Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (11,520)

Search Parameters:
Keywords = convolution neural network (CNN)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4052 KB  
Article
P300 Spatiotemporal Prior-Based Transformer-CNN for Auxiliary Diagnosis of PTSD
by Lize Tan, Hao Fang, Peng Ding, Fan Wang, Yuanyuan Wei and Yunfa Fu
Brain Sci. 2025, 15(10), 1124; https://doi.org/10.3390/brainsci15101124 (registering DOI) - 19 Oct 2025
Abstract
Objectives: To address the challenges of subjectivity, misdiagnosis and underdiagnosis in post-traumatic stress disorder (PTSD), this study proposes an objective auxiliary diagnostic method based on P300 signals. Existing studies largely rely on conventional P300 features, lacking the systematic integration of event-related potential (ERP) [...] Read more.
Objectives: To address the challenges of subjectivity, misdiagnosis and underdiagnosis in post-traumatic stress disorder (PTSD), this study proposes an objective auxiliary diagnostic method based on P300 signals. Existing studies largely rely on conventional P300 features, lacking the systematic integration of event-related potential (ERP) priors and facing limitations in spatiotemporal feature modeling. Methods: Using common spatiotemporal pattern (CSTP) analysis and quantitative evaluation, we revealed significant spatiotemporal differences in P300 signals between PTSD patients and healthy controls. ERP prior information was then extracted and integrated into a hybrid architecture combining transformer encoders and a convolutional neural network (CNN), enabling joint modeling of long-range temporal dependencies and local spatial patterns. Results: The proposed P300 spatiotemporal transformer-CNN (P300-STTCNet) achieved a classification accuracy of 93.37% in distinguishing PTSD from healthy controls, markedly outperforming traditional approaches. Conclusions: Significant spatiotemporal differences in P300 signals exist between PTSD and healthy control groups. The P300-STTCNet model effectively captures PTSD-related spatiotemporal features, demonstrating strong potential for electroencephalogram-based objective auxiliary diagnosis. Full article
(This article belongs to the Special Issue Artificial Intelligence in Neurological Disorders)
30 pages, 4298 KB  
Article
Integrating Convolutional, Transformer, and Graph Neural Networks for Precision Agriculture and Food Security
by Esraa A. Mahareek, Mehmet Akif Cifci and Abeer S. Desuky
AgriEngineering 2025, 7(10), 353; https://doi.org/10.3390/agriengineering7100353 (registering DOI) - 19 Oct 2025
Abstract
Ensuring global food security requires accurate and robust solutions for crop health monitoring, weed detection, and large-scale land-cover classification. To this end, we propose AgroVisionNet, a hybrid deep learning framework that integrates Convolutional Neural Networks (CNNs) for local feature extraction, Vision Transformers (ViTs) [...] Read more.
Ensuring global food security requires accurate and robust solutions for crop health monitoring, weed detection, and large-scale land-cover classification. To this end, we propose AgroVisionNet, a hybrid deep learning framework that integrates Convolutional Neural Networks (CNNs) for local feature extraction, Vision Transformers (ViTs) for capturing long-range global dependencies, and Graph Neural Networks (GNNs) for modeling spatial relationships between image regions. The framework was evaluated on five diverse benchmark datasets—PlantVillage (leaf-level disease detection), Agriculture-Vision (field-scale anomaly segmentation), BigEarthNet (satellite-based land-cover classification), UAV Crop and Weed (weed segmentation), and EuroSAT (multi-class land-cover recognition). Across these datasets, AgroVisionNet consistently outperformed strong baselines including ResNet-50, EfficientNet-B0, ViT, and Mask R-CNN. For example, it achieved 97.8% accuracy and 95.6% IoU on PlantVillage, 94.5% accuracy on Agriculture-Vision, 92.3% accuracy on BigEarthNet, 91.5% accuracy on UAV Crop and Weed, and 96.4% accuracy on EuroSAT. These results demonstrate the framework’s robustness across tasks ranging from fine-grained disease detection to large-scale anomaly mapping. The proposed hybrid approach addresses persistent challenges in agricultural imaging, including class imbalance, image quality variability, and the need for multi-scale feature integration. By combining complementary architectural strengths, AgroVisionNet establishes a new benchmark for deep learning applications in precision agriculture. Full article
Show Figures

