Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (101)

Search Parameters:
Keywords = convective thunderstorms

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 5332 KB  
Article
Assessing Catastrophic Historical Floods in a Small Stream: The Case of Tripero River (Villafranca de los Barros, Spain)
by José Manuel Vaquero, Javier Vaquero-Martínez, Víctor Manuel Sánchez Carrasco, Alejandro Jesús Pérez Aparicio and María Cruz Gallego
Atmosphere 2025, 16(12), 1408; https://doi.org/10.3390/atmos16121408 - 17 Dec 2025
Viewed by 346
Abstract
This study investigates five catastrophic historical floods of the Tripero stream, a small tributary of the Guadiana River that flows through Villafranca de los Barros (Extremadura, Spain), occurring between 1865 and 1952. Despite their devastating impacts on the local population and infrastructure, these [...] Read more.
This study investigates five catastrophic historical floods of the Tripero stream, a small tributary of the Guadiana River that flows through Villafranca de los Barros (Extremadura, Spain), occurring between 1865 and 1952. Despite their devastating impacts on the local population and infrastructure, these events have received little scientific attention. By combining historical documentary evidence with meteorological reanalysis data from the Twentieth Century Reanalysis (20CRv3), this research reconstructs the circumstances and atmospheric mechanisms associated with each event. The results reveal a notable diversity of synoptic configurations, reflecting both seasonal variability and the distinct meteorological origins of the floods. The 1865 and 1876 events were associated with large-scale Atlantic disturbances—the former linked to a cut-off low and moisture transport resembling an atmospheric river, and the latter to a strongly negative North Atlantic Oscillation (NAO) phase and other atmospheric river, producing widespread flooding across southwestern Iberia. In contrast, the floods of 1903, 1949, and 1952 were triggered by intense convective activity, typical of late spring and summer thunderstorms, fueled by local moisture and instability. The combination of historical sources and modern reanalysis provides valuable insights into the climatological context of extreme hydrometeorological events in small Mediterranean basins, contributing to improved understanding of local flood risks in historically understudied regions. Full article
Show Figures

Figure 1

16 pages, 3642 KB  
Article
A New Methodology for Detecting Deep Diurnal Convection Initiations in Summer: Application to the Eastern Pyrenees
by Tomeu Rigo and Francesc Vilar-Bonet
Geomatics 2025, 5(4), 72; https://doi.org/10.3390/geomatics5040072 - 1 Dec 2025
Viewed by 334
Abstract
Every year, thunderstorms initiating in the eastern Pyrenees cause a wide range of adverse phenomena, not only in the mountainous areas but also in the surrounding regions. Events such as heavy rainfall leading to flash floods, large or giant hail, and strong winds [...] Read more.
Every year, thunderstorms initiating in the eastern Pyrenees cause a wide range of adverse phenomena, not only in the mountainous areas but also in the surrounding regions. Events such as heavy rainfall leading to flash floods, large or giant hail, and strong winds are common in this area. These phenomena cause significant damage and have major impacts on the population. We used remote sensing data, specifically weather radar, to identify areas that are more prone to convection initiation. This initial analysis covers the period from 2022 to 2024 and is intended to serve as the foundation for a more extensive study. The aim of this study is to characterize the diurnal convection cycle over the Pyrenees. Additionally, we plan to develop a technique that can be applied to other mountainous regions where similar data are available. The steps are as follows: (1) identifying events with precipitation over the area; (2) selecting cases associated with diurnal convection; (3) applying algorithms to determine the tracks of convective cells; and finally, (4) selecting the initial points of these trajectories. The result is a map highlighting these “hotspot” areas, which will allow us to incorporate other variables in the future, both meteorological and non-meteorological, to identify the main factors influencing the characteristics of each event. Full article
Show Figures

