Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (191)

Search Parameters:
Keywords = contact stiffness measuring

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5492 KiB  
Article
A Novel Variable Stiffness Torque Sensor with Adjustable Resolution
by Zhongyuan Mao, Yuanchang Zhong, Xuehui Zhao, Tengfei He and Sike Duan
Micromachines 2025, 16(8), 868; https://doi.org/10.3390/mi16080868 - 27 Jul 2025
Viewed by 235
Abstract
In rotating machinery, the demands for torque sensor resolution and range in various torque measurements are becoming increasingly stringent. This paper presents a novel variable stiffness torque sensor designed to meet the demands for high resolution or a large range under varying measurement [...] Read more.
In rotating machinery, the demands for torque sensor resolution and range in various torque measurements are becoming increasingly stringent. This paper presents a novel variable stiffness torque sensor designed to meet the demands for high resolution or a large range under varying measurement conditions. Unlike traditional strain gauge-based torque sensors, this sensor combines the advantages of torsion springs and magnetorheological fluid (MRF) to achieve dynamic adjustments in both resolution and range. Specifically, the stiffness of the elastic element is adjusted by altering the shear stress of the MRF via an applied magnetic field while simultaneously harnessing the high sensitivity of the torsion spring. The stiffness model is established and validated for accuracy through finite element analysis. A screw modulation-based angle measurement method is proposed for the first time, offering high non-contact angle measurement accuracy and resolving eccentricity issues. The performance of the sensor prototype is evaluated using a self-developed power-closed torque test bench. The experimental results demonstrate that the sensor exhibits excellent linearity, hysteresis, and repeatability while effectively achieving dynamic continuous adjustment of resolution and range. Full article
Show Figures

Figure 1

22 pages, 5702 KiB  
Article
Calibration and Experimental Validation of Discrete Element Parameters of Fritillariae Thunbergii Bulbus
by Hang Zheng, Zhaowei Hu, Xianglei Xue, Yunxiang Ye, Tian Liu, Ning Ren, Fanyi Liu and Guohong Yu
Appl. Sci. 2025, 15(14), 7951; https://doi.org/10.3390/app15147951 - 17 Jul 2025
Viewed by 248
Abstract
The development of slicing equipment for Fritillariae Thunbergii Bulbus (FTB) has been constrained by the absence of precise and reliable simulation model parameters, which has hindered the optimization of structural design through simulation techniques. Taking FTB as the research object, this study aims [...] Read more.
The development of slicing equipment for Fritillariae Thunbergii Bulbus (FTB) has been constrained by the absence of precise and reliable simulation model parameters, which has hindered the optimization of structural design through simulation techniques. Taking FTB as the research object, this study aims to resolve this issue by conducting the calibration and experimental validation of the discrete element parameters for FTB. Both intrinsic and contact parameters were obtained through physical experiments, on the basis of which a discrete element model for FTB was established by using the Hertz–Mindlin with bonding model. To validate the calibrated bonding parameters of this model, the maximum shear force was selected as the evaluation index. Significant influencing factors were identified and analyzed through a single-factor test, a two-level factorial test, and the steepest ascent method. Response surface methodology was then applied for experimental design and parameter optimization. Finally, shear and compression tests were conducted to verify the accuracy of calibrated parameters. The results show that the mechanical properties of FTB are significantly affected by the normal stiffness per unit area, the tangential stiffness per unit area, and the bonding radius, with optimal values of 1.438 × 108 N·m−3, 0.447 × 108 N·m−3, and 1.362 mm, respectively. The relative errors in the shear and compression tests were all within 5.18%. The maximum error between the simulated and measured maximum shear force under three different types of blades was less than 5.11%. The percentages of the average shear force of the oblique blade were reduced by 52.23% and 29.55% compared with the flat and arc blades, respectively, while the force variation trends for FTB remained consistent. These findings confirm the reliability of the simulation parameters and establish a theoretical basis for optimizing the structural design of slicing equipment for FTB. Full article
Show Figures

