internet of Things (ATI-IoT) utilizes both aerial platforms (e.g., drones and high-altitude platform stations) and terrestrial networks to establish comprehensive and seamless connectivity across diverse geographical regions. The integration offers significant advantages, including expanded coverage in remote and underserved areas, enhanced reliability of data transmission, and support for various applications such as emergency communications, vehicular ad hoc networks, and intelligent agriculture. However, due to the inherent openness of wireless channels, ATI-IoT faces potential network threats and attacks, and its security issues cannot be ignored. In this regard, incorporating physical layer security techniques into ATI-IoT is essential to ensure data integrity and confidentiality. Motivated by the aforementioned factors, this review presents the latest advancements in ATI-IoT that facilitate physical layer security. Specifically, we elucidate the endogenous safety and security of wireless communications, upon which we illustrate the current status of aerial–terrestrial integrated architectures along with the functions of their components. Subsequently, various emerging techniques (e.g., intelligent reflective surfaces-assisted networks, device-to-device communications, covert communications, and cooperative transmissions) for ATI-IoT enabling physical layer security are demonstrated and categorized based on their technical principles. Furthermore, given that aerial platforms offer flexible deployment and high re-positioning capabilities, comprehensive discussions on practical applications of ATI-IoT are provided. Finally, several significant unresolved issues pertaining to technical challenges as well as security and sustainability concerns in ATI-IoT enabling physical layer security are outlined. Full article
(This article belongs to the Special Issue Physical-Layer Security in Drone Communications—2nd Edition)
Show Figures

Figure 1

16 pages, 2500 KiB  
Article
Outage Performance of SWIPT-D2D-Based Hybrid Satellite–Terrestrial Networks
by Zhen Li, Jian Xing and Jinhui Hu
Sensors 2025, 25(8), 2393; https://doi.org/10.3390/s25082393 - 9 Apr 2025
Viewed by 328
Abstract
This paper investigates the outage performance of simultaneous wireless information and power transfer (SWIPT)-assisted device-to-device (D2D)-based hybrid satellite–terrestrial networks (HSTNs). In the considered system, an energy-constrained terrestrial user terminal (UT) harvests energy from the radio frequency (RF) signal of a terrestrial amplify-and-forward (AF) [...] Read more.
This paper investigates the outage performance of simultaneous wireless information and power transfer (SWIPT)-assisted device-to-device (D2D)-based hybrid satellite–terrestrial networks (HSTNs). In the considered system, an energy-constrained terrestrial user terminal (UT) harvests energy from the radio frequency (RF) signal of a terrestrial amplify-and-forward (AF) relay and utilizes the harvested energy to cooperate with the shadowed terrestrial Internet of Things (IoT) devices in a D2D communication. Both power splitting (PS)-based and time switching (TS)-based SWIPT-D2D schemes are adopted by the energy-constrained UT to obtain sustainable energy for transmitting information to the shadowed IoT device. Considering shadowed Rician fading for satellite–terrestrial links and Nakagami-m fading for terrestrial links, we analyze the system performance by deriving the closed-form expressions for the outage probability (OP) of both the UT and the IoT device. Our theoretical analyses are validated via Monte Carlo simulations. Full article
(This article belongs to the Special Issue Advanced Technologies in 5G/6G-Enabled IoT Environments and Beyond)
Show Figures