Figure 1

17 pages, 2813 KB  
Article
Projected Convective Storm Environment in the Australian Region from Two Downscaling Ensemble Systems Under the SRES-A2/RCP8.5 Scenarios
by Kevin K. W. Cheung, Fei Ji, Jason P. Evans, Nidhi Nishant, Nicholas Herold, Giovanni di Virgilio, Kathleen Beyer and Matthew L. Riley
Climate 2025, 13(11), 229; https://doi.org/10.3390/cli13110229 - 4 Nov 2025
Viewed by 964
Abstract
Local thunderstorms are among the major meteorological hazards in the Australian region. These storms inherently have compound impacts, including hail, flash floods, and wind gusts, and consistently cause some of the highest insured losses. Studies on the climate change impact on local storms [...] Read more.
Local thunderstorms are among the major meteorological hazards in the Australian region. These storms inherently have compound impacts, including hail, flash floods, and wind gusts, and consistently cause some of the highest insured losses. Studies on the climate change impact on local storms face the challenges of unreliable storm climatology and uncertainties in the numerical modeling of physical processes. In this study we have adopted an approach to examining the ingredients of severe storm development based on regional climate simulations. We examined two generations of NARCliM datasets (NSW and Australian Regional Climate Modeling). Projected changes in convective indices for the latter half of the twenty-first century indicate an environment more conducive to thunderstorm development, primarily due to enhanced atmospheric instability, despite a concurrent increase in convective inhibition. A measure that combines the dynamic factor of vertical wind shear further shows that the potential storm days will increase substantially, such as a doubling of days with storms during summer, under the influence of climate change over tropical, eastern, and southeastern Australia. The storm season in a year is also expected to elongate. These projections imply increasing thunderstorm-related hazards in the future, including hail, flood, and high winds. Full article
(This article belongs to the Special Issue Recent Climate Change Impacts in Australia)
Show Figures

Figure 1

19 pages, 2327 KB  
Article
Latent Heat Flux and Turbulent Kinetic Energy Measurements by Lidar in the Frame of the WaLiNeAs Campaign
by Paolo Di Girolamo, Donato Summa, Ilaria Gandolfi, Marco Di Paolantonio, Marco Rosoldi, Benedetto De Rosa, Davide Dionisi, Cyrille Flamant and Giuseppe D’Amico
Remote Sens. 2025, 17(20), 3473; https://doi.org/10.3390/rs17203473 - 17 Oct 2025
Viewed by 567
Abstract
In the present work, we report daytime latent heat flux profile measurements in the convective boundary layer (CBL) obtained from the combined use of a wind lidar and a thermodynamic Raman lidar. Water vapour flux profiles and, consequently, latent heat flux profiles were [...] Read more.
In the present work, we report daytime latent heat flux profile measurements in the convective boundary layer (CBL) obtained from the combined use of a wind lidar and a thermodynamic Raman lidar. Water vapour flux profiles and, consequently, latent heat flux profiles were obtained as the covariance between the vertical profiles of the water vapour mixing ratio and vertical wind fluctuations. Profile measurements of the water vapour mixing ratio were carried out by the thermodynamic Raman lidar CONCERNING, while simultaneous profile measurements of the vertical wind speed were carried out by a co-located Doppler wind lidar. The considered dataset was collected in the frame of the international field campaign “Water Vapor Lidar Network Assimilation” (WaLiNeAs). Three cloud-free time intervals on 31 October, 28 November, and 8 December 2022 were selected as case studies. Measurements of turbulent kinetic energy (TKE) were also carried out over the same time intervals based on the use of wind lidar data. The three selected case studies were characterised by different atmospheric stability conditions and, consequently, by a different potential for the occurrence of convective activity. More specifically, the atmospheric conditions on 31 October 2022 were very unstable, with intensive convective activity taking place in the area and ultimately leading to relatively intense thunderstorms and rainfall events. The atmospheric conditions on 28 November 2022 were moderately unstable, ultimately leading to light convective activity, with scattered rain episodes observed throughout the day but with no severe thunderstorms taking place. Stratiform precipitations were present on 8 December 2022, with weak embedded convective processes taking place within stratiform clouds and leading to moderate additional precipitation. In all three selected case studies, representative of pre-convective conditions, both latent heat flux and TKE profiles are characterised by values increasing with altitude up to approx. 500 m, while both latent heat flux and TKE are found to decrease, with a steeper negative gradient up to approx. 600 m and more gradually above this altitude, returning to zero just above the top of the CBL. In all three cases, peak values of TKE appear to be strongly correlated with corresponding peak values of the latent heat flux; the higher the maximum values of TKE and latent heat flux, the more intense the following precipitation events. Full article
Show Figures

