Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,302)

Search Parameters:
Keywords = content management system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2864 KiB  
Article
Physiological and Chemical Response of Urochloa brizantha to Edaphic and Microclimatic Variations Along an Altitudinal Gradient in the Amazon
by Hipolito Murga-Orrillo, Luis Alberto Arévalo López, Marco Antonio Mathios-Flores, Jorge Cáceres Coral, Melissa Rojas García, Jorge Saavedra-Ramírez, Adriana Carolina Alvarez-Cardenas, Christopher Iván Paredes Sánchez, Aldi Alida Guerra-Teixeira and Nilton Luis Murga Valderrama
Agronomy 2025, 15(8), 1870; https://doi.org/10.3390/agronomy15081870 (registering DOI) - 1 Aug 2025
Viewed by 74
Abstract
Urochloa brizantha (Brizantha) is cultivated under varying altitudinal and management conditions. Twelve full-sun (monoculture) plots and twelve shaded (silvopastoral) plots were established, proportionally distributed at 170, 503, 661, and 1110 masl. Evaluations were conducted 15, 30, 45, 60, and 75 days [...] Read more.
Urochloa brizantha (Brizantha) is cultivated under varying altitudinal and management conditions. Twelve full-sun (monoculture) plots and twelve shaded (silvopastoral) plots were established, proportionally distributed at 170, 503, 661, and 1110 masl. Evaluations were conducted 15, 30, 45, 60, and 75 days after establishment. The conservation and integration of trees in silvopastoral systems reflected a clear anthropogenic influence, evidenced by the preference for species of the Fabaceae family, likely due to their multipurpose nature. Although the altitudinal gradient did not show direct effects on soil properties, intermediate altitudes revealed a significant role of CaCO3 in enhancing soil fertility. These edaphic conditions at mid-altitudes favored the leaf area development of Brizantha, particularly during the early growth stages, as indicated by significantly larger values (p < 0.05). However, at the harvest stage, no significant differences were observed in physiological or productive traits, nor in foliar chemical components, underscoring the species’ high hardiness and broad adaptation to both soil and altitude conditions. In Brizantha, a significant reduction (p < 0.05) in stomatal size and density was observed under shade in silvopastoral areas, where solar radiation and air temperature decreased, while relative humidity increased. Nonetheless, these microclimatic variations did not lead to significant changes in foliar chemistry, growth variables, or biomass production, suggesting a high degree of adaptive plasticity to microclimatic fluctuations. Foliar ash content exhibited an increasing trend with altitude, indicating greater efficiency of Brizantha in absorbing calcium, phosphorus, and potassium at higher altitudes, possibly linked to more favorable edaphoclimatic conditions for nutrient uptake. Finally, forage quality declined with plant age, as evidenced by reductions in protein, ash, and In Vitro Dry Matter Digestibility (IVDMD), alongside increases in fiber, Neutral Detergent Fiber (NDF), and Acid Detergent Fiber (ADF). These findings support the recommendation of cutting intervals between 30 and 45 days, during which Brizantha displays a more favorable nutritional profile, higher digestibility, and consequently, greater value for animal feeding. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

