Forecasting Cumulonimbus Clouds: Evaluation of New Operational Convective Index Using Lightning and Precipitation Data
Abstract
:1. Introduction
2. Data and Methods
2.1. Observation Data
2.2. NWP Model Data and Forecasting Algorithm
Predictor | Definition | Reference |
---|---|---|
Jefferson | JEF = 1.60 θw850 − T500 − 0.5 (T700 − Td700) − 8 | [44,46,63,66] |
Total Totals | TT = (T850 − T500) + (Td850 − T500) | [44,46,63,64,65,66] |
K Index | KI = (T850 − T500) + Td850 − (T700 − Td700) | [44,46,63,66] |
Lifted Index | LIs = T500 − Tp500 | [47,66] |
CAPE | [8,46,47,65,67] |
(0.35 (facMEAN × Mtcl)) + (0.15 (facMAX × Mtcl))
2.3. Objective Verification Metrics
3. Results
3.1. Sample Characterization
3.2. Evaluation of IndexCON Using Skill Scores
3.3. Case Study
3.4. Evaluation of Other Predictors
3.5. Evaluation of FaCON
4. Discussion
5. Conclusions
Supplementary Materials
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tafferner, C.; Forster, M.; Hagen, T.; Hauf, B.; Lunnon, A.; Mirza, Y.; Guillou, T.; Zinner, T. Improved thunderstorm weather information for pilots through ground and satellite based observing systems. In Proceedings of the 14th Conference on ARAM, 90th AMS Annual Meeting 2010, Atlanta, GA, USA, 17–21 January 2010. [Google Scholar]
- Pinto, P.; Belo-Pereira, M. Damaging Convective and Non-Convective Winds in Southwestern Iberia during Windstorm Xola. Atmosphere 2020, 11, 692. [Google Scholar] [CrossRef]
- Sinclair, P.C.; Kuhn, P.M. Aircraft Low Altitude Wind Shear Detection and Warning System. J. Appl. Meteorol. Climatol. 1991, 30, 3–16. [Google Scholar] [CrossRef]
- McCarthy, J.; Serafin, R.; Wilson, J.; Evans, J.; Kessinger, C.; Mahoney, W.P., III. Addressing the Microburst Threat to Aviation: Research-to-Operations Success Story. Bull. Am. Meteorol. Soc. 2022, 103, E2845–E2861. [Google Scholar] [CrossRef]
- Phillips, V.T.J.; Formenton, M.; Kanawade, V.P.; Karlsson, L.R.; Patade, S.; Sun, J.; Barthe, C.; Pinty, J.-P.; Detwiler, A.G.; Lyu, W.; et al. Multiple Environmental Influences on the Lightning of Cold-Based Continental Cumulonimbus Clouds. Part I: Description and Validation of Model. J. Atmos. Sci. 2020, 77, 3999–4024. [Google Scholar] [CrossRef]
- Schumacher, P.N.; Boustead, J.M. Mesocyclone Evolution Associated with Varying Shear Profiles during the 24 June 2003 Tornado Outbreak. Weather Forecast. 2011, 26, 808–827. [Google Scholar] [CrossRef]
- Groenemeijer, P.; Kühne, T. A Climatology of Tornadoes in Europe: Results from the European Severe Weather Database. Mon. Weather Rev. 2014, 142, 4775–4790. [Google Scholar] [CrossRef]
- Belo-Pereira, M.; Andrade, C.; Pinto, P. A long-lived tornado on 7 December 2010 in mainland Portugal. Atmos. Res. 2017, 185, 202–215. [Google Scholar] [CrossRef]
- Hammer, T.W.; Schmidlin, T.W. Response to Warnings during the 3 May 1999 Oklahoma City Tornado: Reasons and Relative Injury Rates. Weather Forecast. 2002, 17, 577–581. [Google Scholar] [CrossRef]
- Kunz, M.; Blahak, U.; Handwerker, J.; Schmidberger, M.; Punge, H.J.; Mohr, S.; Fluck, E.; Bedka, K.M. The severe hailstorm in southwest Germany on 28 July 2013: Characteristics, impacts and meteorological conditions. Q. J. R. Meteorol. Soc. 2018, 144, 231–250. [Google Scholar] [CrossRef]