Figure 1

7 pages, 916 KB  
Proceeding Paper
Orographic Effect’s Correlation with Convection During a Low-Pressure System Passage over Greece in September 2023
by Sotirios T. Arsenis, Ioannis Samos and Panagiotis T. Nastos
Environ. Earth Sci. Proc. 2025, 35(1), 37; https://doi.org/10.3390/eesp2025035037 - 17 Sep 2025
Cited by 1 | Viewed by 593
Abstract
Extreme rainfall events are frequently associated with regions of complex topography, where terrain-induced convergence and uplift enhance storm development. Understanding the interaction between surface relief and atmospheric dynamics is essential for improving severe weather forecasting and hazard mitigation. Storm “Daniel”, which affected Greece [...] Read more.
Extreme rainfall events are frequently associated with regions of complex topography, where terrain-induced convergence and uplift enhance storm development. Understanding the interaction between surface relief and atmospheric dynamics is essential for improving severe weather forecasting and hazard mitigation. Storm “Daniel”, which affected Greece from 4–7 September 2023, produced extreme rainfall and widespread flooding in the Thessaly region—a landscape characterized by significant elevation gradients. This study investigates the spatial relationship between lightning activity and terrain elevation, aiming to assess whether deep convection was preferentially triggered over mountainous regions or followed specific orographic patterns. High-resolution elevation data (SRTM 1 Arc-Second Global DEM) were used to calculate the mean elevation around each lightning strike across four spatial scales (2 km, 5 km, 10 km, and 20 km). Statistical analysis, including correlation coefficients and third-degree polynomial regression, revealed a non-linear relationship, with a distinct peak in lightning frequency at mid-elevations (~200–400 m). These findings suggest that topographic features at local scales can significantly modulate convective initiation, likely due to a combination of mechanical uplift and favorable thermodynamic conditions. The study integrates geospatial techniques and statistical modeling to provide quantitative insights into how terrain influences the formation, location, and intensity of thunderstorms during high-impact weather events. Full article
Show Figures

Figure 1

6 pages, 1569 KB  
Proceeding Paper
The Extreme Storm over the Cyclades on 31 March 2025: The Role of Warmer Sea Surface Temperatures in the Intensification of the Event
by Theodoros H. Kondilis and Sotirios T. Arsenis
Environ. Earth Sci. Proc. 2025, 35(1), 27; https://doi.org/10.3390/eesp2025035027 - 12 Sep 2025
Viewed by 953
Abstract
On 31 March 2025, a severe thunderstorm system affected the Cyclades region, causing extensive flash floods on the islands of Paros and Mykonos and leading to significant material damage. This study investigates the meteorological characteristics of the event and focuses on the potential [...] Read more.
On 31 March 2025, a severe thunderstorm system affected the Cyclades region, causing extensive flash floods on the islands of Paros and Mykonos and leading to significant material damage. This study investigates the meteorological characteristics of the event and focuses on the potential role of elevated sea surface temperatures (SSTs) in intensifying the storm’s severity. The analysis is centered on the broader Aegean region (geographic extent: 41.25° N, 21.83° E to 34.30° N, 28.51° E), utilizing ERA5 reanalysis data from ECMWF. These data provide high-resolution information on the atmospheric and ocean surface conditions during the event. The primary research objective is to explore how warmer SSTs may have contributed to enhanced moisture in the lower troposphere and increased energy availability for convective storm development. The theoretical background and a preliminary data exploration suggest that elevated SSTs likely favored increased evaporation, enhanced low-level moisture transport, and greater atmospheric instability, leading to the development of deep convective clouds. This, in turn, may have intensified precipitation rates and elevated the flood risk. This study aims to contribute to a better understanding of the mechanisms behind such extreme weather events, particularly in island environments, and to explore the sea’s potential catalytic role under a changing climate. Full article
Show Figures