16 pages, 4272 KiB  
Article
Prediction Analysis of Integrative Quality Zones for Corydalis yanhusuo W. T. Wang Under Climate Change: A Rare Medicinal Plant Endemic to China
by Huiming Wang, Bin Huang, Lei Xu and Ting Chen
Biology 2025, 14(8), 972; https://doi.org/10.3390/biology14080972 (registering DOI) - 1 Aug 2025
Viewed by 122
Abstract
Corydalis yanhusuo W. T. Wang, commonly known as Yanhusuo, is an important and rare medicinal plant resource in China. Its habitat integrity is facing severe challenges due to climate change and human activities. Establishing an integrative quality zoning system for this species is [...] Read more.
Corydalis yanhusuo W. T. Wang, commonly known as Yanhusuo, is an important and rare medicinal plant resource in China. Its habitat integrity is facing severe challenges due to climate change and human activities. Establishing an integrative quality zoning system for this species is of significant practical importance for resource conservation and adaptive management. This study integrates multiple data sources, including 121 valid distribution points, 37 environmental factors, future climate scenarios (SSP126 and SSP585 pathways for the 2050s and 2090s), and measured content of tetrahydropalmatine (THP) from 22 sampling sites. A predictive framework for habitat suitability and spatial distribution of effective components was constructed using a multi-model coupling approach (MaxEnt, ArcGIS spatial analysis, and co-kriging method). The results indicate that the MaxEnt model exhibits high prediction accuracy (AUC > 0.9), with the dominant environmental factors being the precipitation of the wettest quarter (404.8~654.5 mm) and the annual average temperature (11.8~17.4 °C). Under current climatic conditions, areas of high suitability are concentrated in parts of Central and Eastern China, including the Sichuan Basin, the middle–lower Yangtze plains, and coastal areas of Shandong and Liaoning. In future climate scenarios, the center of suitable areas is predicted to shift northwestward. The content of THP is significantly correlated with the mean diurnal temperature range, temperature seasonality, and the mean temperature of the wettest quarter (p < 0.01). A comprehensive assessment identifies the Yangtze River Delta region, Central China, and parts of the Loess Plateau as the optimal integrative quality zones. This research provides a scientific basis and decision-making support for the sustainable utilization of C. yanhusuo and other rare medicinal plants in China. Full article
Show Figures

Figure 1

24 pages, 5018 KiB  
Article
Machine Learning for the Photonic Evaluation of Cranial and Extracranial Sites in Healthy Individuals and in Patients with Multiple Sclerosis
by Antonio Currà, Riccardo Gasbarrone, Davide Gattabria, Nicola Luigi Bragazzi, Giuseppe Bonifazi, Silvia Serranti, Paolo Missori, Francesco Fattapposta, Carlotta Manfredi, Andrea Maffucci, Luca Puce, Lucio Marinelli and Carlo Trompetto
Appl. Sci. 2025, 15(15), 8534; https://doi.org/10.3390/app15158534 (registering DOI) - 31 Jul 2025
Viewed by 148
Abstract
This study aims to characterize short-wave infrared (SWIR) reflectance spectra at cranial (at the scalp overlying the frontal cortex and the temporal bone window) and extracranial (biceps and triceps) sites in patients with multiple sclerosis (MS) and age-/sex-matched controls. We sought to identify [...] Read more.
This study aims to characterize short-wave infrared (SWIR) reflectance spectra at cranial (at the scalp overlying the frontal cortex and the temporal bone window) and extracranial (biceps and triceps) sites in patients with multiple sclerosis (MS) and age-/sex-matched controls. We sought to identify the diagnostic accuracy of wavelength-specific patterns in distinguishing MS from normal controls and spectral markers associated with disability (e.g., Expanded Disability Status Scale scores). To achieve these objectives, we employed a multi-site SWIR spectroscopy acquisition protocol that included measurements from traditional cranial locations as well as extracranial reference sites. Advanced spectral analysis techniques, including wavelength-dependent absorption modeling and machine learning-based classification, were applied to differentiate MS-related hemodynamic changes from normal physiological variability. Classification models achieved perfect performance (accuracy = 1.00), and cortical site regression models showed strong predictive power (EDSS: R2CV = 0.980; FSS: R2CV = 0.939). Variable Importance in Projection (VIP) analysis highlighted key wavelengths as potential spectral biomarkers. This approach allowed us to explore novel biomarkers of neural and systemic impairment in MS, paving the way for potential clinical applications of SWIR spectroscopy in disease monitoring and management. In conclusion, spectral analysis revealed distinct wavelength-specific patterns collected from cranial and extracranial sites reflecting biochemical and structural differences between patients with MS and normal subjects. These differences are driven by underlying physiological changes, including myelin integrity, neuronal density, oxidative stress, and water content fluctuations in the brain or muscles. This study shows that portable spectral devices may contribute to bedside individuation and monitoring of neural diseases, offering a cost-effective alternative to repeated imaging. Full article
(This article belongs to the Special Issue Artificial Intelligence in Medical Diagnostics: Second Edition)
Show Figures