Figure 1

21 pages, 4789 KB  
Article
AI-Driven Ensemble Learning for Spatio-Temporal Rainfall Prediction in the Bengawan Solo River Watershed, Indonesia
by Jumadi Jumadi, Danardono Danardono, Efri Roziaty, Agus Ulinuha, Supari Supari, Lam Kuok Choy, Farha Sattar and Muhammad Nawaz
Sustainability 2025, 17(20), 9281; https://doi.org/10.3390/su17209281 (registering DOI) - 19 Oct 2025
Abstract
Reliable spatio-temporal rainfall prediction is a key element in disaster mitigation and water resource management in dynamic tropical regions such as the Bengawan Solo River Watershed. However, high climate variability and data limitations often pose significant challenges to the accuracy of conventional prediction [...] Read more.
Reliable spatio-temporal rainfall prediction is a key element in disaster mitigation and water resource management in dynamic tropical regions such as the Bengawan Solo River Watershed. However, high climate variability and data limitations often pose significant challenges to the accuracy of conventional prediction models. This study introduces an innovative approach by applying ensemble stacking, which combines machine learning models such as Random Forest (RF), Extreme Gradient Boosting (XGB), Support Vector Regression (SVR), Multi-Layer Perceptron (MLP), Light Gradient-Boosting Machine (LGBM) and deep learning models like Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), Temporal Convolutional Networks (TCN), Convolutional Neural Network (CNN), and Transformer architecture based on monthly Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS) data (1981–2024). The novelty of this research lies in the systematic exploration of various model combination scenarios—both classical and deep learning and the evaluation of their performance in projecting rainfall for 2025–2030. All base models were trained on the 1981–2019 period and validated with data from the 2020–2024 period, while ensemble stacking was developed using a linear regression meta-learner. The results show that the optimal ensemble scenario reduces the MAE to 53.735 mm, the RMSE to 69.242 mm, and increases the R2 to 0.795826—better than all individual models. Spatial and temporal analyses also indicate consistent model performance at most locations and times. Annual rainfall projections for 2025–2030 were then interpolated using IDW to generate a spatio-temporal rainfall distribution map. The improved accuracy provides a strong scientific basis for disaster preparedness, flood and drought management, and sustainable water planning in the Bengawan Solo River Watershed. Beyond this case, the approach demonstrates significant transferability to other climate-sensitive and data-scarce regions. Full article
Show Figures

Figure 1

29 pages, 4341 KB  
Article
Research on the Optimization Decision Method for Hydrogen Load Aggregators to Participate in Peak Shaving Market
by Zhenya Lei, Libo Gu, Zhen Hu and Tao Shi
Processes 2025, 13(10), 3346; https://doi.org/10.3390/pr13103346 (registering DOI) - 19 Oct 2025
Abstract
This article takes the perspective of Hydrogen Load Aggregator (HLA) to optimize the declaration strategy of peak shaving market, improve the flexible regulation capability of power system and HLA economy as the research objectives, and proposes an optimization strategy method for HLA to [...] Read more.
This article takes the perspective of Hydrogen Load Aggregator (HLA) to optimize the declaration strategy of peak shaving market, improve the flexible regulation capability of power system and HLA economy as the research objectives, and proposes an optimization strategy method for HLA to participate in peak shaving market. Firstly, an improved Convolutional Neural Networks–Long Short-Term Memory (CNN-LSTM) time series prediction model is developed to address peak shaving demand uncertainty. Secondly, a bidding strategy model incorporating dynamic pricing is constructed by comprehensively considering electrolyzer regulation costs, market supply–demand relationships, and system constraints. Thirdly, a market clearing model for peak shaving markets with HLA participation is designed through analysis of capacity contribution and marginal costs among different regulation resources. Finally, the capacity allocation model is designed with the goal of minimizing the total cost of peak shaving among various stakeholders within HLA, and the capacity won by HLA in the peak shaving market is reasonably allocated. Simulations conducted on a Python3.12-based experimental platform demonstrate the following: the improved CNN-LSTM model exhibits strong adaptability and robustness, the bidding model effectively enhances HLA market competitiveness, and the clearing model reduces system operator costs by 5.64%. Full article
Show Figures