Figure 1

20 pages, 8416 KB  
Article
Extreme Short-Duration Rainfall and Urban Flood Hazard: Case Studies of Convective Events in Warsaw and Zamość, Poland
by Bartłomiej Pietras and Robert Pyrc
Water 2025, 17(18), 2671; https://doi.org/10.3390/w17182671 - 9 Sep 2025
Viewed by 2201
Abstract
This study investigates two extreme convective rainfall events that struck Poland in August 2024, affecting Warsaw (Okęcie) on 19 August and Zamość on 21 August. The aim is to evaluate the meteorological background, intensity, and spatial characteristics of these short-duration storms. We used [...] Read more.
This study investigates two extreme convective rainfall events that struck Poland in August 2024, affecting Warsaw (Okęcie) on 19 August and Zamość on 21 August. The aim is to evaluate the meteorological background, intensity, and spatial characteristics of these short-duration storms. We used high-resolution meteorological observations, radar imagery, and satellite data provided by the Institute of Meteorology and Water Management (IMGW-PIB). The storms were analyzed using temporal rainfall profiles, Chomicz α index classification, and comparison with World Meteorological Organization (WMO) thresholds for extreme precipitation. Both events exceeded national and international criteria for torrential rainfall. In Zamość, over 88.3 mm of rain fell within one hour, and 131.3 mm within three hours—ranking this episode among the most intense short-duration rainfall events in the region. Convective organization patterns, including multicellular clustering and convective training, were identified as key factors enhancing rainfall intensity. The results demonstrate the diagnostic value of combining national indices with global benchmarks in rainfall assessment. These findings support further integration of convection-permitting models and real-time nowcasting into urban hydrometeorological warning systems. Full article
(This article belongs to the Section Water and Climate Change)
Show Figures

Figure 1

24 pages, 10838 KB  
Article
Assessing the Performance of the WRF Model in Simulating Squall Line Processes over the South African Highveld
by Innocent L. Mbokodo, Roelof P. Burger, Ann Fridlind, Thando Ndarana, Robert Maisha, Hector Chikoore and Mary-Jane M. Bopape
Atmosphere 2025, 16(9), 1055; https://doi.org/10.3390/atmos16091055 - 6 Sep 2025
Viewed by 1358
Abstract
Squall lines are some of the most common types of mesoscale cloud systems in tropical and subtropical regions. Thunderstorms associated with these systems are among the major causes of weather-related disasters and socio-economic losses in many regions across the world. This study investigates [...] Read more.
Squall lines are some of the most common types of mesoscale cloud systems in tropical and subtropical regions. Thunderstorms associated with these systems are among the major causes of weather-related disasters and socio-economic losses in many regions across the world. This study investigates the capability of the Weather Research and Forecasting (WRF) model in simulating squall line features over the South African Highveld region. Two squall line cases were selected based on the availability of South African Weather Service (SAWS) weather radar data: 21 October 2017 (early austral summer) and 31 January–1 February 2018 (late austral summer). The European Centre for Medium-Range Weather Forecasts ERA5 datasets were used as observational proxies to analyze squall line features and compare them with WRF simulations. Mid-tropospheric perturbations were observed along westerly waves in both cases. These perturbations were coupled with surface troughs over central interior together with the high-pressure systems to the south and southeast of the country creating strong pressure gradients over the plateau, which also transports relative humidity onshore and extending to the Highveld region. The 2018 case also had a zonal structured ridging High, which was responsible for driving moisture from the southwest Indian Ocean towards the eastern parts of South Africa. Both ERA5 and WRF captured onshore near surface (800 hPa) winds and high-moisture contents over the eastern parts of the Highveld. A well-defined dryline was observed and well simulated for the 2017 event, while both ERA5 and WRF did not show any dryline for the 2018 case that was triggered by orography. While WRF successfully reproduced the synoptic-scale processes of these extreme weather events, the simulated rainfall over the area of interest exhibited a broader spatial distribution, with large-scale precipitation overestimated and convective rainfall underestimated. Our study shows that models are able to capture these systems but with some shortcomings, highlighting the need for further improvement in forecasts. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

