Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (37)

Search Parameters:
Keywords = continuous film supply

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 504 KiB  
Article
Yield, Phytonutritional and Essential Mineral Element Profiles of Selected Aromatic Herbs: A Comparative Study of Hydroponics, Soilless and In-Soil Production Systems
by Beverly M. Mampholo, Mariette Truter and Martin M. Maboko
Plants 2025, 14(14), 2179; https://doi.org/10.3390/plants14142179 - 14 Jul 2025
Viewed by 254
Abstract
Increased market demand for plant herbs has prompted growers to ensure a continuous and assured supply of superior nutritional quality over the years. Apart from the nutritional value, culinary herbs contain phytochemical benefits that can improve human health. However, a significant amount of [...] Read more.
Increased market demand for plant herbs has prompted growers to ensure a continuous and assured supply of superior nutritional quality over the years. Apart from the nutritional value, culinary herbs contain phytochemical benefits that can improve human health. However, a significant amount of research has focused on enhancing yield, frequently overlooking the impact of production practices on the antioxidant and phytonutritional content of the produce. Thus, the study aimed to evaluate the yield, phytonutrients, and essential mineral profiling in selected aromatic herbs and their intricate role in nutritional quality when grown under different production systems. Five selected aromatic herbs (coriander, rocket, fennel, basil, and moss-curled parsley) were evaluated at harvest when grown under three production systems: in a gravel-film technique (GFT) hydroponic system and in soil, both under the 40% white shade-net structure, as well as in a soilless medium using sawdust under a non-temperature-controlled plastic tunnel (NTC). The phytonutritional quality properties (total phenolic, flavonoids, β-carotene-linoleic acid, and condensed tannins contents) as well as 1,1-diphenyl-2-picrylhydrazyl (DPPH) were assessed using spectrophotometry, while vitamin C and β-carotene were analyzed using HPLC-PDA, and leaf mineral content was evaluated using ICP-OES (Inductively Coupled Plasma Optical Emission Spectrometry). The results show that the health benefits vary greatly owing to the particular culinary herb. The fresh leaf mass (yield) of coriander, parsley, and rocket was not significantly affected by the production system, whereas basil was high in soil cultivation, followed by GFT. Fennel had a high yield in the GFT system compared to in-soil and in-soilless cultivation. The highest levels of vitamin C were found in basil leaves grown in GFT and in soil compared to the soilless medium. The amount of total phenolic and flavonoid compounds, β-carotene, β-carotene-linoleic acid, and DPPH, were considerably high in soil cultivation, except on condensed tannins compared to the GFT and soilless medium, which could be a result of Photosynthetic Active Radiation (PAR) values (683 μmol/m2/s) and not favoring the accumulation of tannins. Overall, the mineral content was greatly influenced by the production system. Leaf calcium and magnesium contents were highly accumulated in rockets grown in the soilless medium and the GFT hydroponic system. The results have highlighted that growing environmental conditions significantly impact the accumulation of health-promoting phytonutrients in aromatic herbs. Some have positive ramifications, while others have negative ramifications. As a result, growers should prioritize in-soil production systems over GFT (under the shade-net) and soilless cultivation (under NTC) to produce aromatic herbs to improve the functional benefits and customer health. Full article
(This article belongs to the Topic Nutritional and Phytochemical Composition of Plants)
Show Figures