- Púčik, T.; Castellano, C.; Groenemeijer, P.; Kühne, T.; Rädler, A.T.; Antonescu, B.; Faust, E. Large Hail Incidence and Its Economic and Societal Impacts across Europe. Mon. Weather Rev. 2019, 147, 3901–3916. [Google Scholar] [CrossRef]
- Holle, R. A Summary of Recent National-Scale Lightning Fatality Studies. Weather Clim. Soc. 2016, 8, 35–42. [Google Scholar] [CrossRef]
- Cerveny, R.S.; Bessemoulin, P.; Burt, C.C.; Cooper, M.A.; Cunjie, Z.; Dewan, A.; Finch, J.; Holle, R.L.; Kalkstein, L.; Kruger, A.; et al. WMO Assessment of Weather and Climate Mortality Extremes: Lightning, Tropical Cyclones, Tornadoes, and Hail. Weather Clim. Soc. 2017, 9, 487–497. [Google Scholar] [CrossRef]
- Mills, B. An Updated Assessment of Lightning-Related Fatality and Injury Risk in Canada: 2002–2017. Nat. Hazards 2020, 102, 997–1009. [Google Scholar] [CrossRef]
- Bingert, R.; Bremer, L.; Büttner, A.; Nigbur, S.; Blumenthal, R.; Zack, F. A 15-year review of lightning deaths in Germany—With a focus on pathognomonic findings. Int. J. Legal Med. 2024, 138, 1343–1349. [Google Scholar] [CrossRef] [PubMed]
- Walsh, K.M.; Bennett, B.; Cooper, M.A.; Holle, R.L.; Kithil, R.; López, R.E. National athletic trainers’ association position statement: Lightning safety for athletics and recreation. J. Athl. Train. 2000, 35, 471–777. [Google Scholar] [CrossRef]
- Ströhle, M.; Wallner, B.; Lanthaler, M.; Rauch, S.; Brugger, H.; Paal, P. Lightning accidents in the austrian alps—A 10-year retrospective nationwide analysis. Scand. J. Trauma Resusc. Emerg. Med. 2018, 26, 74. [Google Scholar] [CrossRef]
- Matsui, M.; Michishita, K.; Yokoyama, S. Cloud-to-Ground Lightning Flash Density and the Number of Lightning Flashes Hitting Wind Turbines in Japan. Electr. Power Syst. Res. 2020, 181, 106066. [Google Scholar] [CrossRef]
- Gobbo, S.; Ghiraldini, A.; Dramis, A.; Dal Ferro, N.; Morari, F. Estimation of Hail Damage Using Crop Models and Remote Sensing. Remote Sens. 2021, 13, 2655. [Google Scholar] [CrossRef]
- Menezes, L.S.; Russo, A.; Libonati, R.; Trigo, R.M.; Pereira, J.M.; Benali, A.; Ramos, A.M.; Gouveia, C.M.; Rodriguez, C.A.M.; Deus, R.; et al. Lightning-induced fire regime in Portugal based on satellite-derived and in situ data. Agric. For. Meteorol. 2024, 355, 110108. [Google Scholar] [CrossRef]
- Johnson, R.H.; Schumacher, R.S.; Ruppert, J.H.; Lindsey, D.T.; Ruthford, J.E.; Kriederman, L. The Role of Convective Outflow in the Waldo Canyon Fire. Mon. Weather Rev. 2014, 142, 3061–3080. [Google Scholar] [CrossRef]
- Pinto, P.; Silva, Á.; Viegas, D.; Almeida, M.; Raposo, J.; Ribeiro, L. Influence of Convectively Driven Flows in the Course of a Large Fire in Portugal: The Case of Pedrógão Grande. Atmosphere 2022, 13, 414. [Google Scholar] [CrossRef]
- Gultepe, I.; Sharman, R.; Williams, P.D.; Zhou, B.; Ellrod, G.; Minnis, P.; Trier, S.; Griffin, S.; Yum, S.S.; Gharabaghi, B.; et al. Review of High Impact Weather for Aviation Meteorology. Pure Appl. Geophys. 2019, 176, 1869–1921. [Google Scholar] [CrossRef]
- Taszarek, M.; Kendzierski, S.; Pilguj, N. Hazardous weather affecting european airports. Weather Clim. Extrem. 2000, 28, 100243. [Google Scholar] [CrossRef]
