Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (33)

Search Parameters:
Keywords = convective adjustment time

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 6070 KiB  
Article
Investigation into the Early Cracking Behavior of High-Geothermal Tunnel Lining Concrete Based on Thermal–Mechanical Coupling Model
by Si Xie, Dan Zhao, Peng Yi, Qian Chen and Wei Liu
Buildings 2025, 15(2), 301; https://doi.org/10.3390/buildings15020301 - 20 Jan 2025
Viewed by 944
Abstract
As a typical extreme environment, a high-geothermal environment poses severe challenges to tunnel construction in western China. In this paper, a thermal–mechanical coupling model was formulated to evaluate the cracking behavior of lining under high-geothermal conditions, considering the early property evolution of concrete. [...] Read more.
As a typical extreme environment, a high-geothermal environment poses severe challenges to tunnel construction in western China. In this paper, a thermal–mechanical coupling model was formulated to evaluate the cracking behavior of lining under high-geothermal conditions, considering the early property evolution of concrete. This was further validated by field monitoring and analyzed by adjusting the relevant parameters. Results indicate that the higher cracking risk occurred on the external surface of the lining sidewall after 24 h of casting. With the increase in surrounding rock temperature, the duration of cracking risk in the lining was extended. When the surrounding rock temperature exceeded 68.7 °C, thermal insulation measures were required for the lining structure. Notably, superior thermal insulation was achieved by applying a sandwich structure of rigid polyurethane materials with a thickness of 20–60 mm. In terms of curing conditions, adopting formwork with a larger heat convection coefficient was conducive to reducing the cracking risk of the tunnel lining, with an appropriate removal time of 48 h. This work provides insights into the thermal–mechanical behavior of lining concrete, thereby mitigating its early cracking in a high-geothermal environment. Full article
Show Figures

Figure 1

19 pages, 7245 KiB  
Article
A Numerical Simulation of Convective Systems in Southeast China: A Comparison of Microphysical Schemes and Sensitivity Experiments on Raindrop Break and Evaporation
by Zhaoqing Cheng and Xiaoli Liu
Remote Sens. 2024, 16(22), 4297; https://doi.org/10.3390/rs16224297 - 18 Nov 2024
Viewed by 976
Abstract
This study employed version 4.2.2 of the Weather Research and Forecasting (WRF) model for this simulation and applied two microphysics schemes, the Thompson scheme (THOM) and Milbrandt–Yau scheme (MY)—which are widely used in convective simulations—to simulate a mesoscale severe convective precipitation event that [...] Read more.
This study employed version 4.2.2 of the Weather Research and Forecasting (WRF) model for this simulation and applied two microphysics schemes, the Thompson scheme (THOM) and Milbrandt–Yau scheme (MY)—which are widely used in convective simulations—to simulate a mesoscale severe convective precipitation event that occurred in southeastern China on 8 May 2017. The simulations were then compared with dual-polarization radar observations using a radar simulator. It was found that THOM produced vertical structures of radar reflectivity (ZH) closer to radar observations and accumulated precipitation more consistent with ground-based observations. However, both schemes overestimated specific differential phase (KDP) and differential reflectivity (ZDR) below the 0 °C level. Further analysis indicated that THOM produced more rain with larger raindrop sizes below the 0 °C level. Due to the close connection between raindrop breakup, evaporation rate, and raindrop size, sensitivity experiments on the breakup threshold (Db) and the evaporation efficiency (EE) of the THOM scheme were carried out. It was found that adjusting Db significantly changed the simulated raindrop size distribution and had a certain impact on the strength of cold pool; whereas modifying EE not only significantly changed the intensity and scope of the cold pool, but also had great effect on the raindrop size distribution. At the same time, comparison with dual-polarization radar observations indicated that reducing the Db can improve the model’s simulation of polarimetric radar variables such as ZDR. This paper specifically analyzes a severe convective precipitation event in the Guangdong region under weak synoptic conditions and a humid climate. It demonstrates the feasibility of a method based on polarimetric radar data that modifies Db of THOM to achieve better consistency between simulations and observations in southeast China. Since the microphysical processes of different Mesoscale Convective Systems (MCSs) vary, the generalizability of this study needs to be validated through more cases and regions in the future. Full article
Show Figures