Figure 1

12 pages, 5446 KiB  
Article
Durable Metallized Liquid Crystal Polymer Fibers Enable Flexible and Tough Electrical Heaters
by Yajie Zhang, Xinting Huang, Jiachi Zhou, Wenlin Liang, Xinxin Li and Chuang Zhu
Polymers 2025, 17(8), 1087; https://doi.org/10.3390/polym17081087 - 17 Apr 2025
Viewed by 500
Abstract
Fiber-shaped electrical heaters with high flexibility and excellent adaptability make an ideal candidate for the application of wearable electronics but still suffer from low strength and poor durability. Herein, an all-in-one Joule-heating fiber capable of outstanding mechanical properties, good heating efficiency, and long-term [...] Read more.
Fiber-shaped electrical heaters with high flexibility and excellent adaptability make an ideal candidate for the application of wearable electronics but still suffer from low strength and poor durability. Herein, an all-in-one Joule-heating fiber capable of outstanding mechanical properties, good heating efficiency, and long-term stability is reported by using polymer-assisted metal deposition to firmly coat Cu nanoparticles on high-performance liquid crystal polymer (LCP) fibers. Taking advantage of LCP, the resultant fibers exhibit a satisfying temperature threshold (up to 200 °C) and immense strength (2.94 GPa). By virtue of dense and continuous Cu film, these fibers show low electrical resistance (5.51 Ω/cm) and an ultrafast response rate (12.6 °C·s−1) at low supplied voltages (0.5–3.5 V). Benefiting from the levodopa/polyethyleneimine interface design, such fibers maintain nearly constant resistance after repeatable bending, folding, and even washing (50 cycles). Based on the above-mentioned merits, a wearable patch with a Joule-heating function is knitted by using as-made fibers to offer therapeutic benefits for human body joints. This work demonstrates prospective potential for enriching the challenging applications of fiber-shaped electrical heating systems. Full article
(This article belongs to the Special Issue Preparation and Application of Functionalized Polymer Fabrics)
Show Figures

Graphical abstract

59 pages, 28162 KiB  
Review
Analysis of Circuit Configurations Suitable for Self-Supplied AC-DC Converters Using Thin-Film Piezoelectric Generators and Multilayer Energy Storage Supercapacitors
by Ivaylo Pandiev, Mariya Aleksandrova, Nikolay Kurtev and Stefan Rizanov
Electronics 2025, 14(6), 1083; https://doi.org/10.3390/electronics14061083 - 9 Mar 2025
Cited by 1 | Viewed by 1104
Abstract
The improvement of microelectronic technologies and the practical application of some new materials has resulted in the realization of various highly efficient thin-film energy harvesters in the last few years. Self-powered supplies intended to work with thin-film harvesters have been developed. This type [...] Read more.
The improvement of microelectronic technologies and the practical application of some new materials has resulted in the realization of various highly efficient thin-film energy harvesters in the last few years. Self-powered supplies intended to work with thin-film harvesters have been developed. This type of power supply with integrated various thin-film harvesters has proven to be very suitable for providing electrical energy for wearable electronic sensor systems, with practical applications for implementing personalized medicine through continuously monitoring an individual’s state of health. The application of wearable electronics in medicine will become increasingly important in the next few years, as it can support timely decision-making, especially in high-risk patients. This paper presents a review and comparative analysis of the optimal circuit configurations used to design power supply devices with discrete and integrated components, obtaining electrical power from various thin-film piezoelectric generators, and storing electrical energy in low-power multilayer supercapacitors. Based on an analysis of the principle of operation of the selected circuit configurations, analytical expressions for the basic static and dynamic parameters have been obtained, taking into account the peculiarities of their integration with the biomedical signal processing system. Advantages and weaknesses are analyzed through simulation testing for each configuration, as the prospects for improvement are outlined. Also, for each group of circuit configurations, the key parameters and characteristics of recent high-impact papers, especially those focusing on low-power applications, are presented and analyzed in tabular form. As a result of the analysis of the various circuit configurations, some analytical recommendations have been defined regarding the optimal selection of passive and active elements, which can contribute to a better understanding of the design principles of battery-free power supplies converting electrical energy from some specific recently developed thin-film energy harvesters. Full article
Show Figures