Figure 1

19 pages, 4178 KB  
Article
Gait Event Detection and Gait Parameter Estimation from a Single Waist-Worn IMU Sensor
by Roland Stenger, Hawzhin Hozhabr Pour, Jonas Teich, Andreas Hein and Sebastian Fudickar
Sensors 2025, 25(20), 6463; https://doi.org/10.3390/s25206463 (registering DOI) - 19 Oct 2025
Abstract
Changes in gait are associated with an increased risk of falling and may indicate the presence of movement disorders related to neurological diseases or age-related weakness. Continuous monitoring based on inertial measurement unit (IMU) sensor data can effectively estimate gait parameters that reflect [...] Read more.
Changes in gait are associated with an increased risk of falling and may indicate the presence of movement disorders related to neurological diseases or age-related weakness. Continuous monitoring based on inertial measurement unit (IMU) sensor data can effectively estimate gait parameters that reflect changes in gait dynamics. Monitoring using a waist-level IMU sensor is particularly useful for assessing such data, as it can be conveniently worn as a sensor-integrated belt or observed through a smartphone application. Our work investigates the efficacy of estimating gait events and gait parameters based on data collected from a waist-worn IMU sensor. The results are compared to measurements obtained using a GAITRite® system as reference. We evaluate two machine learning (ML)-based methods. Both ML methods are structured as sequence to sequence (Seq2Seq). The efficacy of both approaches in accurately determining gait events and parameters is assessed using a dataset comprising 17,643 recorded steps from 69 subjects, who performed a total of 3588 walks, each covering approximately 4 m. Results indicate that the Convolutional Neural Network (CNN)-based algorithm outperforms the long short-term memory (LSTM) method, achieving a detection accuracy of 98.94% for heel strikes (HS) and 98.65% for toe-offs (TO), with a mean error (ME) of 0.09 ± 4.69 cm in estimating step lengths. Full article
(This article belongs to the Section Wearables)
Show Figures