Figure 1

14 pages, 3831 KiB  
Article
Research on Online Non-Contact Test Device and Test Method for Bearing Stiffness of Electric Spindle
by Chuanhai Chen, Liang Zhang, Chunlei Hua, Zhifeng Liu, Qingyu Meng and Junze Shi
Machines 2025, 13(6), 516; https://doi.org/10.3390/machines13060516 - 13 Jun 2025
Viewed by 426
Abstract
To enable experimental research on the dynamic support stiffness of electric spindle bearings, the authors designed a magnetic non-contact excitation and test device that can test the support stiffness of electric spindle bearings under a rotating state. The device includes load excitation and [...] Read more.
To enable experimental research on the dynamic support stiffness of electric spindle bearings, the authors designed a magnetic non-contact excitation and test device that can test the support stiffness of electric spindle bearings under a rotating state. The device includes load excitation and displacement detection components, which can collect the load loading and displacement data of electric spindle bearings under machine state in real time. The radial and axial loads can be applied at the same time, and the displacement detection component adopts a high-precision displacement sensor, which can measure the displacement data generated by the electric spindle bearing under the action of the excitation component in real time. A magnetic loading method was proposed for testing the supporting stiffness of the front and rear bearings in electric spindles along the three orthogonal directions of radial X/Y and axial Z. According to the designed device and test method, the dynamic support stiffness of an electric spindle bearing in a vertical machining center is tested, and the variation trend of the bearing support stiffness under the combined action of axial load, radial load and rotational speed is analyzed. Full article
(This article belongs to the Section Advanced Manufacturing)
Show Figures

Figure 1

30 pages, 3841 KiB  
Article
Eco-Friendly Octylsilane-Modified Amino-Functional Silicone Coatings for a Durable Hybrid Organic–Inorganic Water-Repellent Textile Finish
by Mariam Hadhri, Claudio Colleoni, Agnese D’Agostino, Mohamed Erhaim, Raphael Palucci Rosa, Giuseppe Rosace and Valentina Trovato
Polymers 2025, 17(11), 1578; https://doi.org/10.3390/polym17111578 - 5 Jun 2025
Viewed by 1155
Abstract
The widespread phase-out of long-chain per- and poly-fluoroalkyl substances (PFASs) has created an urgent need for durable, fluorine-free water-repellent finishes that match the performance of legacy chemistries while minimising environmental impact. Here, the performance of an eco-friendly hybrid organic–inorganic treatment obtained by the [...] Read more.
The widespread phase-out of long-chain per- and poly-fluoroalkyl substances (PFASs) has created an urgent need for durable, fluorine-free water-repellent finishes that match the performance of legacy chemistries while minimising environmental impact. Here, the performance of an eco-friendly hybrid organic–inorganic treatment obtained by the in situ hydrolysis–condensation of triethoxy(octyl)silane (OS) in an amino-terminated polydimethylsiloxane (APT-PDMS) aqueous dispersion was investigated. The sol was applied to plain-weave cotton and polyester by a pad-dry-cure process and benchmarked against a commercial fluorinated finish. Morphology and chemistry were characterised by SEM–EDS, ATR-FTIR, and Raman spectroscopy; wettability was assessed by static contact angle, ISO 4920 spray ratings, and AATCC 193 water/alcohol repellence; and durability, handle, and breathability were evaluated through repeated laundering, bending stiffness, and water-vapour transmission rate measurements. The silica/PDMS coating formed a uniform, strongly adherent nanostructured layer conferring static contact angles of 130° on cotton and 145° on polyester. After five ISO 105-C10 wash cycles, the treated fabrics still displayed a spray rating of 5/5 and AATCC 193 grade 7, outperforming or equalling the fluorinated control, while causing ≤5% loss of water-vapour permeability and only a marginal increase in bending stiffness. These results demonstrate that the proposed one-step, water-borne sol–gel process affords a sustainable, industrially scalable route to high-performance, durable, water-repellent finishes for both natural and synthetic textiles, offering a viable alternative to PFAS-based chemistry for outdoor apparel and technical applications. Full article
(This article belongs to the Special Issue Environmentally Friendly Textiles, Fibers and Their Composites)
Show Figures