Figure 1

16 pages, 2648 KiB  
Article
Raman Spectroscopy of Graphene/CNT Layers Deposited on Interdigit Sensors for Application in Gas Detection
by Stefan-Marian Iordache, Ana-Maria Iordache, Ana-Maria Florea (Raduta), Stefan Caramizoiu, Catalin Parvulescu, Flaviu Baiasu, Irina Negut and Bogdan Bita
C 2025, 11(1), 9; https://doi.org/10.3390/c11010009 - 20 Jan 2025
Cited by 1 | Viewed by 1404
Abstract
Graphene/CNT layers were deposited onto platinum electrodes of an interdigitated sensor using radio-frequency magnetron sputtering. The graphene/CNTs were synthesized in an Argon atmosphere at a pressure of (2 × 10−2–5 × 10−3) mbar, with the substrate maintained at 300 [...] Read more.
Graphene/CNT layers were deposited onto platinum electrodes of an interdigitated sensor using radio-frequency magnetron sputtering. The graphene/CNTs were synthesized in an Argon atmosphere at a pressure of (2 × 10−2–5 × 10−3) mbar, with the substrate maintained at 300 °C either through continuous heating with an electronically controlled heater or by applying a −200 V bias using a direct current power supply throughout the deposition process. The study compares the surface morphology, carbon atom arrangement within the layer volumes, and electrical properties of the films as influenced by the different methods of substrate heating. X-ray diffraction and Raman spectroscopy confirmed the formation of CNTs within the graphene matrix. Additionally, scanning electron microscopy revealed that the carbon nanotubes are aligned and organized into cluster-like structure. The graphene/CNT layers produced at higher pressures present exponential I–V characteristics that ascertain the semiconducting character of the layers and their suitability for applications in gas sensing. Full article
(This article belongs to the Special Issue New Advances in Graphene Synthesis and Applications)
Show Figures

Graphical abstract

13 pages, 3526 KiB  
Article
Multifunctional Organic Molecule for Defect Passivation of Perovskite for High-Performance Indoor Solar Cells
by Chenqing Tian, Dongxue Liu, Yixin Dong, Yajie Wang, Tinghuan Yang, Yang Yang, Meng Zhang, Erxin Zhao, Nan Wu, Zheng Zhang, Ye Yang, Yongshuai Gong, Buyi Yan, Shengxiong Zhang, Lu Zhang and Tianqi Niu
Materials 2025, 18(1), 179; https://doi.org/10.3390/ma18010179 - 3 Jan 2025
Cited by 1 | Viewed by 1525
Abstract
Perovskite solar cells (PSCs) can utilize the residual photons from indoor light and continuously supplement the energy supply for low-power electron devices, thereby showing the great potential for sustainable energy ecosystems. However, the solution-processed perovskites suffer from serious defect stacking within crystal lattices, [...] Read more.
Perovskite solar cells (PSCs) can utilize the residual photons from indoor light and continuously supplement the energy supply for low-power electron devices, thereby showing the great potential for sustainable energy ecosystems. However, the solution-processed perovskites suffer from serious defect stacking within crystal lattices, compromising the low-light efficiency and operational stability. In this study, we designed a multifunctional organometallic salt named sodium sulfanilate (4-ABS), containing both electron-donating amine and sulfonic acid groups to effectively passivate the positively-charged defects, like under-coordinated Pb ions and iodine vacancies. The strong chemical coordination of 4-ABS with the octahedra framework can further regulate the crystallization kinetics of perovskite, facilitating the enlarged crystal sizes with mitigated grain boundaries within films. The synergistic optimization effects on trap suppression and crystallization modulation upon 4-ABS addition can reduce energy loss and mitigate ionic migration under low-light conditions. As a result, the optimized device demonstrated an improved power conversion efficiency from 22.48% to 24.34% and achieved an impressive efficiency of 41.11% under 1000 lux weak light conditions. This research provides an effective defect modulation strategy for synergistically boosting the device efficiency under standard and weak light irradiations. Full article
Show Figures