Graphical abstract

18 pages, 7849 KiB  
Article
Evaluation of the Heat Transfer Performance of a Device Utilizing an Asymmetric Pulsating Heat Pipe Structure Based on Global and Local Analysis
by Dong Liu, Jianhong Liu, Kai Yang, Fumin Shang, Chaofan Zheng and Xin Cao
Energies 2024, 17(22), 5588; https://doi.org/10.3390/en17225588 - 8 Nov 2024
Cited by 1 | Viewed by 962
Abstract
PHPs (pulsating heat pipes) are widely used as an efficient heat transfer element in equipment thermal management and waste heat recovery due to their flexibility. The purpose of this study was to design a heat transfer device that utilizes an asymmetric pulsating heat [...] Read more.
PHPs (pulsating heat pipes) are widely used as an efficient heat transfer element in equipment thermal management and waste heat recovery due to their flexibility. The purpose of this study was to design a heat transfer device that utilizes an asymmetric pulsating heat pipe structure by adjusting the lengths of selected pipes within the entire circulation pipeline. In the experiment, a constant temperature water bath was used as the heat source, with heat dissipated in the condensing section via natural convection. An infrared thermal imager was used to record the temperature of the condensing section, and the local wall temperature distribution was measured in different channels of the condensing section. Based on an in-depth analysis of the wavelet frequency, the following research conclusions are drawn: Firstly, as the heat source temperature increases, the start-up time of the pulsating heat pipe is shortened, the operating state changes from start–stop–start to stable and continuous oscillation, and the oscillation mode changes from high amplitude and low frequency to low amplitude and high frequency. These changes are especially pronounced when the heat source temperature is 80 °C, which is when the thermal resistance reaches its lowest value of 0.0074 K/W, and the equivalent thermal conductivity reaches its highest value of 666.29 W/(m·K). Secondly, the flow and oscillation of the working fluid can be effectively promoted by appropriately shortening the length of the condensing section of the pulsating heat pipes or the heat transfer distance between the evaporation and condensing sections. Third, under a low-temperature heat source, the oscillation frequency of each channel of a pulsating heat pipe is found to be low based on wavelet analysis. However, as the heat source temperature increases, the energy content of the temperature signal of the working fluid in each channel changes from a low- to a high-frequency value, gradually converging to the same characteristic frequency. At this point, the working fluid in the pipes no longer flows randomly in multiple directions but rather in a single direction. Finally, we determined that the maximum oscillation frequency of working fluid in a PHP is around 0.7 HZ when using the water bath heating method. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

24 pages, 3064 KiB  
Systematic Review
Comparison of Mango (Mangifera indica) Dehydration Technologies: A Systematic Review
by Luna C. López and Gustavo Adolfo Hincapié-Llanos
AgriEngineering 2024, 6(3), 2694-2717; https://doi.org/10.3390/agriengineering6030157 - 6 Aug 2024
Cited by 1 | Viewed by 2420
Abstract
The convective hot-air drying technology can cause physicochemical, nutritional, and organoleptic losses in the mango (Mangifera indica). The present Systematic Review was carried out with the objective of comparing mango dehydration technologies to identify the effects on the physicochemical, nutritional, and [...] Read more.
The convective hot-air drying technology can cause physicochemical, nutritional, and organoleptic losses in the mango (Mangifera indica). The present Systematic Review was carried out with the objective of comparing mango dehydration technologies to identify the effects on the physicochemical, nutritional, and organoleptic properties of the fruit. Through a review of published scientific and conference papers in the Scopus database, adjusted to the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) methodology, a total of 134 documents dated between 2000 and December 6 of 2022 were obtained; 76 of these documents were finally included in the bibliographic and theoretical analysis. Selection parameters emphasizing the relationship between the articles and the research topic, evidenced by including at least one of three dehydration technologies and the fruit of interest with an experimental or theoretical approach to the dehydration subject; review articles and surveys were excluded. Correlation graphs of bibliographic variables were made using the data mining software VantagePoint (version 15.1), which was graphically restructured in Microsoft Excel with the support of statistical analysis. Of the resulting articles, it was found that the countries with authors who participated most in scientific production like India, Brazil, Colombia, the United States, and Thailand, were those related to mango production or importation. Furthermore, the freeze-drying technology allows operating at lower temperatures than convective hot-air drying, contributing to the preservation of ascorbic acid, among other compounds. The refractance window has the shortest operation time to obtain moisture values between 10 and 20%. The dehydrated samples using the refractance window are smooth, homogeneous, non-porous, and comparable to the color obtained with freeze-drying, which is acceptable for industrial applications. Full article
(This article belongs to the Section Pre and Post-Harvest Engineering in Agriculture)
Show Figures

