Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (569)

Search Parameters:
Keywords = construction waste factors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 1937 KiB  
Article
Intelligent Rebar Optimization Framework for Urban Transit Infrastructure: A Case Study of a Diaphragm Wall in a Singapore Mass Rapid Transit Station
by Daniel Darma Widjaja and Sunkuk Kim
Smart Cities 2025, 8(4), 130; https://doi.org/10.3390/smartcities8040130 (registering DOI) - 7 Aug 2025
Abstract
As cities densify, deep underground infrastructure construction such as mass rapid transit (MRT) systems increasingly demand smarter, digitalized, and more sustainable approaches. RC diaphragm walls, essential to these systems, present challenges due to complex rebar configurations, spatial constraints, and high material usage and [...] Read more.
As cities densify, deep underground infrastructure construction such as mass rapid transit (MRT) systems increasingly demand smarter, digitalized, and more sustainable approaches. RC diaphragm walls, essential to these systems, present challenges due to complex rebar configurations, spatial constraints, and high material usage and waste, factors that contribute significantly to carbon emissions. This study presents an AI-assisted rebar optimization framework to improve constructability and reduce waste in MRT-related diaphragm wall construction. The framework integrates the BIM concept with a custom greedy hybrid Python-based metaheuristic algorithm based on the WOA, enabling optimization through special-length rebar allocation and strategic coupler placement. Unlike conventional approaches reliant on stock-length rebars and lap splicing, this approach incorporates constructability constraints and reinforcement continuity into the optimization process. Applied to a high-density MRT project in Singapore, it demonstrated reductions of 19.76% in rebar usage, 84.57% in cutting waste, 17.4% in carbon emissions, and 14.57% in construction cost. By aligning digital intelligence with practical construction requirements, the proposed framework supports smart city goals through resource-efficient practices, construction innovation, and urban infrastructure decarbonization. Full article
(This article belongs to the Topic Sustainable Building Development and Promotion)
24 pages, 8197 KiB  
Article
Reuse of Decommissioned Tubular Steel Wind Turbine Towers: General Considerations and Two Case Studies
by Sokratis Sideris, Charis J. Gantes, Stefanos Gkatzogiannis and Bo Li
Designs 2025, 9(4), 92; https://doi.org/10.3390/designs9040092 - 6 Aug 2025
Abstract
Nowadays, the circular economy is driving the construction industry towards greater sustainability for both environmental and financial purposes. One prominent area of research with significant contributions to circular economy is the reuse of steel from decommissioned structures in new construction projects. This approach [...] Read more.
Nowadays, the circular economy is driving the construction industry towards greater sustainability for both environmental and financial purposes. One prominent area of research with significant contributions to circular economy is the reuse of steel from decommissioned structures in new construction projects. This approach is deemed far more efficient than ordinary steel recycling, due to the fact that it contributes towards reducing both the cost of the new project and the associated carbon emissions. Along these lines, the feasibility of utilizing steel wind turbine towers (WTTs) as part of a new structure is investigated herein, considering that wind turbines are decommissioned after a nominal life of approximately 25 years due to fatigue limitations. General principles of structural steel reuse are first presented in a systematic manner, followed by two case studies. Realistic data about the geometry and cross-sections of previous generation models of WTTs were obtained from the Greek Center for Renewable Energy Sources and Savings (CRES), including drawings and photographic material from their demonstrative wind farm in the area of Keratea. A specific wind turbine was selected that is about to exceed its life expectancy and will soon be decommissioned. Two alternative applications for the reuse of the tower were proposed and analyzed, with emphasis on the structural aspects. One deals with the use of parts of the tower as a small-span pedestrian bridge, while the second addresses the transformation of a tower section into a water storage tank. Several decision factors have contributed to the selection of these two reuse scenarios, including, amongst others, the geometric compatibility of the decommissioned wind turbine tower with the proposed applications, engineering intuition about the tower having adequate strength for its new role, the potential to minimize fatigue loads in the reused state, the minimization of cutting and joining processes as much as possible to restrain further CO2 emissions, reduction in waste material, the societal contribution of the potential reuse applications, etc. The two examples are briefly presented, aiming to demonstrate the concept and feasibility at the preliminary design level, highlighting the potential of decommissioned WTTs to find proper use for their future life. Full article
Show Figures