Figure 1

12 pages, 5249 KiB  
Article
Highly Productive Laser Annealing Manufacturing Method Using Continuous Blue WBC (Wavelength Beam Combining) Technique
by Mitsuoki Hishida, Naohiko Kobata, Kentaro Miyano, Masaki Nobuoka, Tatsuya Okada and Takashi Noguchi
Materials 2024, 17(22), 5399; https://doi.org/10.3390/ma17225399 - 5 Nov 2024
Cited by 2 | Viewed by 1312
Abstract
Blue laser annealing can be used to obtain a high-mobility thin-film transistor (TFT) through a laser annealing (i.e., LTPS: low-temperature Poly-Si) process. However, the laser annealing process’s low productivity (as well as high cost) is an issue because the high output power of [...] Read more.
Blue laser annealing can be used to obtain a high-mobility thin-film transistor (TFT) through a laser annealing (i.e., LTPS: low-temperature Poly-Si) process. However, the laser annealing process’s low productivity (as well as high cost) is an issue because the high output power of blue lasers still needs to be addressed. Therefore, productivity can be improved if blue laser energy is efficiently supplied during the laser annealing process using a continuous wave laser instead of a conventional pulsed excimer laser. We developed a blue laser light source (440 ± 10 nm) using the wavelength beam combining (WBC) method, which can achieve a laser power density of 73.7 kW/cm2. In this semiconductor laser, when the power was increased s by 2.9 times, the laser scanning speed was increased by 5.0 times, achieving twice the productivity of conventional lasers. After laser annealing, the size of the crystal grains varied between 2 and 15 μm, resulting in a crystallization rate of 100% by Raman scattering rsult and low resistivity of 0.04 Ωcm. This increase in production capacity is not an arithmetic increase with increased power but a geometric production progression. Full article
Show Figures

Figure 1

11 pages, 2264 KiB  
Article
Development of Highly Efficient Lamb Wave Transducers toward Dual-Surface Simultaneous Atomization
by Chenhui Gai, Qinghe Ma, Jia Ning, Yizhan Ding, Yulin Lei, Honggeng Li, Chunhua Guo and Hong Hu
Sensors 2024, 24(17), 5607; https://doi.org/10.3390/s24175607 - 29 Aug 2024
Viewed by 1068
Abstract
Highly efficient surface acoustic wave (SAW) transducers offer significant advantages for microfluidic atomization. Aiming at highly efficient atomization, we innovatively accomplish dual-surface simultaneous atomization by strategically positioning the liquid supply outside the IDT aperture edge. Initially, we optimize Lamb wave transducers and specifically [...] Read more.
Highly efficient surface acoustic wave (SAW) transducers offer significant advantages for microfluidic atomization. Aiming at highly efficient atomization, we innovatively accomplish dual-surface simultaneous atomization by strategically positioning the liquid supply outside the IDT aperture edge. Initially, we optimize Lamb wave transducers and specifically investigate their performance based on the ratio of substrate thickness to acoustic wavelength. When this ratio h/λ is approximately 1.25, the electromechanical coupling coefficient of A0-mode Lamb waves can reach around 5.5% for 128° Y-X LiNbO3. We then study the mechanism of droplet atomization with the liquid supply positioned outside the IDT aperture edge. Experimental results demonstrate that optimized Lamb wave transducers exhibit clear dual-surface simultaneous atomization. These transducers provide equivalent amplitude acoustic wave vibrations on both surfaces, causing the liquid thin film to accumulate at the edges of the dual-surface and form a continuous mist. Full article
(This article belongs to the Special Issue Exploring the Sensing Potential of Acoustic Wave Devices)
Show Figures