Figure 1

16 pages, 833 KiB  
Article
Empowering Students in Online Learning Environments Through a Self-Regulated Learning–Enhanced Learning Management System
by Jiahui Du, Lejia Liu and Shikui Zhao
Behav. Sci. 2025, 15(8), 1041; https://doi.org/10.3390/bs15081041 - 31 Jul 2025
Viewed by 98
Abstract
Self-regulated learning (SRL) has been widely recognized as a critical skill for academic success in online and blended learning contexts. However, many students experience difficulty in effectively applying SRL strategies in the absence of structured instructional guidance. To address this challenge, this study [...] Read more.
Self-regulated learning (SRL) has been widely recognized as a critical skill for academic success in online and blended learning contexts. However, many students experience difficulty in effectively applying SRL strategies in the absence of structured instructional guidance. To address this challenge, this study developed and implemented a learning management system integrated with SRL support (SRL-LMS), specifically designed for the online component of a blended learning course. The SRL-LMS consisted of two sections: a conventional course content section and a SRL training section designed to support students in applying SRL strategies. A quasi-experimental design was adopted with 69 college students assigned to either an experimental group, with access to both course and SRL sections, or a control group, which accessed only the course section. Results indicated that students in the experimental group reported higher levels of self-regulation and showed more frequent and diverse application of SRL strategies compared to the control group. In terms of academic performance, the experimental group performed significantly better than the control group on the first exam, though no significant difference was observed on the second exam. These results highlight the effectiveness of structured SRL interventions within digital learning platforms for improving students’ self-regulatory behaviors. Future implementations should address cognitive load and incorporate strategic approaches to sustain student motivation. This study advances current SRL intervention designs and offers valuable insights for educators and instructional designers aiming to integrate targeted SRL supports in online and blended learning environments. Full article
(This article belongs to the Special Issue The Promotion of Self-Regulated Learning (SRL) in the Classroom)
Show Figures

Figure 1

17 pages, 1142 KiB  
Article
Logistical Challenges in Home Health Care: A Comparative Analysis Between Portugal and Brazil
by William Machado Emiliano, Thalyta Cristina Mansano Schlosser, Vitor Eduardo Molina Júnior, José Telhada and Yuri Alexandre Meyer
Logistics 2025, 9(3), 101; https://doi.org/10.3390/logistics9030101 - 31 Jul 2025
Viewed by 157
Abstract
Background: This study aims to compare the logistical challenges of Home Health Care (HHC) services in Portugal and Brazil, highlighting the structural and operational differences between both systems. Methods: Guided by an abductive research approach, data were collected using a semi-structured [...] Read more.
Background: This study aims to compare the logistical challenges of Home Health Care (HHC) services in Portugal and Brazil, highlighting the structural and operational differences between both systems. Methods: Guided by an abductive research approach, data were collected using a semi-structured survey with open-ended questions, applied to 13 HHC teams in Portugal and 18 in Brazil, selected based on national coordination recommendations. The data collection process was conducted in person, and responses were analyzed using descriptive statistics and qualitative content analysis. Results: The results reveal that Portugal demonstrates higher productivity, stronger territorial coverage, and a more integrated inventory management system, while Brazil presents greater multidisciplinary team integration, more flexible fleet logistics, and more advanced digital health records. Despite these strengths, both countries continue to address key logistical aspects, such as scheduling, supply distribution, and data management, largely through empirical strategies. Conclusions: This research contributes to the theoretical understanding of international HHC logistics by emphasizing strategic and systemic aspects often overlooked in operational studies. In practical terms, it offers insights for public health managers to improve resource allocation, fleet coordination, and digital integration in aging societies. Full article
(This article belongs to the Section Humanitarian and Healthcare Logistics)
Show Figures