Graphical abstract

13 pages, 628 KiB  
Article
Injection-Molded Jute Filler Composites Evaluated Against Stringent Requirements
by Savana Othman Mohammed, Alwand Osman, Faranak Bazooyar, Else-Marie Malmek, Thomas Koch Ecoist, Nowshir Fatima, Mikael Skrifvars and Pooria Khalili
J. Compos. Sci. 2025, 9(6), 255; https://doi.org/10.3390/jcs9060255 - 23 May 2025
Viewed by 505
Abstract
This study investigates the mechanical, thermal, and liquid resistance properties of injection-molded composites made from recycled polypropylene (rPP) reinforced with jute fillers. Maleic anhydride-grafted polypropylene (MAPP) was used as a compatibilizer to enhance filler–matrix interfacial bonding. Tensile, flexural, and Charpy impact tests, along [...] Read more.
This study investigates the mechanical, thermal, and liquid resistance properties of injection-molded composites made from recycled polypropylene (rPP) reinforced with jute fillers. Maleic anhydride-grafted polypropylene (MAPP) was used as a compatibilizer to enhance filler–matrix interfacial bonding. Tensile, flexural, and Charpy impact tests, along with density measurements, heat deflection temperature (HDT) tests, and resistance to short-duration liquid contact, were conducted to evaluate the composites. Results indicate that the addition of jute powder significantly improved stiffness (Young’s modulus increased up to 233%) and thermal stability (HDT increased to 147 °C for rPP/J40/MAPP) while reducing impact toughness due to the brittle nature of jute fillers. MAPP-modified composites demonstrated enhanced tensile and flexural strength compared to unmodified counterparts, with tensile strength improving by approximately 23% for rPP/J30/MAPP. The composites exhibited excellent liquid resistance, showing no visible changes after exposure to various automotive and household fluids. Full article
(This article belongs to the Special Issue Functional Composites: Fabrication, Properties and Applications)
Show Figures

Figure 1

19 pages, 6091 KiB  
Article
Foaming of Bio-Based PLA/PBS/PBAT Ternary Blends with Added Nanohydroxyapatite Using Supercritical CO2: Effect of Operating Strategies on Cell Structure
by Pei-Hua Chen, Chin-Wen Chen, Tzu-Hsien Chan, Hsin-Ying Lin, Ke-Ling Tuan, Chie-Shaan Su, Jung-Chin Tsai and Feng-Huei Lin
Molecules 2025, 30(9), 2056; https://doi.org/10.3390/molecules30092056 - 5 May 2025
Viewed by 673
Abstract
This study explored the innovative foaming behavior of a novel biodegradable polymer blend consisting of polylactic acid/poly(butylene succinate)/poly(butylene adipate-co-terephthalate) (PLA/PBS/PBAT) enhanced with nanohydroxyapatite (nHA), using supercritical carbon dioxide (SCCO2) as an environmentally friendly physical foaming agent. The aim was to investigate [...] Read more.
This study explored the innovative foaming behavior of a novel biodegradable polymer blend consisting of polylactic acid/poly(butylene succinate)/poly(butylene adipate-co-terephthalate) (PLA/PBS/PBAT) enhanced with nanohydroxyapatite (nHA), using supercritical carbon dioxide (SCCO2) as an environmentally friendly physical foaming agent. The aim was to investigate the effects of various foaming strategies on the resulting cell structure, aiming for potential applications in tissue engineering. Eight foaming strategies were examined, starting with a basic saturation process at high temperature and pressure, followed by rapid decompression to ambient conditions, referred to as the (1T-1P) strategy. Intermediate temperature and pressure variations were introduced before the final decompression to evaluate the impact of operating parameters further. These strategies included intermediate-temperature cooling (2T-1P), intermediate-temperature cooling with rapid intermediate decompression (2T-2P), and intermediate-temperature cooling with gradual intermediate decompression (2T-2P, stepwise ΔP). SEM imaging revealed that the (2T-2P, stepwise ΔP) strategy produced a bimodal cell structure featuring small cells ranging from 105 to 164 μm and large cells between 476 and 889 μm. This study demonstrated that cell size was influenced by the regulation of intermediate pressure reduction and the change in intermediate temperature. The results were interpreted based on classical nucleation theory, the gas solubility principle, and the effect of polymer melt strength. Foaming results of average cell size, cell density, expansion ratio, porosity, and opening cell content are reported. The hydrophilicity of various foamed polymer blends was evaluated by measuring the water contact angle. Typical compressive stress–strain curves obtained using DMA showed a consistent trend reflecting the effect of foam stiffness. Full article
Show Figures