Figure 1

20 pages, 6655 KiB  
Article
Research on the Design of a MIMO Management System for Lithium-Ion Batteries Based on Radiation–Conductivity–Convection Coupled Thermal Analysis
by Qian Wang, Linbin Yan, Lushi Yang and Jianxiao Wang
Energies 2024, 17(14), 3504; https://doi.org/10.3390/en17143504 - 17 Jul 2024
Cited by 1 | Viewed by 1104
Abstract
In this study, the heat transfer model of a radiation–conduction–convection coupled lithium-ion battery pack is established through theoretical analysis. The temperature distribution and flow field distribution inside the battery pack are obtained by simulation using ANSYS Fluent software 2022 R1, and the reasonableness [...] Read more.
In this study, the heat transfer model of a radiation–conduction–convection coupled lithium-ion battery pack is established through theoretical analysis. The temperature distribution and flow field distribution inside the battery pack are obtained by simulation using ANSYS Fluent software 2022 R1, and the reasonableness of the simulation model is verified with an experiment. This study also analyzes in detail the improvement effect of adding heat dissipation ribs, applying heat dissipation coatings, and adjusting the fan speed on the heat dissipation performance of the system. Under the same heat sink rib height conditions, the relationship between its thickness and total heat dissipation and thermal efficiency is studied in depth, and the temperature distribution of the cell under different rib thicknesses is obtained. At the same time, the emissivity of the heat sink coating under different coating thicknesses was measured by infrared thermography, and the relevant design values were determined through simulation experiments. Finally, based on the experimental test results of fan performance, a corresponding control strategy is proposed to construct an efficient and high-performance multiple-input multiple-output (MIMO) battery thermal management system. The experimental results show that optimizing the structure of the forced air cooling system through the above measures can ensure that the Li-ion battery operates within the efficient operating temperature range, thus extending its cycle life, improving its stability, and reducing the risk of thermal runaway. Meanwhile, the problem of excessive temperature difference between different modules is improved, and the output capacity of the energy storage system is increased. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