Figure 1

16 pages, 950 KiB  
Article
Survey of Weed Flora Diversity as a Starting Point for the Development of a Weed Management Strategy for Medicinal Crops in Pančevo, Serbia
by Dragana Božić, Ana Dragumilo, Tatjana Marković, Urban Šilc, Svetlana Aćić, Teodora Tojić, Miloš Rajković and Sava Vrbničanin
Horticulturae 2025, 11(8), 882; https://doi.org/10.3390/horticulturae11080882 (registering DOI) - 31 Jul 2025
Viewed by 122
Abstract
Similarly to conventional field crops, weeds often pose significant problems in the cultivation of medicinal plants. To date, no comprehensive documentation exists regarding weed infestation levels in these crops in Serbia. The objective of this study was to provide a valuable foundation for [...] Read more.
Similarly to conventional field crops, weeds often pose significant problems in the cultivation of medicinal plants. To date, no comprehensive documentation exists regarding weed infestation levels in these crops in Serbia. The objective of this study was to provide a valuable foundation for developing effective, site-specific weed management strategies in medicinal crop production. Weeds in five medicinal crops (lemon balm, fennel, peppermint, ribwort plantain, German chamomile), were surveyed based on the agro-phytosociological method between 2019 and 2024, and across 59 plots. A total of 109 weed species were recorded, belonging to 29 families and 88 genera. Among them, 75 were annuals and 34 perennials, including 93 broadleaved species, 10 grasses, and one parasitic species. All surveyed plots were heavily infested with perennial weeds such as Elymus repens, Cirsium arvense, Convolvulus arvensis, Lepidium draba, Rumex crispus, Sorghum halepense, Taraxacum officinale, etc. Also, several annual species were found in high abundance and frequency, including Amaranthus retroflexus, Chenopodium album, Galium aparine, Lactuca serriola, Lamium amplexicaule, L. purpureum, Papaver rhoeas, Stellaria media, Veronica hederifolia, V. persica, etc. The most important ecological factors influencing the composition of weed vegetation in investigated medicinal crops were temperature and light for fennel and peppermint plots, soil reaction for lemon balm and ribwort plantain plots, and nutrient content for German chamomile plots. A perspective for exploitation of these results is the development of effective weed control programs tailored to this specific cropping system. Weed control strategies should consider such information, targeting the control of the most frequent, abundant, and dominant species existing in a crops or locality. Full article
(This article belongs to the Special Issue Conventional and Organic Weed Management in Horticultural Production)
Show Figures

Graphical abstract

22 pages, 61181 KiB  
Article
Stepwise Building Damage Estimation Through Time-Scaled Multi-Sensor Integration: A Case Study of the 2024 Noto Peninsula Earthquake
by Satomi Kimijima, Chun Ping, Shono Fujita, Makoto Hanashima, Shingo Toride and Hitoshi Taguchi
Remote Sens. 2025, 17(15), 2638; https://doi.org/10.3390/rs17152638 - 30 Jul 2025
Viewed by 241
Abstract
Rapid and comprehensive assessment of building damage caused by earthquakes is essential for effective emergency response and rescue efforts in the immediate aftermath. Advanced technologies, including real-time simulations, remote sensing, and multi-sensor systems, can effectively enhance situational awareness and structural damage evaluations. However, [...] Read more.
Rapid and comprehensive assessment of building damage caused by earthquakes is essential for effective emergency response and rescue efforts in the immediate aftermath. Advanced technologies, including real-time simulations, remote sensing, and multi-sensor systems, can effectively enhance situational awareness and structural damage evaluations. However, most existing methods rely on isolated time snapshots, and few studies have systematically explored the continuous, time-scaled integration and update of building damage estimates from multiple data sources. This study proposes a stepwise framework that continuously updates time-scaled, single-damage estimation outputs using the best available multi-sensor data for estimating earthquake-induced building damage. We demonstrated the framework using the 2024 Noto Peninsula Earthquake as a case study and incorporated official damage reports from the Ishikawa Prefectural Government, real-time earthquake building damage estimation (REBDE) data, and satellite-based damage estimation data (ALOS-2-building damage estimation (BDE)). By integrating the REBDE and ALOS-2-BDE datasets, we created a composite damage estimation product (integrated-BDE). These datasets were statistically validated against official damage records. Our framework showed significant improvements in accuracy, as demonstrated by the mean absolute percentage error, when the datasets were integrated and updated over time: 177.2% for REBDE, 58.1% for ALOS-2-BDE, and 25.0% for integrated-BDE. Finally, for stepwise damage estimation, we proposed a methodological framework that incorporates social media content to further confirm the accuracy of damage assessments. Potential supplementary datasets, including data from Internet of Things-enabled home appliances, real-time traffic data, very-high-resolution optical imagery, and structural health monitoring systems, can also be integrated to improve accuracy. The proposed framework is expected to improve the timeliness and accuracy of building damage assessments, foster shared understanding of disaster impacts across stakeholders, and support more effective emergency response planning, resource allocation, and decision-making in the early stages of disaster management in the future, particularly when comprehensive official damage reports are unavailable. Full article
Show Figures