Figure 1

20 pages, 2525 KB  
Article
A Fault Diagnosis Method for Excitation Transformers Based on HPO-DBN and Multi-Source Heterogeneous Information Fusion
by Mingtao Yu, Jingang Wang, Yang Liu, Peng Bao, Weiguo Zu, Yinglong Deng, Shiyi Chen, Lijiang Ma, Pengcheng Zhao and Jinyao Dou
Energies 2025, 18(20), 5505; https://doi.org/10.3390/en18205505 (registering DOI) - 18 Oct 2025
Abstract
In response to the limitations of traditional single-signal approaches, which fail to comprehensively reflect fault conditions, and the difficulties of existing feature extraction methods in capturing subtle fault patterns in transformer fault diagnosis, this paper proposes an innovative fault diagnosis methodology. Initially, to [...] Read more.
In response to the limitations of traditional single-signal approaches, which fail to comprehensively reflect fault conditions, and the difficulties of existing feature extraction methods in capturing subtle fault patterns in transformer fault diagnosis, this paper proposes an innovative fault diagnosis methodology. Initially, to address common severe faults in excitation transformers, Principal Component Analysis (PCA) is applied to reduce the dimensionality of multi-source feature data, effectively eliminating redundant information. Subsequently, to mitigate the impact of non-stationary noise interference in voiceprint signals, a Deep Belief Network (DBN) optimized using the Hunter–Prey Optimization (HPO) algorithm is employed to automatically extract deep features highly correlated with faults, thus enabling the detection of complex, subtle fault patterns. For temperature and electrical parameter signals, which contain abundant time-domain information, the Random Forest algorithm is utilized to evaluate and select the most relevant time-domain statistics. Nonlinear dimensionality reduction is then performed using an autoencoder to further reduce redundant features. Finally, a multi-classifier model based on Adaptive Boosting with Support Vector Machine (Adaboost-SVM) is constructed to fuse multi-source heterogeneous information. By incorporating a pseudo-label self-training strategy and integrating a working condition awareness mechanism, the model effectively analyzes feature distribution differences across varying operational conditions, selecting potential unseen condition samples for training. This approach enhances the model’s adaptability and stability, enabling real-time fault diagnosis. Experimental results demonstrate that the proposed method achieves an overall accuracy of 96.89% in excitation transformer fault diagnosis, outperforming traditional models such as SVM, Extreme Gradient Boosting with Support Vector Machine (XGBoost-SVM), and Convolutional Neural Network (CNN). The method proves to be highly practical and generalizable, significantly improving fault diagnosis accuracy. Full article
Show Figures

Figure 1

21 pages, 1453 KB  
Review
Current Trends and Future Opportunities of AI-Based Analysis in Mesenchymal Stem Cell Imaging: A Scoping Review
by Maksim Solopov, Elizaveta Chechekhina, Viktor Turchin, Andrey Popandopulo, Dmitry Filimonov, Anzhelika Burtseva and Roman Ishchenko
J. Imaging 2025, 11(10), 371; https://doi.org/10.3390/jimaging11100371 (registering DOI) - 18 Oct 2025
Abstract
This scoping review explores the application of artificial intelligence (AI) methods for analyzing mesenchymal stem cells (MSCs) images. The aim of this study was to identify key areas where AI-based image processing techniques are utilized for MSCs analysis, assess their effectiveness, and highlight [...] Read more.
This scoping review explores the application of artificial intelligence (AI) methods for analyzing mesenchymal stem cells (MSCs) images. The aim of this study was to identify key areas where AI-based image processing techniques are utilized for MSCs analysis, assess their effectiveness, and highlight existing challenges. A total of 25 studies published between 2014 and 2024 were selected from six databases (PubMed, Dimensions, Scopus, Google Scholar, eLibrary, and Cochrane) for this review. The findings demonstrate that machine learning algorithms outperform traditional methods in terms of accuracy (up to 97.5%), processing speed and noninvasive capabilities. Among AI methods, convolutional neural networks (CNNs) are the most widely employed, accounting for 64% of the studies reviewed. The primary applications of AI in MSCs image analysis include cell classification (20%), segmentation and counting (20%), differentiation assessment (32%), senescence analysis (12%), and other tasks (16%). The advantages of AI methods include automation of image analysis, elimination of subjective biases, and dynamic monitoring of live cells without the need for fixation and staining. However, significant challenges persist, such as the high heterogeneity of the MSCs population, the absence of standardized protocols for AI implementation, and limited availability of annotated datasets. To advance this field, future efforts should focus on developing interpretable and multimodal AI models, creating standardized validation frameworks and open-access datasets, and establishing clear regulatory pathways for clinical translation. Addressing these challenges is crucial for accelerating the adoption of AI in MSCs biomanufacturing and enhancing the efficacy of cell therapies. Full article
Show Figures