23 pages, 11187 KiB  
Article
Weather Radar Calibration Method Based on UAV-Suspended Metal Sphere
by Fei Ye, Xiaopeng Wang, Lu Li, Yubao Chen, Yongheng Lei, Haifeng Yu, Jiazhi Yin, Lixia Shi, Qian Yang and Zehao Huang
Sensors 2024, 24(14), 4611; https://doi.org/10.3390/s24144611 - 16 Jul 2024
Cited by 2 | Viewed by 1756
Abstract
Weather radar is an active remote sensing device used to monitor the full lifecycle changes in severe convective weather with high spatial and temporal resolution. Effective radar calibration is a crucial foundation for ensuring the high-quality application of observational data. This paper utilizes [...] Read more.
Weather radar is an active remote sensing device used to monitor the full lifecycle changes in severe convective weather with high spatial and temporal resolution. Effective radar calibration is a crucial foundation for ensuring the high-quality application of observational data. This paper utilizes a UAV platform equipped with a high-precision RTK system and standard metal spheres to study the principles and methods of metal sphere calibration, constructing a complete calibration process and calibration accuracy evaluation metrics. Additionally, a collocated radar comparison observation experiment was conducted for cross-validation, and metal sphere calibration tests were performed on problematic radars. The experimental results indicate the following: (1) The combined application of a high-precision RTK system and a laser range camera can provide real-time position information on the metal sphere, improving the efficiency of radar target acquisition. (2) The calibration method based on UAV-suspended metal spheres can periodically conduct the quantitative calibration of Z and ZDR, achieving calibration accuracies within 0.5 dB and 0.2 dB, respectively, and supports the qualitative inspection of key parameters such as beamwidth and pulse width. (3) During field tests, a high success rate “coarse adjustment + fine adjustment + staring” sphere-finding technique was established, based on automatic switching between RHI, PPI, and FIX scanning modes. This method directs the UAV to adjust the metal sphere to the center of the radar distance bin, reducing the impact of uneven beam filling and bin crossing, ensuring the accuracy of scattering characteristic measurements. Full article
(This article belongs to the Section Radar Sensors)
Show Figures

Figure 1

34 pages, 23490 KiB  
Article
Assessing the Impact of Lightning Data Assimilation in the WRF Model
by Vanderlei Vargas, Rute Costa Ferreira, Osmar Pinto and Dirceu Luis Herdies
Atmosphere 2024, 15(7), 826; https://doi.org/10.3390/atmos15070826 - 10 Jul 2024
Cited by 3 | Viewed by 1703
Abstract
Recent advancements in computational technologies have enhanced the importance of meteorological modeling, driven by an increased reliance on weather-dependent systems. This research implemented a lightning data assimilation technique to improve short-term weather forecasts in South America, potentially refining initialization methods used in meteorological [...] Read more.
Recent advancements in computational technologies have enhanced the importance of meteorological modeling, driven by an increased reliance on weather-dependent systems. This research implemented a lightning data assimilation technique to improve short-term weather forecasts in South America, potentially refining initialization methods used in meteorological operation centers. The main goal was to implement and enhance a data assimilation algorithm integrating lightning data into the WRF model, assessing its impact on forecast accuracy. Focusing on southern Brazil, a region with extensive observational infrastructure and frequent meteorological activity, this research utilized several data sources: precipitation data from the National Institute of Meteorology (INMET), lightning data from the Brazilian Lightning Detection Network (BrasilDAT), GOES-16 satellite images, synoptic weather charts from the National Institute for Space Research (INPE), and initial conditions from the GFS model. Employing the WRF-ARW model version 3.9.1.1 and WRFDA system version 3.9.1 with 3DVAR methodology, the study conducted three experimental setups during two meteorological events to evaluate the assimilation algorithm. These included a control (CTRL) without assimilation, a lightning data assimilation (LIGHT), and an adaptive humidity threshold assimilation (ALIGHT). Results showed that the lightning data assimilation system enhanced forecasts for large-scale systems, especially with humidity threshold adjustments. While it improved squall line timing and positioning, it had mixed effects when convection was thermally driven. The lightning data assimilation methodology represents a significant contribution to the field, indicating that using such alternative data can markedly improve short-term forecasts, benefiting various societal sectors. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