16 pages, 9656 KB  
Article
Diurnal Analysis of Nor’westers over Gangetic West Bengal as Observed from Weather Radar
by Bibraj Raj, Swaroop Sahoo, N. Puviarasan and V. Chandrasekar
Atmosphere 2025, 16(8), 989; https://doi.org/10.3390/atmos16080989 - 20 Aug 2025
Viewed by 1034
Abstract
Intense thunderstorms known as Nor’westers develop in the Eastern and North Eastern parts of India and Bangladesh before the monsoon season (March to May). The associated severe weather can cause extensive damage to property and livestock. This study uses the pre-monsoon volumetric data [...] Read more.
Intense thunderstorms known as Nor’westers develop in the Eastern and North Eastern parts of India and Bangladesh before the monsoon season (March to May). The associated severe weather can cause extensive damage to property and livestock. This study uses the pre-monsoon volumetric data of S-band radar from 2013 to 2018 located in Kolkata to investigate the diurnal variation in the characteristics of the storms over Gangetic West Bengal. The cell initiation, echo top heights, maximum reflectivity, and core convective area are determined by using a flexible feature tracking algorithm (PyFLEXTRKR). The variation of the parameters in diurnal scale is examined from 211,503 individual cell tracks. The distribution of the severe weather phenomena based on radar based thresholds in spatial and temporal scale is also determined. The results show that new cell initiation peaks in the late evening and early morning, displaying bimodal variability. Most of these cells have a short lifespan of 0 to 3 h, with fewer than 5 percent of storms lasting beyond 3 h. The occurrence of hail is much greater in the afternoon due to intense surface heating than at other times. In contrast, the occurrence of lightning is higher in the late evening hours when the cell initiation reaches its peak. The convective rains are generally accompanied by lightning, exhibiting a similar diurnal temporal variability but are more widespread. The findings will assist operational weather forecasters in identifying locations that need targeted observation at certain times of the day to enhance the accuracy of severe weather nowcasting. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

21 pages, 11032 KB  
Article
Convective–Stratiform Identification Neural Network (CONSTRAINN) for the WIVERN Mission
by Federico Mustich, Alessandro Battaglia, Francesco Manconi, Pavlos Kollias and Antonio Parodi
Remote Sens. 2025, 17(15), 2590; https://doi.org/10.3390/rs17152590 - 25 Jul 2025
Viewed by 1192
Abstract
The WIVERN mission promises to deliver the first global observations of the three-dimensional wind field and the associated cloud and precipitation structure in a wide range of atmospheric phenomena, including isolated thunderstorms, tropical cyclones, mid-latitude frontal systems, and polar lows. A critical element [...] Read more.
The WIVERN mission promises to deliver the first global observations of the three-dimensional wind field and the associated cloud and precipitation structure in a wide range of atmospheric phenomena, including isolated thunderstorms, tropical cyclones, mid-latitude frontal systems, and polar lows. A critical element in the development of the mission’s wind products is the differentiation between stratiform and convective regions. Convective regions are defined as those where vertical wind velocities exceed 1 m/s. This work introduces CONSTRAINN, a family of U-Net-based neural network models that utilise all of WIVERN observables—including vertical profiles of reflectivity and Doppler velocity, as well as brightness temperatures—to reconstruct convective wind activity within the Earth’s atmosphere. Results show that the retrieved convective/stratiform masks are well reconstructed, with an equitable threat score exceeding 0.6. Ablation experiments further reveal that Doppler velocity signals are the most informative for the reconstruction task. Full article
Show Figures

Figure 1

28 pages, 18246 KB  
Article
Forecasting Cumulonimbus Clouds: Evaluation of New Operational Convective Index Using Lightning and Precipitation Data
by Margarida Belo-Pereira
Remote Sens. 2025, 17(9), 1627; https://doi.org/10.3390/rs17091627 - 3 May 2025
Viewed by 2638
Abstract
Deep convective clouds, such as towering cumulus and Cumulonimbus, can endanger lives and property, also being a major hazard to aviation. This study presents the convective index (IndexCON) used operationally at the Portuguese Meteorological Watch Office. Moreover, IndexCON is evaluated against [...] Read more.
Deep convective clouds, such as towering cumulus and Cumulonimbus, can endanger lives and property, also being a major hazard to aviation. This study presents the convective index (IndexCON) used operationally at the Portuguese Meteorological Watch Office. Moreover, IndexCON is evaluated against lightning and precipitation data for two years, between January 2022 and December 2023, over mainland Portugal and its surrounding areas. This index combines several European Center for Medium-Range Weather Forecasts (ECMWF) prognostic variables, such as stability indices, cloud water content, relative humidity and vertical velocity, using a fuzzy-logic approach. IndexCON performs well in the warm season (May–October), with a probability of detection (POD) of 70%, a false alarm ratio (FAR) of 30% and a probability of false detection (POFD) less than 5%, leading to a Critical Success Index (CSI) above 0.55. However, IndexCON performs worse in the cold season (November–April), when dynamical drivers are more relevant, mainly due to overestimating the convective activity, resulting in CSI and Heidke Skill Score (HSS) values below 0.3. Optimizing the membership functions partially reduces this overestimation. Finally, the added value of IndexCON was illustrated in detail for a thunderstorm episode, using satellite products, lightning and precipitation data. Full article
(This article belongs to the Special Issue Cloud Remote Sensing: Current Status and Perspective)
Show Figures