Figure 1

22 pages, 4571 KB  
Article
Application of the VMD-CNN-BiLSTM-Attention Model in Daily Price Forecasting of NYMEX Natural Gas Futures
by Qiuli Jiang, Zebei Lin, Jiao Hu and Xuhui Liu
Appl. Sci. 2025, 15(20), 11169; https://doi.org/10.3390/app152011169 (registering DOI) - 18 Oct 2025
Abstract
As a core clean energy source in the global energy transition, natural gas price fluctuations directly affect the energy market supply demand balance, industrial chain cost control, etc. Thus, accurate natural gas price prediction is crucial for market participants’ decision making and policymakers’ [...] Read more.
As a core clean energy source in the global energy transition, natural gas price fluctuations directly affect the energy market supply demand balance, industrial chain cost control, etc. Thus, accurate natural gas price prediction is crucial for market participants’ decision making and policymakers’ regulation. To tackle the issue that traditional single models fail to capture data patterns of the New York Mercantile Exchange (NYMEX) natural gas futures daily prices—due to their nonlinearity, high volatility, and multi-scale features—this study proposes a hybrid model: VMD-CNN-BiLSTM-attention, integrating Variational Mode Decomposition (VMD), Convolutional Neural Network (CNN), Bidirectional Long Short-Term Memory (BiLSTM), and an attention mechanism. A one-step to four-step forecasting comparison was conducted using NYMEX natural gas futures daily closing prices, with the proposed model vs. CNN-BiLSTM-Attention and Autoregressive Integrated Moving Average (ARIMA) models. The empirical results show that the VMD-CNN-BiLSTM-attention model outperforms the comparison models in terms of Mean Absolute Percentage Error (MAPE), Mean Absolute Error (MAE), etc. Specifically, its four-step forecast MAPE stays ≤3.5% and R2 ≥ 98%, demonstrating a stronger ability to capture complex price fluctuations, better accuracy, and stability than traditional single models and deep learning models without VMD, and provides reliable technical support for short-to-medium-term natural gas price prediction. Full article
Show Figures