Graphical abstract

27 pages, 12280 KiB  
Article
Shear Performance of Assembled Bamboo–Concrete Composite Structures Featuring Perforated Steel Plate Connectors
by Lingling Chen, Zhiyuan Wang and Huihui Liu
Buildings 2025, 15(8), 1376; https://doi.org/10.3390/buildings15081376 - 21 Apr 2025
Viewed by 575
Abstract
To reduce the cast in place work of concrete and realize the industrial production of a bamboo–concrete composite (BCC), innovative connection systems composed of an assembled bamboo–lightweight concrete composite (ABLCC) structure featuring perforated steel plate connectors are presented for use in engineering structures. [...] Read more.
To reduce the cast in place work of concrete and realize the industrial production of a bamboo–concrete composite (BCC), innovative connection systems composed of an assembled bamboo–lightweight concrete composite (ABLCC) structure featuring perforated steel plate connectors are presented for use in engineering structures. This study examined the shear performance of connection systems composed of an assembled BCC structure featuring perforated steel plate connectors based on the design and fabrication of three groups of shear connectors with nine different parameters using bamboo scrimber, lightweight concrete, perforated steel plates, and grout. Push-out tests were conducted on these shear connectors. A linear variable differential transformer (LVDT) and digital image correlation (DIC) were utilized for measurements. The test parameters comprised fabrication techniques (assembled and cast-in-place/CIP) and connector size (steel plate thickness). This study investigated mechanical performance indicators, including the failure mode, load–slip relationship, shear stiffness, and shear capacity of the shear connectors. The experimental results showed that the shear connector failure modes involved concrete spalling near the connectors and deformation of the perforated steel plates. The load–slip curves generally included three stages: high slope linear increase, low slope nonlinear increase, and rapid decrease. The shear capacity and stiffness of the assembled shear connectors were 0.84 times and 2.46 times those of the CIP connectors, respectively. The stiffness of the 4 mm steel plate connectors increased by 42% compared to the 2 mm steel plate connectors. Analysis showed that the shear capacity of the BBC primarily consisted of four aspects: the end bearing force of the steel plate, contact friction, and forces due to the influence of tenon columns and the reinforcing impact of through-rebars. This study proposes a simple and suitable formula for obtaining the shear capacity of perforated steel plate connectors in the BCC structure, with the analytical values being in good agreement with the test results. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