- Ahlstrom, U. Work domain analysis for air traffic controller weather displays. J. Saf. Res. 2005, 36, 159–169. [Google Scholar] [CrossRef]
- Rädler, T.; Groenemeijer, P.H.; Faust, E.; Sausen, R.; Púcik, T. Frequency of severe thunderstorms across Europe expected to increase in the 21st century due to rising instability. Npj Clim. Atmos. Sci. 2019, 2, 1–5. [Google Scholar] [CrossRef]
- Ramos, M.; Sousa, P.; Trigo, R.M.; Janeira, M.; Prior, V. Cloud to ground lightning activity over Portugal and its association with circulation weather types. Atmos. Res. 2011, 101, 84–101. [Google Scholar] [CrossRef]
- Santos, J.A.; Reis, M.A.; Sousa, J.; Leite, S.M.; Correia, S.; Janeira, M.; Fragoso, M. Cloud-to-ground lightning in Portugal: Patterns and dynamical forcing. Nat. Hazards Earth Syst. Sci. 2012, 12, 639–649. [Google Scholar] [CrossRef]
- Taszarek, M.; Allen, J.; Púčik, T.; Groenemeijer, P.; Czernecki, B.; Kolendowicz, L.; Lagouvardos, K.; Kotroni, V.; Schulz, W. A Climatology of Thunderstorms across Europe from a Synthesis of Multiple Data Sources. J. Clim. 2019, 32, 1813–1837. [Google Scholar] [CrossRef]
- Poelman, R.; Schulz, W.; Diendorfer, G.; Bernardi, M. The european lightning location system EUCLID—Part 2: Observations. Nat. Hazards Earth Syst. Sci. 2016, 16, 607–616. [Google Scholar] [CrossRef]
- Eurocontrol. Summer 2023: High Weather Impacts on the Network. In Eurocontrol European Aviation Trends; Eurocontrol: Brussels, Belgium, 2023. [Google Scholar]
- ICAO. Annex 3 to the Convention on International Civil Aviation, International Standards and Recommended Practices, 20th ed.; International Civil Aviation Organization: Montreal, QC, Canada, 2018; pp. 29–186. [Google Scholar]
- Walser, D.; Lüthi, D.; Schär, C. Predictability of precipitation in a cloud-resolving model. Mon. Weather Rev. 2004, 132, 560–577. [Google Scholar] [CrossRef]
- Keil, C.; Heinlein, F.; Craig, G.C. The convective adjustment time-scale as indicator of predictability of convective precipitation. Q. J. R. Meteorol. Soc. 2014, 140, 480–490. [Google Scholar] [CrossRef]
- Bauer, P.; Thorpe, A.; Brunet, G. The quiet revolution of numerical weather prediction. Nature 2015, 525, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Bengtsson, L.; Andrae, U.; Aspelien, T.; Batrak, Y.; Calvo, J.; de Rooy, W.; Gleeson, E.; Hansen-Sass, B.; Homleid, M.; Hortal, M.; et al. The HARMONIE–AROME Model Configuration in the ALADIN–HIRLAM NWP System. Mon. Weather Rev. 2017, 145, 1919–1935. [Google Scholar] [CrossRef]
- Yano, J.I.; Ziemiański, M.Z.; Cullen, M.; Termonia, P.; Onvlee, J.; Bengtsson, L.; Carrassi, A.; Davy, R.; Deluca, A.; Gray, S.L.; et al. Scientific Challenges of Convective-Scale Numerical Weather Prediction. Bull. Am. Meteorol. Soc. 2018, 99, 699–710. [Google Scholar] [CrossRef]
- Mills, G.A.; Colquhoun, J.R. Objective Prediction of Severe Thunderstorm Environments: Preliminary Results Linking a Decision Tree with an Operational Regional NWP Model. Weather Forecast. 1998, 13, 1078–1092. [Google Scholar] [CrossRef]