Figure 1

11 pages, 4560 KiB  
Article
Valorization of Forest Biomass Through Biochar for Static Floating Applications in Agricultural Uses
by Óscar González-Prieto, Luis Ortiz Torres and María Esther Costas Costas
Biomass 2025, 5(3), 44; https://doi.org/10.3390/biomass5030044 - 30 Jul 2025
Viewed by 136
Abstract
The feasibility of utilizing biochar as a static floating material for agricultural applications was researched to prevent evaporation from open water static storage systems or as a floating barrier in slurry pits, for instance. Five types of biochar were created from chips, bark, [...] Read more.
The feasibility of utilizing biochar as a static floating material for agricultural applications was researched to prevent evaporation from open water static storage systems or as a floating barrier in slurry pits, for instance. Five types of biochar were created from chips, bark, and pellets of pine and residues from two acacia species using a pyrolysis time between 60 and 120 min and mean temperatures between 380 and 690 °C in a simple double-chamber reactor. Biomass and biochar were characterized for their main properties: bulk density, moisture content, volatile matter, ash content, fixed carbon, and pH. Biochar was also evaluated through a basic floatability test over 27 days (648 h) in distilled water. The highest fixed carbon content was observed in pine bark biochar (69.5%), followed by the pine pellets (67.4%) and pine chips (63.4%). Despite their high carbon content, the pellets exhibited a low floatability level, whereas pine bark biochar showed superior static floatage times, together with chip and ground chip biochar. These results suggest that biochar produced from bark and wood chips may be suitable for application as floatability material in water or slurry management systems. These results warrant further research into the static floating of biochar. Full article
Show Figures

Figure 1

24 pages, 1391 KiB  
Article
Nitrogen Fertilization and Glomus Mycorrhizal Inoculation Enhance Growth and Secondary Metabolite Accumulation in Hyssop (Hyssopus officinalis L.)
by Saeid Hazrati, Marzieh Mohammadi, Saeed Mollaei, Mostafa Ebadi, Giuseppe Pignata and Silvana Nicola
Nitrogen 2025, 6(3), 60; https://doi.org/10.3390/nitrogen6030060 - 26 Jul 2025
Viewed by 305
Abstract
Nitrogen (N) availability often limits primary productivity in terrestrial ecosystems, and arbuscular mycorrhizal fungi (AMF) can enhance plant N acquisition. This study investigated the interactive effects of N fertilization and AMF inoculation on N uptake, plant performance and phenolic acid content in Hyssopus [...] Read more.
Nitrogen (N) availability often limits primary productivity in terrestrial ecosystems, and arbuscular mycorrhizal fungi (AMF) can enhance plant N acquisition. This study investigated the interactive effects of N fertilization and AMF inoculation on N uptake, plant performance and phenolic acid content in Hyssopus officinalis L., with the aim of promoting sustainable N management in H. officinalis cultivation. A factorial randomized complete block design was employed to evaluate four AMF inoculation strategies (no inoculation, root inoculation, soil inoculation and combined root–soil inoculation) across three N application rates (0, 0.5 and 1,1 g N pot−1 (7 L)) in a controlled greenhouse environment. Combined root and soil AMF inoculation alongside moderate N fertilization (0.5 mg N pot−1) optimized N use efficiency, maximizing plant biomass and bioactive compound production. Compared to non-inoculated controls, this treatment combination increased N uptake by 30%, phosphorus uptake by 24% and potassium uptake by 22%. AMF colonization increased chlorophyll content and total phenolic compounds under moderate N supply. However, excessive N application (1 g N pot−1) reduced AMF effectiveness and secondary metabolite accumulation. Notably, AMF inoculation without N fertilization yielded the highest levels of anthocyanin and salicylic acid, indicating differential N-dependent regulation of specific biosynthetic pathways. The interaction between AMF and N demonstrated that moderate N fertilization (0.5 g N pot−1) combined with dual inoculation strategies can reduce total N input requirements by 50%, while maintaining optimal plant performance. These findings provide practical insights for developing N-efficient cultivation protocols in medicinal plant production systems, contributing to sustainable agricultural practices that minimize environmental N losses. Full article
Show Figures