20 pages, 4663 KiB  
Article
The Analysis of Transient Temperature in the Wellbore of a Deep Shale Gas Horizontal Well
by Shilong Zhang, Jianhong Fu, Chi Peng, Yu Su, Honglin Zhang and Mou Yang
Processes 2024, 12(7), 1402; https://doi.org/10.3390/pr12071402 - 5 Jul 2024
Cited by 2 | Viewed by 2142
Abstract
The transient temperature of the wellbore plays an important role in the selection of downhole tools during the drilling of deep shale gas horizontal wells. This study established a transient temperature field model of horizontal wells based on the convection heat transfer between [...] Read more.
The transient temperature of the wellbore plays an important role in the selection of downhole tools during the drilling of deep shale gas horizontal wells. This study established a transient temperature field model of horizontal wells based on the convection heat transfer between wellbore and formation and the principle of energy conservation. The model verification shows that the root mean squared error (RMSE) between the measured annular temperature neat bit and the predicted value is 0.54 °C, indicating high accuracy. A well in Chongqing, China, is taken as an example to study the effects of bottom hole assembly (BHA), drill pipe size, drilling fluid density, flow rate, inlet temperature of drilling fluid, and drilling fluid circulation time on the temperature distribution in wellbore annulus. It is found that the increase in annular temperature is about 1 °C/100 m in the horizontal section when a positive displacement motor (PDM) is used. A Φ139.7 mm drill pipe is more favorable for cooling than Φ139.7 mm + Φ127 mm drill pipe. Reducing drilling fluid density and flow rate and inlet temperature is beneficial to reduce bottom hole temperature. Bit-breaking rock, bit hydraulic horsepower, and drill pipe rotation will increase the bottom hole temperature. The research results can provide theoretical guidance for temperature prediction, selection of proper drill tools, and adjustment of relevant parameters in deep shale gas horizontal wells. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Figure 1

19 pages, 11336 KiB  
Article
The Reexamination of the Moisture–Vortex and Baroclinic Instabilities in the South Asian Monsoon
by Hongyu Chen, Tim Li and Jing Cui
Atmosphere 2024, 15(2), 147; https://doi.org/10.3390/atmos15020147 - 24 Jan 2024
Cited by 1 | Viewed by 1553
Abstract
Observational analyses reveal that a dominant mode in the South Asian Monsoon region in boreal summer is a westward-propagating synoptic-scale disturbance with a typical wavelength of 4000 km that is coupled with moistening and precipitation processes. The disturbances exhibit an eastward tilt during [...] Read more.
Observational analyses reveal that a dominant mode in the South Asian Monsoon region in boreal summer is a westward-propagating synoptic-scale disturbance with a typical wavelength of 4000 km that is coupled with moistening and precipitation processes. The disturbances exhibit an eastward tilt during their development before reaching their maximum activity center. A 2.5-layer model that extends a classic 2-level quasi-geostrophic model by including a prognostic lower-tropospheric moisture tendency equation and an interactive planetary boundary layer was constructed. The eigenvalue analysis of this model shows that the most unstable mode has a preferred zonal wavelength of 4000 km, a westward phase speed of 6 m s−1, an eastward tilt vertical structure, and a westward shift of maximum moisture/precipitation center relative to the lower-tropospheric vorticity center, all of which agree with the observations. Sensitivity experiments show that the moisture–vortex instability determines, to a large extent, the growth rate, while the baroclinic instability helps set up the preferred zonal scale. Ekman-pumping-induced vertical moisture advection prompts an in-phase component of perturbation moisture relative to the low-level cyclonic center, allowing the generation of available potential energy and perturbation growth, regardless of whether or not a low-level mean westerly is presented. In contrast to a previous study, the growth rate is reversely proportional to the convective adjustment time. The current work sheds light on understanding the moisture–vortex and the baroclinic instability in a monsoonal environment with a pronounced easterly vertical shear. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