- Flora, M.L.; Potvin, C.K.; Skinner, P.S.; Handler, S.; McGovern, A. Using Machine Learning to Generate Storm-Scale Probabilistic Guidance of Severe Weather Hazards in the Warn-on-Forecast System. Mon. Weather Rev. 2021, 149, 1535–1557. [Google Scholar] [CrossRef]
- Lin, P.; Chang, P.; Jou, B.J.-D.; Wilson, J.W.; Roberts, R.D. Objective Prediction of Warm Season Afternoon Thunderstorms in Northern Taiwan Using a Fuzzy Logic Approach. Weather Forecast. 2012, 27, 1178–1197. [Google Scholar] [CrossRef]
- Bouttier, F.; Marchal, H. Probabilistic thunderstorm forecasting by blending multiple ensembles. Tellus A 2020, 72, 1–19. [Google Scholar] [CrossRef]
- Müller, R.; Barleben, A. Data-Driven Prediction of Severe Convection at Deutscher Wetterdienst (DWD): A Brief Overview of Recent Developments. Atmosphere 2024, 15, 499. [Google Scholar] [CrossRef]
- Mcnulty, R.P. Severe and Convective Weather: A Central Region Forecasting Challenge. Weather Forecast. 1995, 10, 187–202. [Google Scholar] [CrossRef]
- Haklander, J.; Delden, A.V. Thunderstorm predictors and their forecast skill for the Netherlands. Atmos. Res. 2003, 67–68, 273–299. [Google Scholar] [CrossRef]
- Lee, R.R.; Passner, J.E. The Development and Verification of TIPS: An Expert System to Forecast Thunderstorm Occurrence. Weather Forecast. 1993, 8, 271–280. [Google Scholar] [CrossRef]
- Kunz, M. The Skill of convective parameters and indices to predict isolated and severe thunderstorms. Nat. Hazards Earth Syst. Sci. 2007, 7, 327–342. [Google Scholar] [CrossRef]
- Vujović, D.; Paskota, M.; Todorović, N.; Vučković, V. Evaluation of the stability indices for the thunderstorm forecasting in the region of Belgrade, Serbia. Atmos. Res. 2015, 161–162, 143–152. [Google Scholar] [CrossRef]
- Yair, Y.; Lynn, B.; Price, C.; Kotroni, V.; Lagouvardos, K.; Morin, E.; Mugnai, A.; Llasat, M.C. Predicting the potential for lightning activity in Mediterranean storms based on the Weather Research And Forecasting (WRF) model dynamic and microphysical fields. J. Geophys. Res. 2010, 115, D04205. [Google Scholar] [CrossRef]
- Lopez, P. A Lightning Parameterization for the ECMWF Integrated Forecasting System. Mon. Weather Rev. 2016, 144, 3057–3075. [Google Scholar] [CrossRef]
- Saunders, P.R. A Review of Thunderstorm Electrification Processes. J. Appl. Meteorol. Climatol. 1993, 32, 642–655. [Google Scholar] [CrossRef]
- Deierling, W.; Petersen, W.; Latham, J.; Ellis, S.; Christian, H. The relationship between lightning activity and ice fluxes in thunderstorms. J. Geophys. Res. Atmos. 2008, 113, D15210. [Google Scholar] [CrossRef]
- Lynn, H.; Yair, Y.; Price, C.; Kelman, G.; Clark, A.J. Predicting Cloud-to-Ground and Intracloud Lightning in Weather Forecast Models. Weather. Forecast. 2012, 27, 1470–1488. [Google Scholar] [CrossRef]
- Prasad, S.K.; Saha, K.; Shanker, G.; Routray, A.; Sarkar, A.; Prasad, V.S. Ensemble versus deterministic lightning forecast performance at a convective scale over indian region. Atmos. Res. 2024, 312, 107727. [Google Scholar] [CrossRef]
- Vaisala. Advanced Lightning Sensor LS7002. 2024. Available online: https://www.vaisala.com/en/systems/lightning/single-point-sensors/advanced-lightning-sensor-ls7002 (accessed on 14 October 2024).