Figure 1

27 pages, 5861 KB  
Article
Analysis and Trends of the Stability Indices During Hail Days Derived from the Radiosonde Observations from Belgrade (Serbia)
by Dragana Vujović, Vladan Vučković and Aleksandar Zečević
Atmosphere 2025, 16(5), 520; https://doi.org/10.3390/atmos16050520 - 29 Apr 2025
Viewed by 1696
Abstract
Forecasting thunderstorms, along with their intensity and phenomenon, is still one of the most challenging tasks in modern weather forecasting. One of the methods for this prediction is based on the indices of convective instability in the atmosphere. For the first time, we [...] Read more.
Forecasting thunderstorms, along with their intensity and phenomenon, is still one of the most challenging tasks in modern weather forecasting. One of the methods for this prediction is based on the indices of convective instability in the atmosphere. For the first time, we analysed the values and trends of 23 stability indices on days when hail occurred. From 2005 to 2020, the most frequently observed hailstones had a diameter between 13 and 20 mm, which accounted for 35.8% of all hail days, which was 826. Huge hailstones with a greater than 50 mm diameter were observed on only two days. Eight of the 23 stability indices show a monotonically decreasing (Showalter Index, Lifted Index, Lifted Index using the virtual temperature, and Humidity Index) or increasing trend (K Index, Convective Available Potential Energy for the most unstable air parcel and for mixing layer, and Convective Available Potential Energy in the layer between air temperatures −10 and −30 °C). These trends indicate that the environment is becoming increasingly favourable for the formation of thunderstorms. However, this potential does not appear to be fully realised, as the frequency of severe and large hail (with diameters of 21 mm or more) has not increased during the period studied. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

18 pages, 9721 KB  
Article
A Multi-Year Investigation of Thunderstorm Activity at Istanbul International Airport Using Atmospheric Stability Indices
by Oğuzhan Kolay, Bahtiyar Efe, Emrah Tuncay Özdemir and Zafer Aslan
Atmosphere 2025, 16(4), 470; https://doi.org/10.3390/atmos16040470 - 17 Apr 2025
Viewed by 3291
Abstract
Thunderstorms are weather phenomena that comprise thunder and lightning. They typically result in heavy precipitation, including rain, snow, and hail. Thunderstorms have adverse effects on flight at both the ground and the upper levels of the troposphere. The characteristics of the thunderstorm of [...] Read more.
Thunderstorms are weather phenomena that comprise thunder and lightning. They typically result in heavy precipitation, including rain, snow, and hail. Thunderstorms have adverse effects on flight at both the ground and the upper levels of the troposphere. The characteristics of the thunderstorm of Istanbul International Airport (International Civil Aviation Organization (ICAO) code: LTFM) have been investigated because it is currently one of the busiest airports in Europe and the seventh-busiest airport in the world. Geopotential height (m), temperature (°C), dewpoint temperature (°C), relative humidity (%), mixing ratio (g kg−1), wind direction (°), and wind speed (knots) data for the ground level and upper levels of the İstanbul radiosonde station were obtained from the Turkish State Meteorological Service (TSMS) for 29 October 2018 and 1 January 2023. Surface data were regularly collected by the automatic weather stations near the runway and the upper-level data were collected by the radiosonde system located in the Kartal district of İstanbul. Thunderstorm statistics, stability indices, and meteorological variables at the upper levels were evaluated for this period. Thunderstorms were observed to be more frequent during the summer, with a total of 51 events. June had the highest number of thunderstorm events with a total of 32. This averages eight events per year. A total of 72.22% occurred during trough and cold front transitions. The K index and total totals index represented the thunderstorm events better than other stability indices. In total, 75% of the thunderstorm days were represented by these two stability indices. The results are similar to the covering of this area: the convective available potential energy (CAPE) values which are commonly used for atmospheric instability are low during thunderstorm events, and the K and total totals indices are better represented for thunderstorm events. This study investigates thunderstorm events at the LTFM, providing critical insights into aviation safety and operational efficiency. The research aims to improve flight planning, reduce weather-related disruptions, and increase safety and also serves as a reference for airports with similar climatic conditions. Full article
(This article belongs to the Special Issue Weather and Climate Extremes: Past, Current and Future)
Show Figures