Figure 1

16 pages, 266 KiB  
Article
Stress and Burden Experienced by Parents of Children with Type 1 Diabetes—A Qualitative Content Analysis Interview Study
by Åsa Carlsund, Sara Olsson and Åsa Hörnsten
Children 2025, 12(8), 984; https://doi.org/10.3390/children12080984 - 26 Jul 2025
Viewed by 327
Abstract
Background: Parents of children with type 1 diabetes play a key role in managing their child’s self-management, which can be stressful and burdensome. High involvement can lead to reactions such as emotional, cognitive, and physical exhaustion in parents. Understanding parents’ psychosocial impact due [...] Read more.
Background: Parents of children with type 1 diabetes play a key role in managing their child’s self-management, which can be stressful and burdensome. High involvement can lead to reactions such as emotional, cognitive, and physical exhaustion in parents. Understanding parents’ psychosocial impact due to their child’s disease is crucial for the family’s overall well-being. The purpose of this study was to describe stress and burden experienced by parents in families with children living with type 1 diabetes. Methods: This study utilized a qualitative approach, analyzing interviews with 16 parents of children aged 10 to 17 years living with T1D through qualitative content analysis. The data collection occurred between January and February 2025. Results: Managing a child’s Type 1 diabetes can be tough on family relationships, affecting how partners interact, intimacy, and sibling relationships. The constant stress and worry might leave parents feeling exhausted, unable to sleep, and struggling to think clearly, on top of the pain of losing a normal everyday life. The delicate balance between allowing a child with type 1 diabetes to be independent and maintaining control over their self-management renders these challenges even more demanding for the parents. Conclusions: Parents’ experiences highlight the need for robust support systems, including dependable school environments, trustworthy technical devices, reliable family and friends, and accessible healthcare guidance. These elements are essential not only for the child’s health and well-being but also for alleviating the emotional and practical burdens parents face. Full article
16 pages, 2713 KiB  
Article
Change in C, N, and P Characteristics of Hypericum kouytchense Organs in Response to Altitude Gradients in Karst Regions of SW China
by Yage Li, Chunyan Zhao, Jiajun Wu, Suyan Ba, Shuo Liu and Panfeng Dai
Plants 2025, 14(15), 2307; https://doi.org/10.3390/plants14152307 - 26 Jul 2025
Viewed by 161
Abstract
The environmental heterogeneity caused by altitude can lead to trade-offs in nutrient utilization and allocation strategies among plant organs; however, there is still a lack of research on the nutrient variation in the “flower–leaf–branch–fine root–soil” systems of native shrubs along altitude gradients in [...] Read more.
The environmental heterogeneity caused by altitude can lead to trade-offs in nutrient utilization and allocation strategies among plant organs; however, there is still a lack of research on the nutrient variation in the “flower–leaf–branch–fine root–soil” systems of native shrubs along altitude gradients in China’s unique karst regions. Therefore, we analyzed the carbon (C), nitrogen (N), and phosphorus (P) contents and their ratios in flowers, leaves, branches, fine roots, and surface soil of Hypericum kouytchense shrubs across 2200–2700 m altitudinal range in southwestern China’s karst areas, where this species is widely distributed and grows well. The results show that H. kouytchense organs had higher N content than both global and Chinese plant averages. The order of C:N:P value across plant organs was branches > fine roots > flowers > leaves. Altitude significantly affected the nutrient dynamics in plant organs and soil. With increasing altitude, P content in plant organs exhibited a significant concave pattern, leading to unimodal trends in the C:P of plant organs, as well as the N:P of leaves and fine roots. Meanwhile, plant organs except branches displayed significant homeostasis coefficients in C:P and fine root P, indicating a shift in H. kouytchense’s P utilization strategy from acquisitive-type to conservative-type. Strong positive relationships between plant organs and soil P and available P revealed that P was the key driver of nutrient cycling in H. kouytchense shrubs, enhancing plant organ–soil coupling relationships. In conclusion, H. kouytchense demonstrates flexible adaptability, suggesting that future vegetation restoration and conservation management projects in karst ecosystems should consider the nutrient adaptation strategies of different species, paying particular attention to P utilization. Full article
(This article belongs to the Special Issue Plant Functional Diversity and Nutrient Cycling in Forest Ecosystems)
Show Figures