Figure 1

31 pages, 9117 KiB  
Article
Intelligent Omni-Surface-Assisted Cooperative Hybrid Non-Orthogonal Multiple Access: Enhancing Spectral Efficiency Under Imperfect Successive Interference Cancellation and Hardware Distortions
by Helen Sheeba John Kennedy and Vinoth Babu Kumaravelu
Sensors 2025, 25(7), 2283; https://doi.org/10.3390/s25072283 - 3 Apr 2025
Cited by 1 | Viewed by 458
Abstract
Non-orthogonal multiple access (NOMA) has emerged as a key enabler of massive connectivity in next-generation wireless networks. However, conventional NOMA studies predominantly focus on two-user scenarios, limiting their scalability in practical multi-user environments. A critical challenge in these systems is error propagation in [...] Read more.
Non-orthogonal multiple access (NOMA) has emerged as a key enabler of massive connectivity in next-generation wireless networks. However, conventional NOMA studies predominantly focus on two-user scenarios, limiting their scalability in practical multi-user environments. A critical challenge in these systems is error propagation in successive interference cancellation (SIC), which is further exacerbated by hardware distortions (HWDs). Hybrid NOMA (HNOMA) mitigates SIC errors and reduces system complexity, yet cell-edge users (CEUs) continue to experience degraded sum spectral efficiency (SSE) and throughput. Cooperative NOMA (C-NOMA) enhances CEU performance through retransmissions but incurs higher energy consumption. To address these limitations, this study integrates intelligent omni-surfaces (IOSs) into a cooperative hybrid NOMA (C-HNOMA) framework to enhance retransmission efficiency and extend network coverage. The closed-form expressions for average outage probability and throughput are derived, and a power allocation (PA) optimization framework is proposed to maximize SSE, with validation through Monte Carlo simulations. The introduction of a novel strong–weak strong–weak (SW-SW) user pairing strategy capitalizes on channel diversity, achieving an SSE improvement of ∼0.48% to ∼3.81% over conventional pairing schemes. Moreover, the proposed system demonstrates significant performance gains as the number of IOS elements increases, even under imperfect SIC (iSIC) and HWD conditions. By optimizing PA values, SSE is further enhanced by at least 2.24%, even with an SIC error of 0.01 and an HWD level of 8%. These results underscore the potential of an IOS-assisted C-HNOMA system with SW-SW pairing as a viable solution for improving multi-user connectivity, SSE, and system robustness in future wireless communication networks. Full article
(This article belongs to the Special Issue Performance Analysis of Wireless Communication Systems)
Show Figures

Graphical abstract

18 pages, 2863 KiB  
Article
Cooperative Intelligent Transport Systems: The Impact of C-V2X Communication Technologies on Road Safety and Traffic Efficiency
by Jingwen Wang, Ivan Topilin, Anastasia Feofilova, Mengru Shao and Yadong Wang
Sensors 2025, 25(7), 2132; https://doi.org/10.3390/s25072132 - 27 Mar 2025
Cited by 4 | Viewed by 1862
Abstract
The advancement of intelligent road transport represents a promising direction in the evolution of transportation systems, aimed at improving road safety and reducing traffic accidents. The integration of artificial intelligence, sensors, and machine vision systems enables autonomous vehicles (AVs) to rapidly adapt to [...] Read more.
The advancement of intelligent road transport represents a promising direction in the evolution of transportation systems, aimed at improving road safety and reducing traffic accidents. The integration of artificial intelligence, sensors, and machine vision systems enables autonomous vehicles (AVs) to rapidly adapt to changes in the road environment, minimizing human error and significantly reducing collision risks. These technologies provide continuous and highly precise control, including adaptive acceleration, braking, and maneuvering, thereby enhancing overall road safety. Connected vehicles utilizing C-V2X (Cellular Vehicle-to-Everything) communication primarily feature real-time operation, safety, and stability. However, communication flaws, such as signal fading, time delays, packet loss, and malicious network attacks, can affect vehicle-to-vehicle interactions in cooperative intelligent transport systems (C-ITSs). This study explores how C-V2X technology, compared to traditional DSRC, improves communication latency and enhances vehicle communication efficiency. Using SUMO simulations, various traffic scenarios were modeled with different autonomous vehicle penetration rates and communication technologies, focusing on traffic conflict rates, travel time, and communication performance. The results demonstrated that C-V2X reduced latency by over 99% compared to DSRC, facilitating faster communication between vehicles and contributing to a 38% reduction in traffic conflicts at 60% AV penetration. Traffic flow and safety improved with increased AV penetration, particularly in congested conditions. While C-V2X offers substantial benefits, challenges such as data packet loss, communication delays, and security vulnerabilities must be addressed to fully realize its potential. Future advancements in 5G and subsequent wireless communication technologies are expected to further reduce latency and enhance the effectiveness of C-ITSs. This study underscores the potential of C-V2X to enhance collision avoidance, alleviate congestion, and improve traffic management, while also contributing to the development of more reliable and efficient transportation systems. The continued refinement of simulation models and collaboration among stakeholders will be crucial to addressing the challenges in CAV integration and realizing the full benefits of connected transportation systems in smart cities. Full article
(This article belongs to the Special Issue IoT and Big Data Analytics for Smart Cities)
Show Figures