- Vaisala. Total Lightning Processor. 2024. Available online: https://www.vaisala.com/en/products/weather-environmental-sensors/total-lightning-processor (accessed on 14 October 2024).
- Schulz, W.; Diendorfer, G.; Pedeboy, S.; Poelman, D.R. The european lightning location system EUCLID—Part 1: Performance analysis and validation. Nat. Hazards Earth Syst. Sci. 2016, 16, 595–606. [Google Scholar] [CrossRef]
- Pfister, L.; Ueyama, R.; Jensen, E.J.; Schoeberl, M.R. Deep convective cloud top altitudes at high temporal and spatial resolution. Earth Space Sci. 2022, 9, e2022EA002475. [Google Scholar] [CrossRef]
- Kerdraon, G.; Fontaine, E. Algorithm Theoretical Basis Document for the Cloud Product Processors of the NWC/GEO; EUMETSAT: Darmstadt, Germany, 2021. [Google Scholar]
- Bernstein, B.C.; McDonough, F.; Politovich, M.K.; Brown, B.G.; Ratvasky, T.P.; Miller, D.R.; Wolff, C.A.; Cunning, G. Current icing potential: Algorithm description and comparison with aircraft observations. J. Appl. Meteorol. 2005, 44, 969–986. [Google Scholar] [CrossRef]
- Morcrette, C.; Brown, K.; Bowyer, R.P.; Gill, D.; Suri, D. Development and Evaluation of In-Flight Icing Index Forecast for Aviation. Weather Forecast. 2019, 34, 731–750. [Google Scholar] [CrossRef]
- Williams, J.K. Introduction to Fuzzy Logic. In Artificial Intelligence Methods in Environmental Sciences; Springer: Berlin/Heidelberg, Germany, 2009; pp. 127–151. [Google Scholar]
- Westermayer, T.; Groenemeijer, P.; Pistotnik, G.; Sausen, R.; Faust, E. Identification of favorable environments for thunderstorms in reanalysis data. Meteorol. Z. 2017, 26, 59–70. [Google Scholar] [CrossRef]
- Marinaki, M.; Spiliotopoulos, M.; Michalopoulou, H. Evaluation of atmospheric instability indices in Greece. Adv. Geosci. 2006, 7, 131–135. [Google Scholar] [CrossRef]
- Santos, J.; Belo-Pereira, M. A Comprehensive analysis of hail events in Portugal: Climatology and consistency with atmospheric circulation. Int. J. Climatol. 2019, 39, 188–205. [Google Scholar] [CrossRef]
- Cruz, J.; Belo-Pereira, M.; Fonseca, A.; Santos, J.S. Spatial–Temporal Variability of Hourly Precipitation Extremes in Portugal: Two Case Studies in Major Wine-Growing Regions. Int. J. Climatol. 2025, e8812. [Google Scholar] [CrossRef]
- Peppler, R.A.; Lamb, P.J. Tropospheric Static Stability and Central North American Growing Season Rainfall. Mon. Weather Rev. 1989, 117, 1156–1180. [Google Scholar] [CrossRef]
- Groenemeijer, P.; Púčik, T.; Tsonevsky, I.; Bechtold, P. An Overview of Convective Available Potential Energy and Convective Inhibition Provided by NWP Models for Operational Forecasting; ECMWF Technical Memorandum; European Centre for Medium-Range Weather Forecasts: Reading, UK, 2019. [Google Scholar]