Figure 1

20 pages, 5790 KiB  
Article
Irrigation and Planting Density Effects on Apple–Peanut Intercropping System
by Feiyang Yu, Ruoshui Wang, Xueying Zhang, Huiying Zheng, Lisha Wang, Sanzheng Jin, Qingqing Ren, Bohao Zhang and Chaolong Xing
Agronomy 2025, 15(8), 1798; https://doi.org/10.3390/agronomy15081798 - 25 Jul 2025
Viewed by 250
Abstract
The western Shanxi Loess region, as a typical semi-arid ecologically fragile zone, faces severe soil and water resource constraints. The apple–peanut intercropping system can significantly improve water productivity and economic benefits through complementary resource utilization, representing an effective approach for sustainable agricultural development [...] Read more.
The western Shanxi Loess region, as a typical semi-arid ecologically fragile zone, faces severe soil and water resource constraints. The apple–peanut intercropping system can significantly improve water productivity and economic benefits through complementary resource utilization, representing an effective approach for sustainable agricultural development in the region. This study took the apple–peanut intercropping system as the research object (apple variety: ‘Yanfu 8’; peanut variety: ‘Huayu 38’), setting three peanut planting densities (D1: 27,500 plants/ha; D2: 18,333 plants/ha; D3: 10,833 plants/ha) and two water regulation measures—W1 (irrigation upper limit at 85% of field capacity, FC) and W2 (65% FC), with non-irrigated controls (CK) at different planting densities for comparison. This study systematically analyzed the synergistic regulation effects of intercropping density and water management on system water use and comprehensive benefits. Results showed that medium planting density combined with medium irrigation (W2D2 treatment) could maximize intercropping advantages, effectively improving the intercropping system’s soil water content (SWC), yield (GY), and water use efficiency (WUE). This research provides a theoretical basis for precision irrigation in fruit–crop intercropping systems in semi-arid regions. However, based on the significant water-saving and yield-increasing effects observed in the current experimental year, follow-up studies should verify its stability through multi-year fixed-position observation data. Full article
Show Figures

Figure 1

22 pages, 1513 KiB  
Article
Forage Yield, Quality, and Weed Suppression in Narbon Vetch (Vicia narbonensis L.) and Italian Ryegrass (Lolium multiflorum L.) Mixtures Under Organic Management
by Melek Demircan, Emine Serap Kizil Aydemir and Koray Kaçan
Agronomy 2025, 15(8), 1796; https://doi.org/10.3390/agronomy15081796 - 25 Jul 2025
Viewed by 176
Abstract
This study aimed to evaluate the forage yield, quality, and weed suppression potential of narbon vetch (Vicia narbonensis L.) and Italian ryegrass (Lolium multiflorum L.) grown as sole crops and in mixtures under organic farming conditions in Bilecik, Turkey, during the [...] Read more.
This study aimed to evaluate the forage yield, quality, and weed suppression potential of narbon vetch (Vicia narbonensis L.) and Italian ryegrass (Lolium multiflorum L.) grown as sole crops and in mixtures under organic farming conditions in Bilecik, Turkey, during the 2020–2021 growing season. The experiment included 15 treatments comprising monocultures and mixed sowing at different ratios. Measurements included morphological traits, forage yield components (green herbage, hay, and crude protein), fiber content, botanical composition, and weed biomass. The results reveal significant differences among treatments in terms of growth parameters and forage performance. Monocultures of IFVN 567 and Bartigra showed the highest green and hay yields, while mixtures such as IFVN 567 + Trinova and IFVN 567 + Bartigra outperformed in terms of land equivalent ratio (LER) and protein yield, demonstrating a clear advantage in land use efficiency. Furthermore, these mixtures showed superior weed suppression compared to monocultures. Overall, the findings suggest that carefully selected vetch–ryegrass combinations can enhance forage productivity, nutritional quality, and weed management under organic systems. Full article
(This article belongs to the Section Grassland and Pasture Science)
Show Figures