Figure 1

16 pages, 11008 KiB  
Article
Surface Development of Polyethylene Terephthalate Films Using Low-Pressure, High-Frequency Argon + Oxygen Plasma on Zinc Powder for Dye-Sensitized Solar Cells
by Wittawat Poonthong, Narong Mungkung, Khanchai Tunlasakun, Nuttee Thungsuk, Nat Kasayapanand, Somchai Arunrungrusmi, Tanes Tanitteerapan, Threerapong Maneepen, Apidat Songruk and Toshifumi Yuji
Polymers 2024, 16(16), 2283; https://doi.org/10.3390/polym16162283 - 12 Aug 2024
Viewed by 1451
Abstract
This research has developed a process for producing ZnO thin film from DEZn deposited onto a PET substrate with low-pressure, high-frequency Ar + O2 plasma using a chemical vapor deposition technique. The aim is to study the film production conditions that affect [...] Read more.
This research has developed a process for producing ZnO thin film from DEZn deposited onto a PET substrate with low-pressure, high-frequency Ar + O2 plasma using a chemical vapor deposition technique. The aim is to study the film production conditions that affect electrical properties, optical properties, and thin film surfaces. This work highlights the use of plasma energy produced from a mixture of gases between Ar + O2. Plasma production is stimulated by an RF power supply to deliver high chemical energy and push ZnO atoms from the cathode inside the reactor onto the substrate through surface chemical reactions. The results showed that increasing the RF power in plasma production affected the chemical reactions on the substrate surface of film formations. Film preparation at an RF power of 300 W will result in the thickest films. The film has a continuous columnar formation, and the surface has a granular structure. This results in the lowest electrical resistivity of 1.8 × 10−4 Ω. In addition, when fabricated into a DSSC device, the device tested the PCE value and showed the highest value at 5.68%. The reason is due to the very rough surface nature of the ZnO film, which increases the scattering and storage of sunlight, making cells more efficient. Therefore, the benefit of this research is that it will be a highly efficient prototype of thin film production technology using a chemical process that reduces production costs and can be used in the industrial development of solar cells. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

17 pages, 9962 KiB  
Article
Preparation and Application of Degradable Lignin/Poly (Vinyl Alcohol) Polymers as Urea Slow-Release Coating Materials
by Yue Liu, Long Cao, Linshan Wang, Yanjiao Qi, Yamin Zhao, Huining Lu, Lina Lu, Derong Zhang, Zifan Wang and Hong Zhang
Molecules 2024, 29(8), 1699; https://doi.org/10.3390/molecules29081699 - 9 Apr 2024
Cited by 9 | Viewed by 2268
Abstract
The massive amount of water-soluble urea used leads to nutrient loss and environmental pollution in both water and soil. The aim of this study was to develop a novel lignin-based slow-release envelope material that has essential nitrogen and sulfur elements for plants. After [...] Read more.
The massive amount of water-soluble urea used leads to nutrient loss and environmental pollution in both water and soil. The aim of this study was to develop a novel lignin-based slow-release envelope material that has essential nitrogen and sulfur elements for plants. After the amination reaction with a hydrolysate of yak hair keratin, the coating formulation was obtained by adding different loadings (2, 5, 8, 14 wt%) of aminated lignin (AL) to 5% polyvinyl alcohol (PVA) solution. These formulations were cast into films and characterized for their structure, thermal stability, and mechanical and physicochemical properties. The results showed that the PVA-AL (8%) formulation had good physical and chemical properties in terms of water absorption and mechanical properties, and it showed good degradation in soil with 51% weight loss after 45 days. It is suitable for use as a coating material for fertilizers. Through high-pressure spraying technology, enveloped urea particles with a PVA-AL (8%) solution were obtained, which showed good morphology and slow-release performance. Compared with urea, the highest urea release was only 96.4% after 30 days, conforming to Higuchi model, Ritger–Peppas model, and second-order dynamic model. The continuous nitrogen supply of PVA-AL coated urea to Brassica napus was verified by potting experiments. Therefore, the lignin-based composite can be used as a coating material to produce a new slow-release nitrogen fertilizer for sustainable crop production. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Graphical abstract