- Casqueiro, C.; Trigo, I.; Belo-Pereira, M. Characterization of icing conditions using aircraft reports and satellite data. Atmos. Res. 2023, 293, 106884. [Google Scholar] [CrossRef]
- Hogan, R.J.; O’Connor, E.J.; Illingworth, A.J. Verification of cloud-fraction forecasts. Q. J. R. Meteorol. Soc. 2009, 135, 1494–1511. [Google Scholar] [CrossRef]
- Barnes, L.R.; Schultz, D.M.; Gruntfest, E.C.; Hayden, M.H.; Benight, C.C. False Alarm Rate or False Alarm Ratio? Weather Forecast. 2009, 24, 1452–1454. [Google Scholar] [CrossRef]
- Belo-Pereira, M. Aviation Turbulence Forecasting over the Portuguese Flight Information Regions: Algorithm and Objective Verification. Atmosphere 2022, 13, 422. [Google Scholar] [CrossRef]
- Mansouri, A.; Mostajabi, A.; Tong, C.; Rubinstein, M.; Rachidi, F. Lightning Nowcasting Using Solely Lightning Data. Atmosphere 2023, 14, 1713. [Google Scholar] [CrossRef]
- Davolio, S.; Buzzi, A.; Malguzzi, P. Orographic triggering of long lived convection in three dimensions. Meteorol. Atmos. Phys. 2009, 103, 35–44. [Google Scholar] [CrossRef]
- Santos, J.; Belo-Pereira, M. Sub-Hourly Precipitation Extremes in Mainland Portugal and Their Driving Mechanisms. Climate 2022, 10, 28. [Google Scholar] [CrossRef]
- Leitao, P.; Pinto, P. Tornadoes in Portugal: An Overview. Atmosphere 2020, 11, 679. [Google Scholar] [CrossRef]
- Holle, R.L.; López, R.E.; Howard, K.W.; Cummins, K.L.; Malone, M.D.; Krider, E.P. An isolated winter cloud-to-ground lightning flash causing damage and injury in Connecticut. Bull. Am. Meteorol. Soc. 1997, 78, 437–441. [Google Scholar] [CrossRef]
- Gascón, E.; Sánchez, J.L.; Fernández-González, S.; Hermida, L.; López, L.; García-Ortega, E.; Merino, A. Monitoring a convective winter episode of the Iberian Peninsula using a multichannel microwave radiometer. J. Geophys. Res. Atmos. 2015, 120, 1565–1581. [Google Scholar] [CrossRef]
- Maddox, R.A. Mesoscale Convective Complexes. Bull. Am. Meteorol. Soc. 1980, 61, 1374–1387. [Google Scholar] [CrossRef]
- Williams, E. Lightning Activity in Winter Storms: A Meteorological and Cloud Microphysical Perspective. IEEJ Trans. Power Energy 2018, 138, 364–373. [Google Scholar] [CrossRef]
- Kitagawa, N. Charge Distribution of Winter Thunderclouds. Res. Lett. Atmos. Elec. 1992, 12, 143–153. [Google Scholar] [CrossRef]
- Morgenstern, D.; Stucke, I.; Zeileis, A.; Simon, T. Thunderstorms environments in Europe. Weather Clim. Dynam. 2023, 4, 489–509. [Google Scholar] [CrossRef]
- Clark, M.R. The southern England tornadoes of 30 December 2006: Case study of a tornadic storm in a low CAPE, high shear environment. Atmos. Res. 2009, 93, 50–65. [Google Scholar] [CrossRef]