24 pages, 1727 KiB  
Review
Three Dimensional Natures of Massive Star Envelopes
by Yan-Fei Jiang
Galaxies 2023, 11(5), 105; https://doi.org/10.3390/galaxies11050105 - 11 Oct 2023
Cited by 9 | Viewed by 2248
Abstract
In this paper, we review our current understanding of the outer envelope structures of massive stars based on three-dimensional (3D) radiation hydrodynamic simulations. We briefly summarize the fundamental issues in constructing hydrostatic one-dimensional (1D) stellar evolution models when stellar luminosity approaches the Eddington [...] Read more.
In this paper, we review our current understanding of the outer envelope structures of massive stars based on three-dimensional (3D) radiation hydrodynamic simulations. We briefly summarize the fundamental issues in constructing hydrostatic one-dimensional (1D) stellar evolution models when stellar luminosity approaches the Eddington value. Radiation hydrodynamic simulations in 3D covering the mass range from 13M to 80M always find a dynamic envelope structure with the time-averaged radial profiles matching 1D models with an adjusted mixing-length parameter when convection is subsonic. Supersonic turbulence and episodic mass loss are generally found in 3D models when stellar luminosity is super-Eddington locally due to the opacity peaks and convection being inefficient. Turbulent pressure plays an important role in supporting the outer envelope, which makes the photosphere more extended than predictions from 1D models. Massive star lightcurves are always found to vary with a characteristic timescale consistent with the thermal time scale at the location of the iron opacity peak. The amplitude of the variability as well as the power spectrum can explain the commonly observed stochastic low-frequency variability of mass stars observed by TESS over a wide range of parameters in an HR diagram. The 3D simulations can also explain the ubiquitous macro-turbulence that is needed for spectroscopic fitting in massive stars. Implications of 3D simulations for improving 1D stellar evolution models are also discussed. Full article
(This article belongs to the Special Issue The Structure and Evolution of Stars)
Show Figures

Figure 1

17 pages, 7495 KiB  
Article
Efficient Method for Heat Flux Calculations within Multidisciplinary Analyses of Hypersonic Vehicles
by Jongho Jung, Kwanjung Yee and Shinkyu Jeong
Aerospace 2023, 10(10), 846; https://doi.org/10.3390/aerospace10100846 - 28 Sep 2023
Cited by 3 | Viewed by 3025
Abstract
A large amount of heat flux from aerodynamic heating acts on reusable spacecraft; thus, an accurate heat flux prediction around spacecraft reentry is essential for developing a high-performance reusable spacecraft. Although the approximate convective-heating equations can calculate the heat flux with high efficiency [...] Read more.
A large amount of heat flux from aerodynamic heating acts on reusable spacecraft; thus, an accurate heat flux prediction around spacecraft reentry is essential for developing a high-performance reusable spacecraft. Although the approximate convective-heating equations can calculate the heat flux with high efficiency and sufficient fidelity, the heat flux should be evaluated over a thousand times for the entire trajectory in multidisciplinary analyses. For these reasons, it is necessary to develop an efficient method for calculating the heat flux for multidisciplinary analysis. In this paper, an efficient method for heat flux calculation that is adoptable by multidisciplinary analyses for hypersonic vehicles, such as spacecraft, is developed. Approximate convective-heating equations were adopted to relieve the computational cost of estimating the heat flux, and an adaptive time step method for heat flux calculations was developed to reduce the number of heat flux calculations required across the entire flight trajectory. A dynamic factor was introduced that adjusts the time step between each instance of the heat flux calculation. Since the time step using this factor could increase under low heat flux conditions, the number of heat flux calculations decreases by approximately one-tenth with over 90% accuracy. Therefore, the efficiency was improved with high accuracy using the adaptively-determined time step according to this dynamic factor. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

12 pages, 5198 KiB  
Article
Influence of Body Heat Loss on Temperature and Velocity Fields in a Whole-Body Cryotherapy Chamber
by Rim Elfahem, Bastien Bouchet, Boussad Abbes, Guillaume Polidori and Fabien Beaumont
Fluids 2023, 8(9), 252; https://doi.org/10.3390/fluids8090252 - 16 Sep 2023
Cited by 2 | Viewed by 2126
Abstract
This study aims to investigate the impact of body heat loss on the thermal and aerodynamic conditions in a whole-body cryotherapy chamber. The underlying hypothesis is that the heat generated by the human body alters the thermal and aerodynamic environment inside the cabin. [...] Read more.
This study aims to investigate the impact of body heat loss on the thermal and aerodynamic conditions in a whole-body cryotherapy chamber. The underlying hypothesis is that the heat generated by the human body alters the thermal and aerodynamic environment inside the cabin. A numerical study was conducted to test this hypothesis and analyze the thermodynamic exchanges between the human body and the cabin during a 3 min whole-body cryotherapy session. The computational fluid dynamics (CFD) approach was used to study the unsteady heat transfer between the human body and the interior of the cryotherapy cabin. A thermal boundary condition, based on a mathematical model developed from experimental data, was applied to simulate skin cooling kinetics over time. The post-processing of the 3D results, including temperature, velocity fields, and thermal flux maps at the body surface, provided insight into the thermo-convective mechanisms involved in a whole-body cryotherapy session. The study found that body heat loss significantly affects the temperature fields inside the cabin, leading to global modifications of the aeraulic and thermal conditions. These findings suggest that cryotherapy protocols may need to be adjusted or the cabin set temperature optimized to enhance the therapeutic benefits. Full article
Show Figures