17 pages, 5579 KiB  
Article
Optimization of Sensor Targeting Configuration for Intelligent Tire Force Estimation Based on Global Sensitivity Analysis and RBF Neural Networks
by Yu Zhang, Guolin Wang, Haichao Zhou, Jintao Zhang, Xiangliang Li and Xin Wang
Appl. Sci. 2025, 15(7), 3913; https://doi.org/10.3390/app15073913 - 2 Apr 2025
Cited by 1 | Viewed by 504
Abstract
Tire force is a critical state parameter for vehicle dynamics control systems during vehicle operation. Compared with tire force estimation methods relying on vehicle dynamics or tire models, intelligent tire technology can provide real-time feedback regarding tire–road interactions to the vehicle control system. [...] Read more.
Tire force is a critical state parameter for vehicle dynamics control systems during vehicle operation. Compared with tire force estimation methods relying on vehicle dynamics or tire models, intelligent tire technology can provide real-time feedback regarding tire–road interactions to the vehicle control system. To address the demand for accurate tire force prediction in active safety control systems under various operating conditions, this paper proposes an intelligent tire force estimation method, integrating sensor-measured dynamic response parameters and machine learning techniques. A 205/55 R16 radial tire was selected as the research object, and a finite element model was established using the parameterized modeling approach with the ABAQUS finite element simulation software. The validity of the finite element model was verified through indoor static contact and stiffness tests. To investigate the sensitive response areas and variables associated with tire force, the ground deformation area of the inner liner was refined along the transverse and circumferential directions. Variance-based global sensitivity analysis combined with dimensional reduction methods was used to evaluate the sensitivity of acceleration, strain, and displacement responses to variations in longitudinal and lateral forces. Based on the results of the global sensitivity analysis, the influence of longitudinal and lateral forces on sensitive response variables in their respective sensitive response areas was examined, and characteristic values of the corresponding response signal curves were analyzed and extracted. Three intelligent tire force estimation models with different sensor-targeting configurations were established using radial basis function (RBF) neural networks. The mean relative error (MRE) of intelligent tire force estimation for these models remained within 10%, with Model 3 demonstrating an MRE of less than 2% and estimation errors of 1.42% and 1.10% for longitudinal and lateral forces, respectively, indicating strong generalization performance. The results show that tire forces exhibit high sensitivity to acceleration and displacement responses in the crown and sidewall areas, providing methodological guidance for the targeted sensor configuration in intelligent tires. The intelligent tire force estimation method based on the RBF neural network effectively achieves accurate estimation, laying a theoretical foundation for the advancement of vehicle intelligence and technological innovation. Full article
Show Figures

Figure 1

15 pages, 2211 KiB  
Article
Correlations Between Achilles Tendon Stiffness and Jumping Performance: A Comparative Study of Soccer and Basketball Athletes
by Daniel Schmidt, Lukas Verderber, Andresa M. C. Germano and Nico Nitzsche
J. Funct. Morphol. Kinesiol. 2025, 10(2), 112; https://doi.org/10.3390/jfmk10020112 - 28 Mar 2025
Viewed by 1495
Abstract
Background/Objectives: Human tendon properties influence athletic performance, and it was shown that Achilles tendon (AT) stiffness correlates with an athlete’s jumping performance across sports. However, the findings on this relationship between basketball and soccer are different. Hence, this study examined the relationship [...] Read more.
Background/Objectives: Human tendon properties influence athletic performance, and it was shown that Achilles tendon (AT) stiffness correlates with an athlete’s jumping performance across sports. However, the findings on this relationship between basketball and soccer are different. Hence, this study examined the relationship between AT stiffness and jumping performance in male athletes. Methods: Sixty-six males (24.9 ± 4.7 years; twenty-two basketball players (22.0 ± 4.1 years), and forty-four soccer players (26.3 ± 4.4 years)) participated. Reactive jumping performance (reactive strength index (RSI), jump height (JH), and ground contact time (GCT)) were assessed using drop jumps (fall height: 30 cm), and AT stiffness (supine position) was measured using the MyotonPro. Results: Soccer players had a significantly higher AT stiffness (826.8 ± 90.5 N/m) than basketball players (754.1 ± 80.1 N/m, p = 0.002), but no differences were found in JH, RSI, or GCT (p > 0.05). JH and AT stiffness significantly correlated in basketball players (r = 0.448) but not in soccer players (r < 0.100). The multiple linear regression indicated that AT stiffness is significantly influenced by the sport type (soccer or basketball), while age, mass, and height remained non-significant. Conclusions: Despite higher AT stiffness in soccer players (which can be explained by different activity regimens), a moderate correlation between jumping performance and AT stiffness was evident only in basketball. Given the versatile demands of both sports, tendon characteristics appear to have an influence on jumping performance. For future studies, investigating tendon characteristics represents a valuable addition to training and therapy scheduling. Full article
(This article belongs to the Section Athletic Training and Human Performance)
Show Figures