18 pages, 2682 KiB  
Article
Varietal Differences in the Root Systems of Rice (Oryza sativa L.) under Drip Irrigation with Plastic Film Mulch
by Junfa Wang, Oluwasegun Olamide Fawibe and Akihiro Isoda
Agronomy 2023, 13(12), 2872; https://doi.org/10.3390/agronomy13122872 - 22 Nov 2023
Viewed by 1663
Abstract
With the escalating water scarcity in agriculture, a novel water-saving technique has emerged: drip irrigation with plastic film mulch (DI). Root function is crucial for sustaining rice production, and understanding its response to DI is essential. However, few studies have evaluated root systems [...] Read more.
With the escalating water scarcity in agriculture, a novel water-saving technique has emerged: drip irrigation with plastic film mulch (DI). Root function is crucial for sustaining rice production, and understanding its response to DI is essential. However, few studies have evaluated root systems in rice varietals and examined which kind of root system contributes to improving rice grain yield and water productivity in DI. If varietal differences of root reactions for water regimes were made clear, it might be more effective to find suitable varieties for DI and to improve grain yield in the DI system. To fill this knowledge gap, we conducted a two-year field experiment comparing two irrigation systems: continuous flooding (CF) and DI. We analyzed their effectiveness with four rice cultivars, including upland, F1 lowland, animal feed lowland, and lowland cultivars. Vertical root distribution, root bleeding rate, photosynthetic-associated parameters, water productivity, and yield performance were analyzed. In our study, the average grain yield of cultivars in the DI system (6.4 t/ha) was equivalent to those in the CF system (6.6 t/ha). The average water productivity under DI (0.34–0.75 kg m−3) demonstrated significant water-saving potential, saving approximately 35% of the total water supplied, resulting in higher water productivity compared to CF (0.27–0.51 kg m−3). Among the cultivars, the deep root weight of the upland cultivar significantly increased by 51% under DI compared to CF. The deep root ratio was positively correlated with the transpiration rate, grain yield, and water productivity, suggesting its contribution to high transpiration, thus maintaining a high carbon assimilation rate that results in high yield and water productivity. Therefore, deep roots are a notable trait corresponding to high yield under DI, and should be considered for the development of rice growth models for DI and the breeding of aerobic-adapted cultivars. Full article
(This article belongs to the Special Issue Innovative Technologies in Crop Production and Animal Husbandry)
Show Figures

Figure 1

29 pages, 20029 KiB  
Article
Offset Voltage Reduction in Two-Stage Folded-Cascode Operational Amplifier Using High-Precision Source Degeneration
by Cristian Stancu, Andrei Neacsu, Teodora Ionescu, Cornel Stanescu, Ovidiu Profirescu, Dragos Dobrescu and Lidia Dobrescu
Electronics 2023, 12(21), 4534; https://doi.org/10.3390/electronics12214534 - 3 Nov 2023
Cited by 9 | Viewed by 6165
Abstract
The demand for CMOS precision operational amplifiers for critical applications has continuously increased over time due to higher accuracy and sensitivity requirements. Trimming or chopper architectures are advanced solutions that reduce the offset voltage and improve the circuit’s parameters, but the complexity and [...] Read more.
The demand for CMOS precision operational amplifiers for critical applications has continuously increased over time due to higher accuracy and sensitivity requirements. Trimming or chopper architectures are advanced solutions that reduce the offset voltage and improve the circuit’s parameters, but the complexity and the increased chip die size are serious downsides. An efficient solution is a source degeneration configuration to control the transistor’s current-mirror transconductance, which impacts the offset voltage, with cost savings and a die area reduction also obtained. This paper focuses on designing and implementing such an approach in a two-stage folded-cascode operational amplifier. State-of-the-art thin-film resistors that use silicon–chromium as the metallic alloy were implemented to reduce mismatch variations between these passive components. Distinct methods that control the offset voltage parameter are also discussed and established. A comparison between the offset voltage standard deviation obtained using different types of resistors and that achieved with the innovative high-precision resistors was also carried out. The source degeneration’s impact on the common-mode rejection ratio, power supply rejection ratio, bandwidth and phase margin was also analyzed, and a comparison between the proposed design and the classical one was performed. The process variation’s influence on the circuit functionality was studied. A pre-layout ±1.273 mV maximum offset voltage at T = 27 °C was achieved using vector/array notations for the amplifier with the best overall performance. Post-layout simulations that included parasitic effects were performed, with a ±1.254 mV maximum offset voltage reached at room temperature. Full article
(This article belongs to the Special Issue CMOS Integrated Circuits Design)
Show Figures