Figure 1

59 pages, 13450 KB  
Review
Convolutional Neural Network Acceleration Techniques Based on FPGA Platforms: Principles, Methods, and Challenges
by Li Gao, Zhongqiang Luo and Lin Wang
Information 2025, 16(10), 914; https://doi.org/10.3390/info16100914 (registering DOI) - 18 Oct 2025
Abstract
As the complexity of convolutional neural networks (CNN) continues to increase, efficient deployment on computationally constrained hardware platforms has become a significant challenge. Against this backdrop, field-programmable gate arrays (FPGA) emerge as an up-and-coming CNN acceleration platform due to their inherent energy efficiency, [...] Read more.
As the complexity of convolutional neural networks (CNN) continues to increase, efficient deployment on computationally constrained hardware platforms has become a significant challenge. Against this backdrop, field-programmable gate arrays (FPGA) emerge as an up-and-coming CNN acceleration platform due to their inherent energy efficiency, reconfigurability, and parallel processing capabilities. This paper establishes a systematic analytical framework to explore CNN optimization strategies on FPGA from both algorithmic and hardware perspectives. It emphasizes co-design methodologies between algorithms and hardware, extending these concepts to other embedded system applications. Furthermore, the paper summarizes current performance evaluation frameworks to assess the effectiveness of acceleration schemes comprehensively. Finally, building upon existing work, it identifies key challenges in this field and outlines future research directions. Full article
22 pages, 1915 KB  
Article
Image Completion Network Considering Global and Local Information
by Yubo Liu, Ke Chen and Alan Penn
Buildings 2025, 15(20), 3746; https://doi.org/10.3390/buildings15203746 - 17 Oct 2025
Abstract
Accurate depth image inpainting in complex urban environments remains a critical challenge due to occlusions, reflections, and sensor limitations, which often result in significant data loss. We propose a hybrid deep learning framework that explicitly combines local and global modelling through Convolutional Neural [...] Read more.
Accurate depth image inpainting in complex urban environments remains a critical challenge due to occlusions, reflections, and sensor limitations, which often result in significant data loss. We propose a hybrid deep learning framework that explicitly combines local and global modelling through Convolutional Neural Networks (CNNs) and Transformer modules. The model employs a multi-branch parallel architecture, where the CNN branch captures fine-grained local textures and edges, while the Transformer branch models global semantic structures and long-range dependencies. We introduce an optimized attention mechanism, Agent Attention, which differs from existing efficient/linear attention methods by using learnable proxy tokens tailored for urban scene categories (e.g., façades, sky, ground). A content-guided dynamic fusion module adaptively combines multi-scale features to enhance structural alignment and texture recovery. The frame-work is trained with a composite loss function incorporating pixel accuracy, perceptual similarity, adversarial realism, and structural consistency. Extensive experiments on the Paris StreetView dataset demonstrate that the proposed method achieves state-of-the-art performance, outperforming existing approaches in PSNR, SSIM, and LPIPS metrics. The study highlights the potential of multi-scale modeling for urban depth inpainting and discusses challenges in real-world deployment, ethical considerations, and future directions for multimodal integration. Full article
19 pages, 4590 KB  
Article
AI-Assisted Monitoring and Prediction of Structural Displacements in Large-Scale Hydropower Facilities
by Jianghua Liu, Chongshi Gu, Jun Wang, Yongli Dong and Shimao Huang
Water 2025, 17(20), 2996; https://doi.org/10.3390/w17202996 - 17 Oct 2025
Viewed by 27
Abstract
Accurate prediction of structural displacements in hydropower stations is essential for the safety and long-term stability of large-scale water-related infrastructure. To address this challenge, this study proposes an AI-assisted monitoring framework that integrates Convolutional Neural Networks (CNNs) for spatial feature extraction with Gated [...] Read more.
Accurate prediction of structural displacements in hydropower stations is essential for the safety and long-term stability of large-scale water-related infrastructure. To address this challenge, this study proposes an AI-assisted monitoring framework that integrates Convolutional Neural Networks (CNNs) for spatial feature extraction with Gated Recurrent Units (GRUs) for temporal sequence modeling. The framework leverages long-sequence prototype monitoring data, including reservoir level, temperature, and displacement, to capture complex spatiotemporal interactions between environmental conditions and dam behavior. A parameter optimization strategy is further incorporated to refine the model’s architecture and hyperparameters. Experimental evaluations on real-world hydropower station datasets demonstrate that the proposed CNN–GRU model outperforms conventional statistical and machine learning methods, achieving an average determination coefficient of R2 = 0.9582 with substantially reduced prediction errors (RMSE = 4.1121, MAE = 3.1786, MAPE = 3.1061). Both qualitative and quantitative analyses confirm that CNN–GRU not only provides stable predictions across multiple monitoring points but also effectively captures sudden deformation fluctuations. These results underscore the potential of the proposed AI-assisted framework as a robust and reliable tool for intelligent monitoring, safety assessment, and early warning in large-scale hydropower facilities. Full article
Show Figures

Figure 1

25 pages, 3111 KB  
Article
Intrusion Detection in Industrial Control Systems Using Transfer Learning Guided by Reinforcement Learning
by Jokha Ali, Saqib Ali, Taiseera Al Balushi and Zia Nadir
Information 2025, 16(10), 910; https://doi.org/10.3390/info16100910 - 17 Oct 2025
Viewed by 52
Abstract
Securing Industrial Control Systems (ICSs) is critical, but it is made challenging by the constant evolution of cyber threats and the scarcity of labeled attack data in these specialized environments. Standard intrusion detection systems (IDSs) often fail to adapt when transferred to new [...] Read more.
Securing Industrial Control Systems (ICSs) is critical, but it is made challenging by the constant evolution of cyber threats and the scarcity of labeled attack data in these specialized environments. Standard intrusion detection systems (IDSs) often fail to adapt when transferred to new networks with limited data. To address this, this paper introduces an adaptive intrusion detection framework that combines a hybrid Convolutional Neural Network and Long Short-Term Memory (CNN-LSTM) model with a novel transfer learning strategy. We employ a Reinforcement Learning (RL) agent to intelligently guide the fine-tuning process, which allows the IDS to dynamically adjust its parameters such as layer freezing and learning rates in real-time based on performance feedback. We evaluated our system in a realistic data-scarce scenario using only 50 labeled training samples. Our RL-Guided model achieved a final F1-score of 0.9825, significantly outperforming a standard neural fine-tuning model (0.861) and a target baseline model (0.759). Analysis of the RL agent’s behavior confirmed that it learned a balanced and effective policy for adapting the model to the target domain. We conclude that the proposed RL-guided approach creates a highly accurate and adaptive IDS that overcomes the limitations of static transfer learning methods. This dynamic fine-tuning strategy is a powerful and promising direction for building resilient cybersecurity defenses for critical infrastructure. Full article
(This article belongs to the Section Information Systems)
Show Figures