Figure 1

23 pages, 8564 KiB  
Article
A Benchmark Dataset for the Validation of Phase-Based Motion Magnification-Based Experimental Modal Analysis
by Pierpaolo Dragonetti, Marco Civera, Gaetano Miraglia and Rosario Ceravolo
Data 2025, 10(4), 45; https://doi.org/10.3390/data10040045 - 27 Mar 2025
Viewed by 810
Abstract
In recent years, the development of computer vision technology has led to significant implementations of non-contact structural identification. This study investigates the performance offered by the Phase-Based Motion Magnification (PBMM) algorithm, which employs video acquisitions to estimate the displacements of target pixels and [...] Read more.
In recent years, the development of computer vision technology has led to significant implementations of non-contact structural identification. This study investigates the performance offered by the Phase-Based Motion Magnification (PBMM) algorithm, which employs video acquisitions to estimate the displacements of target pixels and amplify vibrations occurring within a desired frequency band. Using low-cost acquisition setups, this technique can potentially replace the pointwise measurements provided by traditional contact sensors. The main novelty of this experimental research is the validation of PBMM-based experimental modal analyses on multi-storey frame structures with different stiffnesses, considering six structural layouts with different configurations of diagonal bracings. The PBMM results, both in terms of time series and identified modal parameters, are validated against benchmarks provided by an array of physically attached accelerometers. In addition, the influence of pixel intensity on estimates’ accuracy is investigated. Although the PBMM method shows limitations due to the low frame rates of the commercial cameras employed, along with an increase in the signal-to-noise ratio in correspondence of bracing nodes, this method turned out to be effective in modal identification for structures with modest variations in stiffness in terms of height. Moreover, the algorithm exhibits modest sensitivity to pixel intensity. An open access dataset containing video and sensor data recorded during the experiments, is available to support further research at the following https://doi.org/10.5281/zenodo.10412857. Full article
Show Figures

Figure 1

25 pages, 12594 KiB  
Article
Enhancing the Flexibility and Hydrophilicity of PLA via Polymer Blends: Electrospinning vs. Solvent Casting
by Qi-Hong Weng, Ming-Hsien Hu, Ji-Feng Wang and Jin-Jia Hu
Polymers 2025, 17(6), 800; https://doi.org/10.3390/polym17060800 - 18 Mar 2025
Cited by 3 | Viewed by 1633
Abstract
Polylactic acid (PLA) is a biodegradable polymer with high tensile strength, high stiffness, and biocompatibility, but its brittleness and hydrophobicity limit its applications. This study aims to address these limitations by blending PLA with polycaprolactone (PCL) to enhance flexibility and with polyethylene oxide [...] Read more.
Polylactic acid (PLA) is a biodegradable polymer with high tensile strength, high stiffness, and biocompatibility, but its brittleness and hydrophobicity limit its applications. This study aims to address these limitations by blending PLA with polycaprolactone (PCL) to enhance flexibility and with polyethylene oxide (PEO) to improve hydrophilicity. Unlike conventional approaches where PEO serves as a plasticizer, this study investigated PEO as a major blend component. Electrospinning and solvent casting, which differ in their solvent evaporation rates, were employed to fabricate thin films of neat PLA and PLA blends to examine their influence on mechanical and surface properties. Polymer solutions were prepared using a dichloromethane (DCM)/dimethylformamide (DMF) mixture known to enhance the electrospinning process. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and differential scanning calorimetry (DSC) were used to investigate crystallinity of polymers and their interactions, while scanning electron microscopy (SEM) and atomic force microscopy (AFM) provided insights into phase separation and fiber morphology. Uniaxial tensile testing and water contact angle measurements were conducted to evaluate mechanical properties and surface properties, respectively. The results showed that electrospun PLA films exhibited higher elongation at break and ultimate strength but lower Young’s modulus than solvent-cast PLA films. Electrospun films of PLA/PCL blends demonstrated improved elongation at break while retaining Young’s modulus comparable to that of electrospun PLA films, unlike their solvent-cast counterparts. In contrast, PLA/PEO blends exhibited enhanced hydrophilicity in both processing methods but showed a marked reduction in mechanical properties. In summary, electrospun films consistently outperformed solvent-cast films in terms of flexibility and mechanical integrity, primarily due to their fibrous structure, suppressed phase separation, and reduced crystallinity. This study uniquely demonstrates that electrospinning enables the fabrication of phase-separated PLA/PEO blends with mechanical integrity despite PEO’s inherent immiscibility with PLA and incompatibility in the solvent mixture. Furthermore, electrospinning proves to be an effective processing method for producing PLA blend films with enhanced flexibility and hydrophilicity without the need for plasticizers or compatibilizers. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