Figure 1

25 pages, 10524 KB  
Article
The Application of the Convective–Stratiform Classification Algorithm for Feature Detection in Polarimetric Radar Variables and QPE Retrieval During Warm-Season Convection
by Ndabagenga Daudi Mikidadi, Xingyou Huang and Lingbing Bu
Remote Sens. 2025, 17(7), 1176; https://doi.org/10.3390/rs17071176 - 26 Mar 2025
Viewed by 1098
Abstract
Feature detection is one of the hot topics in the weather radar research community. This study employed a convective–stratiform classification algorithm to detect features in polarimetric radar variables and Quantitative Precipitation Estimation (QPE) retrieval during a heavy precipitation event in Crossville, Tennessee, during [...] Read more.
Feature detection is one of the hot topics in the weather radar research community. This study employed a convective–stratiform classification algorithm to detect features in polarimetric radar variables and Quantitative Precipitation Estimation (QPE) retrieval during a heavy precipitation event in Crossville, Tennessee, during warm-season convection. Analysis of polarimetric radar variables revealed that strong updrafts, mixed-phase precipitation, and large hailstones in the radar resolution volume during the event were driven by the existence of supercell thunderstorms. The results of feature detection highlight that the regions with convective–stratiform cores and strong–faint features in the reflectivity field are similar to those in the rainfall field, demonstrating how the algorithm more effectively detects features in both fields. The results of the estimates, accounting for uncertainty during feature detection, indicate that an offset of +2 dB overestimated convective features in the northeast in both the reflectivity and rainfall fields, while an offset of −2 dB underestimated convective features in the northwest part of both fields. The results highlight that convective cores cover a small area with high rainfall exceeding 50 mmh−1, while stratiform cores cover a larger area with greater horizontal homogeneity and lower rainfall intensity. These findings are significant for nowcasting weather, numerical models, hydrological applications, and enhancing climatological computations. Full article
Show Figures

Figure 1

23 pages, 5619 KB  
Article
Thunderstorms with Extreme Lightning Activity in China: Climatology, Synoptic Patterns, and Convective Parameters
by Ruiyang Ma, Dong Zheng, Yijun Zhang, Wen Yao, Wenjuan Zhang and Biao Zhu
Remote Sens. 2024, 16(24), 4673; https://doi.org/10.3390/rs16244673 - 14 Dec 2024
Cited by 4 | Viewed by 3112
Abstract
Intense convection is often accompanied by high-frequency lightning and is highly prone to producing heavy rainfall, strong winds, hail, and tornadoes, frequently resulting in significant damage and loss of life. It is necessary to understand the mechanisms and meteorological conditions of intense convection. [...] Read more.
Intense convection is often accompanied by high-frequency lightning and is highly prone to producing heavy rainfall, strong winds, hail, and tornadoes, frequently resulting in significant damage and loss of life. It is necessary to understand the mechanisms and meteorological conditions of intense convection. This study utilizes the Thunderstorm Feature Dataset from 2010–2018 to analyze the characteristics of thunderstorms with extreme lightning activity (TELAs), defined as thunderstorms whose lightning frequency ranks in the top 1%. Four regions with relatively high thunderstorm activity were selected for analysis: Northeast China (NEC), North China (NC), South China (SC), and the Tibetan Plateau (TP). In NEC, TELAs primarily occur just west of upper-level westerly troughs (UWT), including cold vortices. In NC, TELAs are mainly associated with UWT and subtropical highs (STH). In SC, TELAs are related to frontal systems, easterly waves, tropical cyclones, and STH. In TP, TELAs are generated by TP vortices. Before the TELA process, vertically integrated moisture divergence (VIMD) and convective available potential energy (CAPE) show the most notable anomalies. Except for the TP, TELAs are typically located between centers of anomalies with positive and negative geopotential height (500 hPa) and near centers of anomalies with positive CAPE and negative VIMD, accompanied by notable increases in surface temperature and wind speed. These findings offer a valuable reference for the early warning and forecasting of intense convection. Full article
Show Figures

Figure 1

Back to TopTop