Figure 1

15 pages, 983 KiB  
Article
Spectrum Sensing Meets ISAC: An Spectrum Detection Scheme for ISAC Services Based on Improved Denoising Auto-Encoder and CNN
by Yuebo Li, Hengguo Song, Xiaoyang Ren, Zhiyue Zhang, Sichao Cheng and Xiaojun Jing
Appl. Sci. 2025, 15(6), 3381; https://doi.org/10.3390/app15063381 - 19 Mar 2025
Viewed by 646
Abstract
Integrated Sensing and Communications (ISAC) has attracted increasing attention due to more efficient utilization of both radio spectrum and hardwares. However, ISAC can only relieve the shortage of the spectrum, especially in the situation of exponential growth of wireless terminals. Efficient spectrum utilization [...] Read more.
Integrated Sensing and Communications (ISAC) has attracted increasing attention due to more efficient utilization of both radio spectrum and hardwares. However, ISAC can only relieve the shortage of the spectrum, especially in the situation of exponential growth of wireless terminals. Efficient spectrum utilization strategy is still an important direction for the continuous evolution of wireless communication technology. As such, spectrum sensing (SS) is discussed in ISAC scenarios, and a novel cooperative SS scheme is proposed by as an improved auto-encoder for more efficient spectrum utilization. More specifically, the parameters of each local spectrum spectrum-sensing network are encoded and sent to the central server, and the local network parameters are decoded, fused, and returned to each local node at the central server. The simulations are designed, and the experiment results demonstrate the effectiveness of the proposed scheme. Full article
Show Figures

Figure 1

25 pages, 2389 KiB  
Review
A Critical Analysis of Cooperative Caching in Ad Hoc Wireless Communication Technologies: Current Challenges and Future Directions
by Muhammad Ali Naeem, Rehmat Ullah, Sushank Chudhary and Yahui Meng
Sensors 2025, 25(4), 1258; https://doi.org/10.3390/s25041258 - 19 Feb 2025
Cited by 1 | Viewed by 964
Abstract
The exponential growth of wireless traffic has imposed new technical challenges on the Internet and defined new approaches to dealing with its intensive use. Caching, especially cooperative caching, has become a revolutionary paradigm shift to advance environments based on wireless technologies to enable [...] Read more.
The exponential growth of wireless traffic has imposed new technical challenges on the Internet and defined new approaches to dealing with its intensive use. Caching, especially cooperative caching, has become a revolutionary paradigm shift to advance environments based on wireless technologies to enable efficient data distribution and support the mobility, scalability, and manageability of wireless networks. Mobile ad hoc networks (MANETs), wireless mesh networks (WMNs), Wireless Sensor Networks (WSNs), and Vehicular ad hoc Networks (VANETs) have adopted caching practices to overcome these hurdles progressively. In this paper, we discuss the problems and issues in the current wireless ad hoc paradigms as well as spotlight versatile cooperative caching as the potential solution to the increasing complications in ad hoc networks. We classify and discuss multiple cooperative caching schemes in distinct wireless communication contexts and highlight the advantages of applicability. Moreover, we identify research directions to further study and enhance caching mechanisms concerning new challenges in wireless networks. This extensive review offers useful findings on the design of sound caching strategies in the pursuit of enhancing next-generation wireless networks. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

10 pages, 3762 KiB  
Article
All-Optical Single-Longitudinal-Mode Forward Brillouin Microwave Oscillator with an Unbalanced Fiber Mach–Zehnder Interferometer
by Xinyue Fang, Wenjun He, Wen Wang, Yi Liu, Yajun You, Qing Yan, Yafei Hou, Zepeng Wu, Lei Yu, Songquan Yan, Mingxing Li, Jian He and Xiujian Chou
Micromachines 2025, 16(2), 209; https://doi.org/10.3390/mi16020209 - 12 Feb 2025
Viewed by 779
Abstract
An all-optical single-longitudinal-mode (SLM) forward Brillouin microwave oscillator (FB-MO) with an unbalanced Fiber Mach–Zehnder interferometer (UF-MZI) for microwave photonics (MWP) generation is proposed and experimentally investigated. UF-MZI consists of an optical coupler (OC), a polarization controller (PC), and two asymmetric length arms with [...] Read more.
An all-optical single-longitudinal-mode (SLM) forward Brillouin microwave oscillator (FB-MO) with an unbalanced Fiber Mach–Zehnder interferometer (UF-MZI) for microwave photonics (MWP) generation is proposed and experimentally investigated. UF-MZI consists of an optical coupler (OC), a polarization controller (PC), and two asymmetric length arms with 5 km and 500 m single-mode fibers (SMFs), which implements two unbalanced length feedback rings that are connected to one another. One long-length ring with a forward Brillouin gain cooperates with the other short-length ring to maintain a spectral Vernier effect and improve the effective free spectral range (FSR). By contrast with traditional optoelectronic oscillators (OEOs), this design does not require any photoelectric conversion devices and additional modulation, avoids external electromagnetic interference, and side-mode suppression and linewidth are favorable. Experimental results reveal that the 3-dB linewidth of the all-optical SLM FB-MO with UF-MZI is about 140 Hz. The acoustic-mode and side-mode suppression ratios are 26 dB and 31 dB. Within 60 min of the stability experiment, the power and frequency stability fluctuation were ±1 dB and ±100 Hz. Thanks to its long main ring cavity length, our all-optical SLM FB-MO with UF-MZI maintains good phase-noise performance. The measurement shows that a phase noise as low as −120 dBc/Hz at an offset frequency of 100 kHz is achieved. This SLM MWP generation technology holds great potential for applications in radar monitoring and wireless communication systems. Full article
(This article belongs to the Special Issue Fiber-Optic Technologies for Communication and Sensing)
Show Figures