21 pages, 4703 KiB  
Article
Study on Dynamic Behaviors of Hypoid Gears Under Variable Tidal Current Energy Harvesting Conditions
by Dequan Huang, Yan Li, Xingyuan Zheng and Gang Li
Machines 2025, 13(3), 178; https://doi.org/10.3390/machines13030178 - 24 Feb 2025
Viewed by 614
Abstract
This study investigates dynamic behaviors of hypoid gear rotor systems under variable tidal current energy harvesting conditions through numerical simulations and experimental validation. The study examines dynamic responses of a hypoid gear rotor system induced by cyclical tidal current variations, which generate fluctuating [...] Read more.
This study investigates dynamic behaviors of hypoid gear rotor systems under variable tidal current energy harvesting conditions through numerical simulations and experimental validation. The study examines dynamic responses of a hypoid gear rotor system induced by cyclical tidal current variations, which generate fluctuating loads and bidirectional rotational speeds in tidal energy conversion systems. Two hypoid gear pairs, modified through precise manufacturing parameters, are evaluated to optimize tooth contact patterns for bidirectional tidal loading conditions. A coupled torsional vibration model is developed, incorporating variable transmission error and mesh stiffness. Experimental validation of dynamic performances of hypoid gear pairs was conducted on a bevel gear testing rig, which can measure both torsional and translational vibrations across diverse tidal speed profiles. The experimental results demonstrate that second-order primary resonances exhibit heightened vibration intensity during flow-reversal phases. This phenomenon has significant implications for system power efficiency and acoustic emissions. The findings extend the current understanding of hypoid gear optimization for tidal energy-harvesting applications. Full article
Show Figures

Figure 1

20 pages, 5052 KiB  
Article
Assessment of the Mechanical Properties of Soft Tissue Phantoms Using Impact Analysis
by Arthur Bouffandeau, Anne-Sophie Poudrel, Chloé Brossier, Giuseppe Rosi, Vu-Hieu Nguyen, Charles-Henri Flouzat-Lachaniette, Jean-Paul Meningaud and Guillaume Haïat
Sensors 2025, 25(5), 1344; https://doi.org/10.3390/s25051344 - 22 Feb 2025
Viewed by 553
Abstract
Skin physiopathological conditions have a strong influence on its biomechanical properties. However, it remains difficult to accurately assess the surface stiffness of soft tissues. The aim of this study was to evaluate the performances of an impact-based analysis method (IBAM) and to compare [...] Read more.
Skin physiopathological conditions have a strong influence on its biomechanical properties. However, it remains difficult to accurately assess the surface stiffness of soft tissues. The aim of this study was to evaluate the performances of an impact-based analysis method (IBAM) and to compare them with those of an existing digital palpation device, MyotonPro®. The IBAM is based on the impact of an instrumented hammer equipped with a force sensor on a cylindrical punch in contact with agar-based phantoms mimicking soft tissues. The indicator Δt is estimated by analyzing the force signal obtained from the instrumented hammer. Various phantom geometries, stiffnesses and structures (homogeneous and bilayer) were used to estimate the performances of both methods. Measurements show that the IBAM is sensitive to a volume of interest equivalent to a sphere approximately twice the punch diameter. The sensitivity of the IBAM to changes in Young’s modulus is similar to that of dynamic mechanical analysis (DMA) and significantly better compared to MyotonPro. The axial (respectively, lateral) resolution is two (respectively, five) times lower with the IBAM than with MyotonPro. The present study paves the way for the development of a simple, quantitative and non-invasive method to measure skin biomechanical properties. Full article
(This article belongs to the Special Issue (Bio)sensors for Physiological Monitoring)
Show Figures