Figure 1

18 pages, 6195 KB  
Article
Hybrid Wind Power Forecasting for Turbine Clusters: Integrating Spatiotemporal WGANs with Extreme Missing-Data Resilience
by Hongsheng Su, Yuwei Du, Yulong Che, Dan Li and Wenyao Su
Sustainability 2025, 17(20), 9200; https://doi.org/10.3390/su17209200 - 17 Oct 2025
Viewed by 111
Abstract
The global pursuit of sustainable development amplifies renewable energy’s strategic importance, positioning wind power as a vital modern grid component. Accurate wind forecasting is essential to counter inherent volatility, enabling robust grid operations, security protocols, and optimization strategies. Such predictive precision directly governs [...] Read more.
The global pursuit of sustainable development amplifies renewable energy’s strategic importance, positioning wind power as a vital modern grid component. Accurate wind forecasting is essential to counter inherent volatility, enabling robust grid operations, security protocols, and optimization strategies. Such predictive precision directly governs wind energy systems’ stability and sustainability. This research introduces a novel spatio-temporal hybrid model integrating convolutional neural networks (CNN), bidirectional long short-term memory (BiLSTM), and graph convolutional networks (GCN) to extract temporal patterns and meteorological dynamics (wind speed, direction, temperature) across 134 wind turbines. Building upon conventional methods, our architecture captures turbine spatio-temporal correlations while assimilating multivariate meteorological characteristics. Addressing data integrity compromises from equipment failures and extreme weather-which undermine data-driven models-we implement Wasserstein GAN (WGAN) for generative missing-value interpolation. Validation across severe data loss scenarios (30–90% missing values) demonstrates the model’s enhanced predictive capacity. Rigorous benchmarking confirms significant accuracy improvements and reduced forecasting errors. Full article
Show Figures