Figure 1

12 pages, 651 KiB  
Article
Smart Contract for Relay Verification Collaboration Rewarding in NOMA Wireless Communication Networks
by Vidas Sileikis and Wei Wang
Electronics 2025, 14(4), 706; https://doi.org/10.3390/electronics14040706 - 12 Feb 2025
Cited by 1 | Viewed by 673
Abstract
Future generations of wireless networks at high-frequency spectrum suffer from limited coverage and Non-Line- of-Sight signal blockage, challenging emerging applications, such as smart industries and intelligent automation systems. Collaborative and cooperative communications with smart relays via Non-Orthogonal Multiple Access (NOMA) could be a [...] Read more.
Future generations of wireless networks at high-frequency spectrum suffer from limited coverage and Non-Line- of-Sight signal blockage, challenging emerging applications, such as smart industries and intelligent automation systems. Collaborative and cooperative communications with smart relays via Non-Orthogonal Multiple Access (NOMA) could be a breakthrough solution to this challenge. This paper presents a blockchain-integrated framework for NOMA wireless communication systems that incentivizes cooperation among users serving as relays. By leveraging Ethereum-based smart contracts, we introduce a Service Verification Contract featuring a Proof of Quality of Experience (PQoE) mechanism. The contract uses trust scores, weighted verifications, and dynamic validation thresholds to ensure honest behavior and deter malicious activities. The simulation results show that honest participants gradually increase their trust scores and require fewer verifications, while malicious verifiers lose influence over repeated rounds. Our findings indicate that combining trust-based incentives with a decentralized ledger can effectively promote reliable data-relaying services and streamline payment processes in collaborative and smart wireless networking systems. Full article
(This article belongs to the Special Issue Collaborative Intelligent Automation System for Smart Industry)
Show Figures

Figure 1

11 pages, 334 KiB  
Article
Joint Transmit Power and Power-Splitting Optimization for SWIPT in D2D-Enabled Cellular Networks with Energy Cooperation
by Dong-Woo Lim and Jae-Mo Kang
Mathematics 2025, 13(3), 389; https://doi.org/10.3390/math13030389 - 24 Jan 2025
Viewed by 674
Abstract
In this paper, we propose a joint optimization scheme for a transmit power and power-splitting ratio in device-to-device (D2D)-enabled simultaneous wireless information and power transfer (SWIPT) cellular networks, considering energy signal transmission. This energy signal facilitates the energy cooperation between the D2D transmitter [...] Read more.
In this paper, we propose a joint optimization scheme for a transmit power and power-splitting ratio in device-to-device (D2D)-enabled simultaneous wireless information and power transfer (SWIPT) cellular networks, considering energy signal transmission. This energy signal facilitates the energy cooperation between the D2D transmitter (DT) and the CU. Under the proposed scheme, the D2D rate is maximized while guaranteeing that the cellular user (CU) achieves the same performance as in scenarios without D2D communications. In order to solve the formulated nonconvex problem, we leverage the monotonically increasing property of logarithmic functions to transform it into an equivalent convex problem. As a result, we obtain the optimal solution in closed form. Also, the optimal D2D performance is analyzed, and useful insights into the performance improvements achievable through the proposed scheme are obtained. Numerical results demonstrate that the proposed scheme significantly outperforms the baseline scheme. Full article
Show Figures

Figure 1

Back to TopTop