Figure 1

12 pages, 1858 KiB  
Article
Flow and Influencing Factors of Coated Slag in Continuous Casting Mold
by Fengming Du, Shanjiao Wang and Gengtao Zheng
Coatings 2023, 13(10), 1693; https://doi.org/10.3390/coatings13101693 - 27 Sep 2023
Cited by 1 | Viewed by 1885
Abstract
In the continuous casting, the protective slag is coated on the surface of the molten steel, which is an important factor affecting the quality of the billet. The liquid slag layer on the surface of molten steel should be kept at an appropriate [...] Read more.
In the continuous casting, the protective slag is coated on the surface of the molten steel, which is an important factor affecting the quality of the billet. The liquid slag layer on the surface of molten steel should be kept at an appropriate thickness to ensure a sufficient supply of liquid slag and to prevent slag from becoming entangled in the billet shell. Moreover, the consumption of protective slag should be appropriate to ensure stable liquid slag film thickness and uniform heat transfer between the casting billet and the mold. In this work, a two-dimensional numerical calculation model using volume of fluid method was established for the flow of protective slag, the Navier–Stokes equation was solved for the model, the consumption of protective slag during a vibration cycle was calculated, and the effects of factors such as casting speed, amplitude, and vibration frequency on the consumption of protective slag were explored. The results showed that when the casting speed increased from 1.2 m/min to 1.6 m/min, the consumption of protective slag per unit area decreased by about 4.76%, but the consumption of protective slag per unit length of the casting billet increased by about 26.98% within a vibration cycle. The consumption of protective slag per unit area and per unit billet length within a vibration cycle increased slightly with the increase of amplitude. The variation pattern of the consumption of protective slag with vibration frequency was not obvious. This model can provide theoretical basis and technical guidance for the design of protective slag, thereby improving the quality of steel billets in steel plants. Full article
Show Figures

Figure 1

13 pages, 4924 KiB  
Article
An Underwater Triboelectric Biomechanical Energy Harvester to Power the Electronic Tag of Marine Life
by Bo Liu, Taili Du, Xiaoyan Xu, Jianhua Liu, Peng Zhu, Linan Guo, Yuanzheng Li, Tianrun Wang, Yongjiu Zou, Hao Wang, Peng Xu, Peiting Sun and Minyi Xu
J. Mar. Sci. Eng. 2023, 11(9), 1766; https://doi.org/10.3390/jmse11091766 - 9 Sep 2023
Cited by 5 | Viewed by 2163
Abstract
Implantable electronic tags are crucial for the conservation of marine biodiversity. However, the power supply associated with these tags remains a significant challenge. In this study, an underwater flexible triboelectric nanogenerator (UF-TENG) was proposed to harvest the biomechanical energy from the movements of [...] Read more.
Implantable electronic tags are crucial for the conservation of marine biodiversity. However, the power supply associated with these tags remains a significant challenge. In this study, an underwater flexible triboelectric nanogenerator (UF-TENG) was proposed to harvest the biomechanical energy from the movements of marine life, ensuring a consistent power source for the implantable devices. The UF-TENG, which is watertight by the protection of a hydrophobic poly(tetrafluoroethylene) film, consists of high stretchable carbon black-silicone as electrode and silicone as a dielectric material. This innovative design enhances the UF-TENG’s adaptability and biocompatibility with marine organisms. The UF-TENG’s performance was rigorously assessed under various conditions. Experimental data highlight a peak output of 14 V, 0.43 μA and 38 nC, with a peak power of 2.9 μW from only one unit. Notably, its performance exhibited minimal degradation even after three weeks, showing its excellent robustness. Furthermore, the UF-TENG is promising in the self-powered sensing of the environmental parameter and the marine life movement. Finally, a continuous power supply of an underwater temperature is achieved by paralleling UF-TENGs. These findings indicate the broad potential of UF-TENG technology in powering implantable electronic tags. Full article
(This article belongs to the Special Issue Advanced Marine Energy Harvesting Technologies)
Show Figures