Figure 1

6 pages, 4751 KiB  
Communication
Technical Notes on Liver Elastography: A Guide for Use in Neonates in Intensive Care Units
by Ángel Lancharro Zapata, Alejandra Aguado del Hoyo, María del Carmen Sánchez Gómez de Orgaz, Miguel A. Ortega and Juan Antonio León Luís
J. Clin. Med. 2025, 14(5), 1435; https://doi.org/10.3390/jcm14051435 - 21 Feb 2025
Viewed by 593
Abstract
Background/Objectives: Liver elastography is increasingly used in neonatal intensive care units (NICUs) as a non-invasive, radiation-free, reproducible technique for assessing liver stiffness. This technique demonstrates substantial advantages over conventional ultrasound in diagnosing diffuse liver diseases by providing quantitative measures of tissue elasticity. This [...] Read more.
Background/Objectives: Liver elastography is increasingly used in neonatal intensive care units (NICUs) as a non-invasive, radiation-free, reproducible technique for assessing liver stiffness. This technique demonstrates substantial advantages over conventional ultrasound in diagnosing diffuse liver diseases by providing quantitative measures of tissue elasticity. This article aims to describe the most critical milestones for performing liver elastography ultrasound point-of-care, a tool increasingly used to complement traditional ultrasound in the study of the liver in intensive care units where the population is very susceptible to manipulation. Methods: Techniques such as point-shear wave elastography (pSWE) and two-dimensional shear wave elastography (2D-SWE) have become key in evaluating conditions such as hypoxic-ischemic liver disease, cholestatic diseases, storage and metabolic disorders, or infectious liver conditions. However, despite its usefulness, performing elastography in neonates, particularly in those weighing less than 1000 g or in high-frequency oscillatory ventilation, presents notable challenges, including the extreme sensitivity of neonates to touch, noise, and temperature changes and the difficulty in obtaining accurate measurements due to limited hepatic depth. Results: Key factors for the success of sonoelastography in this population include minimizing contact time, adjusting mechanical and thermal indices to meet biosecurity guidelines, and ensuring patient comfort and stability during the procedure. Despite these challenges, elastography has proven helpful in routine clinical practice. Conclusions: The growing evidence on elastography has provided standardized reference values, further enhancing its clinical applicability in NICU settings. Full article
(This article belongs to the Section Nuclear Medicine & Radiology)
Show Figures

Figure 1

15 pages, 4551 KiB  
Article
Mechanical Properties of Cu+CuO Coatings Determined by Nanoindentation and Laugier Model
by Sylwia Sowa, Joanna Kacprzyńska-Gołacka, Jerzy Smolik and Piotr Wieciński
Materials 2025, 18(4), 885; https://doi.org/10.3390/ma18040885 - 18 Feb 2025
Viewed by 661
Abstract
Nanoindentation-based fracture toughness measurements of three different materials based on copper oxide with a Berkovich indenter are fascinating topics in material science. The main purpose of this study was to calculate the fracture toughness in mode I (KIc) for three [...] Read more.
Nanoindentation-based fracture toughness measurements of three different materials based on copper oxide with a Berkovich indenter are fascinating topics in material science. The main purpose of this study was to calculate the fracture toughness in mode I (KIc) for three copper oxide coatings (Cu+CuO) deposited on a steel substrate by the DC magnetron sputtering method. The parameter KIc can be referred to as the critical load (Pcritical), where the cracking process is initiated uncontrollably. The basic mechanical parameters, such as the hardness and Young’s modulus of Cu+CuO coatings, were determined using a Berkovich nanoindenter operated with the continuous contact stiffness measurement (CSM) option. Structural observation was performed by scanning electron microscopy (Helios). Using the nanohardness tester from Anton Paar with a Berkovich diamond indenter with experimentally selected load allowed generation of visible and measurable cracks, which were necessary for KIc calculation. Crack lengths were measured by scanning electron microscopy (SEM Hitachi TM3000). The obtained results indicated that the values of hardness and Young’s modulus of Cu+CuO coatings decreased as the power of the magnetron source and the fracture toughness coefficient increased. In the case of the presented study, the Laugier model was chosen for KIc determination. Full article
(This article belongs to the Special Issue Nanoindentation in Materials: Fundamentals and Applications)
Show Figures

Figure 1

Back to TopTop