Figure 1

18 pages, 3283 KiB  
Article
Refined Analysis of the Transient Temperature Effect during the Closing Process of a Cross-Sea Bridge
by Zuolong Luo, Yuan Li, Jiaqing Wang and Fenghui Dong
Sustainability 2023, 15(17), 12970; https://doi.org/10.3390/su151712970 - 28 Aug 2023
Cited by 1 | Viewed by 1206
Abstract
In order to study the transient temperature effect during the construction of a cross-sea bridge off the coast, based on the Hong Kong-Zhuhai-Macao Bridge-Pipe Bridge Crossing Cliff 13-1 Gas Field, a refined analysis was conducted and the prediction of transient temperature gradient and [...] Read more.
In order to study the transient temperature effect during the construction of a cross-sea bridge off the coast, based on the Hong Kong-Zhuhai-Macao Bridge-Pipe Bridge Crossing Cliff 13-1 Gas Field, a refined analysis was conducted and the prediction of transient temperature gradient and structural response was carried out under the conditions of strong solar radiation and atmospheric convection using the method of combining theoretical research and numerical simulation. Firstly, the partial differential equation of uniform heat flux density on the outer surface of the main girder under the action of solar radiation and atmospheric convection was established. The equation was realized by calculating the solar radiation intensity and the comprehensive heat transfer coefficient, as well as fitting the atmospheric temperature on the outer surface of the main girder, and the equivalent comprehensive temperature at any time on the main girder was obtained. Secondly, a numerical analysis model of the heat conduction of the main girder section was established, and the equivalent comprehensive temperature was input into the numerical model as the temperature field boundary to solve the transient temperature gradient of the section, and the result was verified in comparison with the measured data. Finally, the transient temperature gradient was applied to the girder, and the temperature effect of the main girder during the closing process was also calculated. Construction control measures were also discussed. The research results show that the predicted value of the transient temperature gradient is consistent with the measured value (the maximum deviation is less than 2 °C), and the predicted value is slightly larger than the measured value, which makes the structure safer. During the closing process, the temperature gradient of the main girder has obvious non-linear characteristics: the temperature gradient is relatively high within 0.4 m of the top surface of the roof while tending to zero outside 0.4 m. The best closing time for the main girder is from 21:00 in the evening of the closing day to 6:00 a.m. the next day. For the small angles at both ends of the closure segment during the best closing time, temporary adjustment jacks and temporary counterweights can be adopted to eliminate the small angles at both ends of the closure segment in order to facilitate the welding construction and meet the smoothness requirements of bridge alignment. Full article
Show Figures