- Doswell, C.A., III; Rasmussen, E.N. The effect of neglecting the virtual temperature correction on CAPE calculations. Weather Forecast. 1994, 9, 625–629. [Google Scholar] [CrossRef]
- Ripesi, P. Automatic cumulonimbus and towering cumulus identification based on the italian weather radar network data. Weather 2024, 79, 163–169. [Google Scholar] [CrossRef]
- Taszarek, M.; Pilguj, N.; Allen, J.T.; Gensini, V.; Brooks, H.E.; Szuster, P. Comparison of Convective Parameters Derived from ERA5 and MERRA-2 with Rawinsonde Data over Europe and North America. J. Clim. 2021, 34, 3211–3237. [Google Scholar] [CrossRef]
- Holmlund, K.; Grandell, J.; Schmetz, J.; Stuhlmann, R.; Bojkov, B.; Munro, R.; Lekouara, M.; Coppens, D.; Viticchie, B.; August, T.; et al. Meteosat Third Generation (MTG): Continuation and Innovation of Observations from Geostationary Orbit. Bull. Am. Meteorol. Soc. 2021, 102, E990–E1015. [Google Scholar] [CrossRef]
Predictor | Expression |
---|---|
faJEF | JEF − 29, if 29 < JEF < 30 °C; 0 if JEF ≤ 29 °C; 1, if JEF ≥ 30 °C |
faTT | TT − 49, if 49 < TT < 50 °C; 0 if TT ≤ 49 °C; 1, if TT ≥ 50 °C |
faK | 0.5 KI − 12, if 24 < KI < 26 °C; 0 if KI ≤ 24 °C; 1, if KI ≥ 26 °C |
faLI | LIs/3 if −3 < LIs ≤ 0; 0, if LIs > 0; 1, if LIs ≤ −3 °C |
faCAPE | faCAPE = CAPE/lim, if CAPE < lim; 1 if CAPE ≥ lim; lim = 250 J/kg |
Observation | ||||
---|---|---|---|---|
Yes | No | Total | ||
Forecast | Yes | A (Hit) | B (false alarm) | A + B |
No | C (miss) | D (correct negative) | C + D | |
Total | A + C | B + D | NN = A + B + C + D |
Score | Definition | Range | Perfect |
---|---|---|---|
Probability of Detection | POD = A/(A + C) | [0, 1] | 1 |
False Alarm Ratio | FAR = B/(A + B) | [0, 1] | 0 |
F1 Score | F1 = 2 A/[2A + (C + B)] | [0, 1] | 1 |
Probability of False Detection | POFD = B/(B + D) | [0, 1 | 0 |
True Skill Statistic | TSS = POD − POFD | [0, 1] | 1 |
Frequency Bias | BIAS = (A + B)/(A + C) | ≥0 | 1 |
Critical Success Score (or Threat Score) | CSI = A/(A + B + C) | [0, 1] | 1 |
Heidke Skill Score [46] | HSS = 2 (A D − B C)/[B2 + C2 + 2 A D + (B + C)(A + D)] | ≤1 | 1 |
Symmetric Extreme Dependency Score | SEDS = ln(BIAS × p2)/ln(p × POD) − 1 | [−1, 1] | 1 |
Frequency of Occurrence (or Base Rate) | p = (A + C)/N | - |
Tornado | Hail | Downburst |
---|---|---|
6 (1) | 4 (22) | 0 (1) |
Data Source | Convective Event | References |
---|---|---|
Lightning | ≥2 discharges (at least one CG) | [29,44,62] |
Severe weather report | Tornado, hail or downburst | [7,29] |
Precipitation (P) and wind gust (WG) | P ≥ 4 mm/10 min and WG ≥ 10 m s−1 | [74] |
Predictor | SEDS | TSS | CSI | HSS | F1 | BIAS | |
---|---|---|---|---|---|---|---|
CAPE | 0.533 | 0.500 | 0.293 | 0.407 | 0.454 | 1.49 | 25 |
faCAPE | 0.572 | 0.639 | 0.423 | 0.518 | 0.594 | 1.55 | 0.15 |