Figure 1

15 pages, 1823 KiB  
Article
Soil Texture’s Hidden Influence: Decoding Plant Diversity Patterns in Arid Ecosystems
by Shuaiyu Wang, Younian Wang, Zhiwei Li and Chengzhi Li
Soil Syst. 2025, 9(3), 84; https://doi.org/10.3390/soilsystems9030084 - 25 Jul 2025
Viewed by 305
Abstract
Desert plant communities play a vital role in sustaining the stability of arid ecosystems; however, they demonstrate limited resilience to environmental changes. A critical aspect of understanding community assembly mechanisms is determining whether soil texture heterogeneity affects vegetation diversity in arid deserts, especially [...] Read more.
Desert plant communities play a vital role in sustaining the stability of arid ecosystems; however, they demonstrate limited resilience to environmental changes. A critical aspect of understanding community assembly mechanisms is determining whether soil texture heterogeneity affects vegetation diversity in arid deserts, especially under conditions of extreme water scarcity and restricted nutrient availability. This study systematically examined the relationships between plant diversity and soil physicochemical properties across four soil texture types—sand, sandy loam, loamy sand, and silty loam—by selecting four representative desert systems in the Hami region of Xinjiang, China. The objective was to elucidate the mechanisms through which soil texture may impact desert plant species diversity. The findings revealed that silty loam exhibited distinct characteristics in comparison to the other three sandy soil types. Despite its higher nutrient content, silty loam demonstrated the lowest vegetation diversity. The Shannon–Wiener index (H′), Simpson dominance index (C), Margalef richness index (D), and Pielou evenness index (Jsw) for silty loam were all lower compared to those for sand, sandy loam, and loamy sand. However, silty loam exhibited higher values in electrical conductivity (EC), urease activity (SUR), and nutrient content, including soil organic matter (SOM), ammonium nitrogen (NH4+-N), and available potassium (AK), than the other three soil textures. This study underscores the significant regulatory influence of soil texture on plant diversity in arid environments, offering new insights and practical foundations for the conservation and management of desert ecosystems. Full article
Show Figures

Figure 1

19 pages, 2388 KiB  
Article
Impact of Grassland Management System Intensity on Composition of Functional Groups and Soil Chemical Properties in Semi-Natural Grasslands
by Urška Lisec, Maja Prevolnik Povše, Miran Podvršnik and Branko Kramberger
Plants 2025, 14(15), 2274; https://doi.org/10.3390/plants14152274 - 24 Jul 2025
Viewed by 268
Abstract
Semi-natural grasslands are some of the most species-rich habitats in Europe and provide important ecosystem services such as biodiversity conservation, carbon sequestration and soil fertility maintenance. This study investigates how different intensities of grassland management affect the composition of functional groups and soil [...] Read more.
Semi-natural grasslands are some of the most species-rich habitats in Europe and provide important ecosystem services such as biodiversity conservation, carbon sequestration and soil fertility maintenance. This study investigates how different intensities of grassland management affect the composition of functional groups and soil chemical properties. Five grassland management systems were analyzed: Cut3—three cuts per year; LGI—low grazing intensity; CG—combined cutting and grazing; Cut4—four cuts per year; and HGI—high grazing intensity. The functional groups assessed were grasses, legumes and forbs, while soil samples from three depths (0–10, 10–20 and 20–30 cm) were analyzed for their chemical properties (soil organic carbon—SOC; soil total nitrogen—STN; inorganic soil carbon—SIC; soil organic matter—SOM; potassium oxide—K2O; phosphorus pentoxide—P2O5; C/N ratio; and pH) and physical properties (volumetric soil water content—VWC; bulk density—BD; and porosity—POR). The results showed that less intensive systems had a higher proportion of legumes, while species diversity, as measured via the Shannon index, was the highest in the Cut4 system. The CG system tended to have the highest SOC and STN at a 0–10 cm depth, with a similar trend observed for SOCstock at a 0–30 cm depth. The Cut4, HGI and CG systems also had an increased STNstock. Both grazing systems had the highest P2O5 content. A tendency towards a higher BD was observed in the top 10 cm of soil in the more intensive systems. Choosing a management strategy that is tailored to local climate and site conditions is crucial for maintaining grassland stability, enhancing carbon sequestration and promoting long-term sustainability in the context of climate change. Full article
Show Figures

Figure 1

Back to TopTop