Figure 1

27 pages, 4223 KiB  
Article
The Hepatoprotective Effect of Two Date Palm Fruit Cultivars’ Extracts: Green Optimization of the Extraction Process
by Nashi K. Alqahtani, Hisham A. Mohamed, Mahmoud E. Moawad, Nancy S. Younis and Maged E. Mohamed
Foods 2023, 12(6), 1229; https://doi.org/10.3390/foods12061229 - 13 Mar 2023
Cited by 7 | Viewed by 2750
Abstract
Date palm fruit (Phoenix dactylifera: Arecaceae) is rich in essential nutrients and possesses several pharmacological and medicinal activities. The current study aimed to optimize a water bath-assisted extraction method for two cultivars of date palm fruits, Anbara (An) and Reziz (Rz), [...] Read more.
Date palm fruit (Phoenix dactylifera: Arecaceae) is rich in essential nutrients and possesses several pharmacological and medicinal activities. The current study aimed to optimize a water bath-assisted extraction method for two cultivars of date palm fruits, Anbara (An) and Reziz (Rz), and investigated the protective effect of the optimized date palm fruit extract against CCl4-induced liver toxicity in relation to oxidative stress, inflammation, apoptosis, and DNA integrity. The optimization process of two date palm fruit cultivars was applied, using response surface methodology through adjusting three “factors”; time, temperature, and rotation, to allow maximum contents of total phenolic (TPC), total flavonoid (TFC), reducing power (FRAP) and scavenging activity (ABTS) of the extract “responses”. Extraction factors’ application significantly enhanced TPC, TFC, FRAP, and ABTS responses by 1.30, 1.23, 3.03, and 2.06-fold, respectively in An and 2.18, 1.71, 1.11, and 2.62-fold, respectively in Rz, in relation to the convectional water extraction. Furthermore, co-administered CCl4 with An or Rz optimized extracts enhanced body weight gain, amended hepatic architecture, and diminished collagen fiber accumulation. Furthermore, An or Rz extracts reduced liver enzymes, hydroxyproline, alpha-fetoprotein (AFP), MDA, inflammatory cytokine (TNF-α, NF-κB) levels, and DNA fragmentation, while increasing deteriorated adiponectin (ADP) and antioxidant enzyme (GSH, GPX, NO, and IFN-γ) levels, relative to CCl4-administered animals. The protective effects of An or Rz-optimized extracts were also evidenced by suppressing hepatic fibrosis and improving liver function and structure via modulating oxidative stress, inflammation, and apoptosis, in CCl4-induced hepatic damage. Hence, the optimized extraction process for the two date palm fruits resulted in extracts which are rich in phenolic and flavonoid contents and with an elevated antioxidant power. The presence of these rich extracts could help to explain their proven hepatoprotective activity against CCl4-induced liver toxicity. Full article
(This article belongs to the Special Issue Plant Extracts: From Extract Technology to Health Benefits)
Show Figures

Figure 1

24 pages, 12297 KiB  
Article
Impact of Radar and Surface Data Assimilation on the Forecast of a Nocturnal Squall Line in the Yangtze–Huaihe River
by Zongmei Pan, Shuwen Zhang and Weidong Zhang
Atmosphere 2022, 13(9), 1522; https://doi.org/10.3390/atmos13091522 - 17 Sep 2022
Viewed by 2434
Abstract
The impact of radar and surface data assimilation on the forecast of a nocturnal squall line initiated above the stable boundary layer in the Yangtze–Huaihe River is investigated by the Weather Research and Forecasting (WRF) model and its three-dimensional variational assimilation system (WRFDA [...] Read more.
The impact of radar and surface data assimilation on the forecast of a nocturnal squall line initiated above the stable boundary layer in the Yangtze–Huaihe River is investigated by the Weather Research and Forecasting (WRF) model and its three-dimensional variational assimilation system (WRFDA 3DVar). Results show that the assimilation of radar and surface data can improve the prediction of the convection initiation time, height and vertical ascending motion during the early stage of the squall line formation by adjusting the thermodynamic structure, circulation patterns, water vapor conditions and hydrometeor mixing ratios. Although the radar and surface data assimilation can improve the forecast of the location of the squall line to a certain extent, the squall line is stronger in the radar data assimilation than that in the surface data assimilation, leading to stronger radar reflectivity and heavier precipitation. The assimilation of both radar and surface data has a more positive impact on the forecast skill than the assimilation of either type of data. Moreover, during the mature stage of the squall line, radar and surface data assimilation can enhance the intensity of the surface cold pool. Specifically, radar data assimilation or assimilating the two data simultaneously can produce a stronger cold pool than only assimilating surface data, which is more conducive to the maintenance and development of the squall line. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

Back to TopTop