Figure 1

17 pages, 3911 KiB  
Article
The Surface Behavior of ZnO Films Prepared at Room Temperature
by Da-Hua Wei, Sheng-Kai Tong, Sheng-Chiang Chen and Rong-Tan Huang
J. Compos. Sci. 2023, 7(8), 335; https://doi.org/10.3390/jcs7080335 - 16 Aug 2023
Cited by 1 | Viewed by 1720
Abstract
The surface behavior of ZnO-based films can be modulated via the postannealing and ultraviolet (UV) illumination of different strengths and durations, respectively. The present results could provide the basis for modulating their microstructures with respect to the grain-size distribution and photocatalytic behavior, and [...] Read more.
The surface behavior of ZnO-based films can be modulated via the postannealing and ultraviolet (UV) illumination of different strengths and durations, respectively. The present results could provide the basis for modulating their microstructures with respect to the grain-size distribution and photocatalytic behavior, and act as a potential guide in the field of wide-bandgap semiconducting oxides. ZnO films were prepared at room temperature onto Corning-1737 glass substrates by applying radio-frequency magnetron sputtering without supplying an oxygen source. With the purpose of obtaining modulational grain microstructures, the as-prepared ZnO films (Z0) were treated via a postannealing modification in a vacuum furnace at 300 °C for 30 min after deposition (Z300), accompanied by adjustable internal stress. The contact angle (CA) value of the ZnO films was reduced from 95° to 68°, owing to the different grain microstructure accompanied by a change in the size variation. In addition, UV light with different illumination strengths could be used to improve the hydrophilicity, which varied from a hydrophobic status to a superhydrophilic status due to the desirable surface characteristics of its photocatalytic action. In addition, the photocatalytic activity of the ZnO films exhibited an effectual photodegradation of methylene blue (MB) under UV illumination, with a chemical reaction constant of 2.93 × 10−3 min−1. In this present work, we demonstrated that the CA value of the ZnO films not only caused a change from a hydrophobic to hydrophilic status, accompanied by a change in grain size combined with internal stress, but also, induced by the UV light illumination, was combined with photocatalytic activity simultaneously. On the other hand, an enhanced surface plasmonic resonance was observed, which was due to couple oscillations between the electrons and photons and was generated from the interface by using a flat, continuous Pt capping nanolayer. This designed structure may also be considered as a Pt electrode pattern onto ZnO (metal Pt/ceramic ZnO) for multifunctional, heterostructured sensors and devices in the near future. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2023)
Show Figures

Graphical abstract

18 pages, 4311 KiB  
Article
Biobased Electronics: Tunable Dielectric and Piezoelectric Cellulose Nanocrystal—Protein Films
by Daniel Voignac, Shylee Belsey, Elisabeth Wermter, Yossi Paltiel and Oded Shoseyov
Nanomaterials 2023, 13(15), 2258; https://doi.org/10.3390/nano13152258 - 6 Aug 2023
Cited by 3 | Viewed by 2752
Abstract
Cellulose has been a go-to material for its dielectric properties from the onset of capacitor development. The demand for an energy storage solution continues to grow, but the supply remains limited and relies too often on fossil and mined materials. This work proposes [...] Read more.
Cellulose has been a go-to material for its dielectric properties from the onset of capacitor development. The demand for an energy storage solution continues to grow, but the supply remains limited and relies too often on fossil and mined materials. This work proposes a fully sustainable and green method with which to produce dielectric thin films made of renewable and degradable materials. Cellulose nanocrystals (CNC) made an excellent matrix for the dispersion of proteins and the fabrication of robust transparent thin films with enhanced dielectric permittivity. A range of proteins sources, additives and concentrations allowed for us to control the dielectric permittivity from εr = 4 to 50. The proteins screened came from animal and plant sources. The films were formed from drying a water suspension of the CNC and proteins through evaporation-induced self-assembly. This yielded nano-layered structures with very high specific surface areas, ideal for energy storage devices. The resulting films were characterized with respect to the electrical, mechanical, piezoelectric, and optical properties to be compared. Electrically conductive (σ = 1.53 × 103 S/m) CNC films were prepared with carbon nanotubes (CNT). The fabricated films were used to make flexible, sustainable, and degradable capacitors by layering protein-based films between CNC–CNT composite films. Full article
Show Figures

Figure 1

Back to TopTop