Figure 1

36 pages, 3174 KB  
Review
A Bibliometric-Systematic Literature Review (B-SLR) of Machine Learning-Based Water Quality Prediction: Trends, Gaps, and Future Directions
by Jeimmy Adriana Muñoz-Alegría, Jorge Núñez, Ricardo Oyarzún, Cristian Alfredo Chávez, José Luis Arumí and Lien Rodríguez-López
Water 2025, 17(20), 2994; https://doi.org/10.3390/w17202994 - 17 Oct 2025
Viewed by 130
Abstract
Predicting the quality of freshwater, both surface and groundwater, is essential for the sustainable management of water resources. This study collected 1822 articles from the Scopus database (2000–2024) and filtered them using Topic Modeling to create the study corpus. The B-SLR analysis identified [...] Read more.
Predicting the quality of freshwater, both surface and groundwater, is essential for the sustainable management of water resources. This study collected 1822 articles from the Scopus database (2000–2024) and filtered them using Topic Modeling to create the study corpus. The B-SLR analysis identified exponential growth in scientific publications since 2020, indicating that this field has reached a stage of maturity. The results showed that the predominant techniques for predicting water quality, both for surface and groundwater, fall into three main categories: (i) ensemble models, with Bagging and Boosting representing 43.07% and 25.91%, respectively, particularly random forest (RF), light gradient boosting machine (LightGBM), and extreme gradient boosting (XGB), along with their optimized variants; (ii) deep neural networks such as long short-term memory (LSTM) and convolutional neural network (CNN), which excel at modeling complex temporal dynamics; and (iii) traditional algorithms like artificial neural network (ANN), support vector machines (SVMs), and decision tree (DT), which remain widely used. Current trends point towards the use of hybrid and explainable architectures, with increased application of interpretability techniques. Emerging approaches such as Generative Adversarial Network (GAN) and Group Method of Data Handling (GMDH) for data-scarce contexts, Transfer Learning for knowledge reuse, and Transformer architectures that outperform LSTM in time series prediction tasks were also identified. Furthermore, the most studied water bodies (e.g., rivers, aquifers) and the most commonly used water quality indicators (e.g., WQI, EWQI, dissolved oxygen, nitrates) were identified. The B-SLR and Topic Modeling methodology provided a more robust, reproducible, and comprehensive overview of AI/ML/DL models for freshwater quality prediction, facilitating the identification of thematic patterns and research opportunities. Full article
(This article belongs to the Special Issue Machine Learning Applications in the Water Domain)
Show Figures

Figure 1

73 pages, 2702 KB  
Review
Towards an End-to-End Digital Framework for Precision Crop Disease Diagnosis and Management Based on Emerging Sensing and Computing Technologies: State over Past Decade and Prospects
by Chijioke Leonard Nkwocha and Abhilash Kumar Chandel
Computers 2025, 14(10), 443; https://doi.org/10.3390/computers14100443 - 16 Oct 2025
Viewed by 90
Abstract
Early detection and diagnosis of plant diseases is critical for ensuring global food security and sustainable agricultural practices. This review comprehensively examines latest advancements in crop disease risk prediction, onset detection through imaging techniques, machine learning (ML), deep learning (DL), and edge computing [...] Read more.
Early detection and diagnosis of plant diseases is critical for ensuring global food security and sustainable agricultural practices. This review comprehensively examines latest advancements in crop disease risk prediction, onset detection through imaging techniques, machine learning (ML), deep learning (DL), and edge computing technologies. Traditional disease detection methods, which rely on visual inspections, are time-consuming, and often inaccurate. While chemical analyses are accurate, they can be time consuming and leave less flexibility to promptly implement remedial actions. In contrast, modern techniques such as hyperspectral and multispectral imaging, thermal imaging, and fluorescence imaging, among others can provide non-invasive and highly accurate solutions for identifying plant diseases at early stages. The integration of ML and DL models, including convolutional neural networks (CNNs) and transfer learning, has significantly improved disease classification and severity assessment. Furthermore, edge computing and the Internet of Things (IoT) facilitate real-time disease monitoring by processing and communicating data directly in/from the field, reducing latency and reliance on in-house as well as centralized cloud computing. Despite these advancements, challenges remain in terms of multimodal dataset standardization, integration of individual technologies of sensing, data processing, communication, and decision-making to provide a complete end-to-end solution for practical implementations. In addition, robustness of such technologies in varying field conditions, and affordability has also not been reviewed. To this end, this review paper focuses on broad areas of sensing, computing, and communication systems to outline the transformative potential of end-to-end solutions for effective implementations towards crop disease management in modern agricultural systems. Foundation of this review also highlights critical potential for integrating AI-driven disease detection and predictive models capable of analyzing multimodal data of environmental factors such as temperature and humidity, as well as visible-range and thermal imagery information for early disease diagnosis and timely management. Future research should focus on developing autonomous end-to-end disease monitoring systems that incorporate these technologies, fostering comprehensive precision agriculture and sustainable crop production. Full article
Back to TopTop