JEF | 0.736 | 0.768 | 0.589 | 0.698 | 0.741 | 1.24 | 29.5 |
faJEF | 0.735 | 0.760 | 0.586 | 0.696 | 0.739 | 1.22 | 0.55 |
faJEFn | 0.738 | 0.761 | 0.590 | 0.700 | 0.742 | 1.21 | 0.80 |
Kindex | 0.703 | 0.753 | 0.552 | 0.661 | 0.711 | 1.29 | 29.5 |
faK | 0.611 | 0.778 | 0.456 | 0.549 | 0.627 | 1.98 | 0.95 |
faKn | 0.703 | 0.748 | 0.551 | 0.660 | 0.710 | 1.31 | 0.90 |
TT | 0.600 | 0.723 | 0.449 | 0.544 | 0.619 | 1.77 | 48 |
faTT | 0.594 | 0.619 | 0.439 | 0.542 | 0.610 | 1.33 | 0.1 |
faTTn | 0.604 | 0.708 | 0.452 | 0.549 | 0.623 | 1.68 | 0.25 |
LIs | 0.511 | 0.631 | 0.374 | 0.450 | 0.545 | 1.94 | <1.25 |
faLI | 0.476 | 0.354 | 0.299 | 0.390 | 0.460 | 0.78 | 0.1 |
faLIn | 0.530 | 0.593 | 0.387 | 0.475 | 0.559 | 1.58 | 0.2 |
Predictor | SEDS | TSS | CSI | HSS | F1 | BIAS | |
---|---|---|---|---|---|---|---|
CAPE | 0.421 | 0.283 | 0.064 | 0.114 | 0.121 | 3.98 | 30 |
faCAPE | 0.590 | 0.319 | 0.162 | 0.274 | 0.279 | 1.33 | 0.25 |
JEF | 0.585 | 0.227 | 0.147 | 0.253 | 0.257 | 0.80 | 31 |
faJEF | 0.438 | 0.288 | 0.147 | 0.233 | 0.257 | 1.49 | 0.99 |
faJEFn | 0.567 | 0.359 | 0.148 | 0.252 | 0.258 | 1.86 | 0.65 |
Kindex | 0.599 | 0.314 | 0.170 | 0.285 | 0.291 | 1.20 | 29 |
faK | 0.437 | 0.410 | 0.150 | 0.232 | 0.261 | 2.58 | 0.99 |
faKn | 0.594 | 0.358 | 0.167 | 0.28 | 0.286 | 1.56 | 0.75 |
TT | 0.376 | 0.475 | 0.052 | 0.088 | 0.099 | 9.84 | 49 |
faTT | 0.370 | 0.405 | 0.052 | 0.089 | 0.099 | 8.14 | 0.55 |
LIs | 0.589 | 0.262 | 0.156 | 0.265 | 0.270 | 0.98 | <0.50 |
faLI | 0.582 | 0.262 | 0.152 | 0.260 | 0.265 | 1.02 | 0.15 |
faLIn | 0.582 | 0.283 | 0.155 | 0.263 | 0.268 | 1.16 | 0.45 |
Weighting Factor | Function | Cold Season | Warm Season |
---|---|---|---|
C1 | faJEFn | 0.21 | 0.24 |
C2 | faKn | 0.22 | 0.22 |
C3 | faTTn | 0.14 | 0.19 |
C4 | faLIn | 0.22 | 0.17 |
C5 | faCAPE | 0.21 | 0.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belo-Pereira, M. Forecasting Cumulonimbus Clouds: Evaluation of New Operational Convective Index Using Lightning and Precipitation Data. Remote Sens. 2025, 17, 1627. https://doi.org/10.3390/rs17091627
Belo-Pereira M. Forecasting Cumulonimbus Clouds: Evaluation of New Operational Convective Index Using Lightning and Precipitation Data. Remote Sensing. 2025; 17(9):1627. https://doi.org/10.3390/rs17091627
Chicago/Turabian StyleBelo-Pereira, Margarida. 2025. "Forecasting Cumulonimbus Clouds: Evaluation of New Operational Convective Index Using Lightning and Precipitation Data" Remote Sensing 17, no. 9: 1627. https://doi.org/10.3390/rs17091627
APA StyleBelo-Pereira, M. (2025). Forecasting Cumulonimbus Clouds: Evaluation of New Operational Convective Index Using Lightning and Precipitation Data. Remote Sensing, 17(9), 1627. https://doi.org/10.3390/rs17091627