Figure 1

16 pages, 1176 KiB  
Article
Evaluating the Use of Rice Husk Ash for Soil Stabilisation to Enhance Sustainable Rural Transport Systems in Low-Income Countries
by Ada Farai Shaba, Esdras Ngezahayo, Goodson Masheka and Kajila Samuel Sakuhuka
Sustainability 2025, 17(15), 7022; https://doi.org/10.3390/su17157022 - 2 Aug 2025
Viewed by 285
Abstract
Rural roads are critical for connecting isolated communities to essential services such as education and health and administrative services, as well as production and market opportunities in low-income countries. More than 70% of movements of people and goods in Sub-Saharan Africa are heavily [...] Read more.
Rural roads are critical for connecting isolated communities to essential services such as education and health and administrative services, as well as production and market opportunities in low-income countries. More than 70% of movements of people and goods in Sub-Saharan Africa are heavily reliant on rural transport systems, using both motorised but mainly alternative means of transport. However, rural roads often suffer from poor construction due to the use of low-strength, in situ soils and limited financial resources, leading to premature failures and subsequent traffic disruptions with significant economic losses. This study investigates the use of rice husk ash (RHA), a waste byproduct from rice production, as a sustainable supplement to Ordinary Portland Cement (OPC) for soil stabilisation in order to increase durability and sustainability of rural roads, hence limit recurrent maintenance needs and associated transport costs and challenges. To conduct this study, soil samples collected from Mulungushi, Zambia, were treated with combinations of 6–10% OPC and 10–15% RHA by weight. Laboratory tests measured maximum dry density (MDD), optimum moisture content (OMC), and California Bearing Ratio (CBR) values; the main parameters assessed to ensure the quality of road construction soils. Results showed that while the MDD did not change significantly and varied between 1505 kg/m3 and 1519 kg/m3, the OMC increased hugely from 19.6% to as high as 26.2% after treatment with RHA. The CBR value improved significantly, with the 8% OPC + 10% RHA mixture achieving the highest resistance to deformation. These results suggest that RHA can enhance the durability and sustainability of rural roads and hence improve transport systems and subsequently improve socioeconomic factors in rural areas. Full article
Show Figures

Figure 1

21 pages, 1192 KiB  
Article
Net and Configurational Effects of Determinants on Managers’ Construction and Demolition Waste Sorting Intention in China Using Partial Least Squares Structural Equation Modeling and the Fuzzy-Set Qualitative Comparative Analysis
by Guanfeng Yan, Yuhang Tian and Tianhai Zhang
Sustainability 2025, 17(15), 6984; https://doi.org/10.3390/su17156984 - 31 Jul 2025
Viewed by 314
Abstract
Construction and demolition waste (C&D waste) contains various types of substances, which require different processing methods to maximize benefits and minimize harm to realize the goal of the circular economy. Therefore, it is urgent to promote the on-site sorting of C&D waste and [...] Read more.
Construction and demolition waste (C&D waste) contains various types of substances, which require different processing methods to maximize benefits and minimize harm to realize the goal of the circular economy. Therefore, it is urgent to promote the on-site sorting of C&D waste and explore the determinants of managers’ waste sorting intention. Based on a comprehensive literature review of C&D waste management, seven determinants are identified to explore how antecedent factors influence waste sorting intention by symmetric and asymmetric techniques. Firstly, the partial least squares structural equation modeling (PLS-SEM) was adopted to analyze the data collected from 489 managers to assess the net impact of each determinant on their intentions. Then, the fuzzy-set qualitative comparative analysis (fsQCA) provided another perspective by determining the configurations of the causal conditions that lead to higher or lower levels of intention. The PLS-SEM results reveal that all determinants show a significant positive relationship with the intention except for the perceived risks, which are negatively correlated with managers’ attitudes and intentions regarding C&D waste sorting. Moreover, top management support and subjective norms from other project participants and the public exhibit a huge impact, while the influence of perceived behavioral control (PBC) and policies is moderate. Meanwhile, fsQCA provides a complementary analysis of the complex causality that PLS-SEM fails to capture. That is, fsQCA identified six and five configurations resulting in high and low levels of intention to sort the C&D waste, respectively, and highlighted the crucial role of core conditions. The results provide theoretical and practical insights regarding proper C&D waste management and enhancing sustainable development. Full article
Show Figures

Figure 1

19 pages, 991 KiB  
Article
Residents’ Willingness to Participate in E-Waste Recycling: Evidence by Theory of Reasoned Action
by Ziyi Zhao, Pengyu Dai, Chaoqun Zheng and Huaming Song
Sustainability 2025, 17(15), 6953; https://doi.org/10.3390/su17156953 - 31 Jul 2025
Viewed by 269
Abstract
E-waste, a form of solid waste, contains many recyclable metals, but improper disposal can make it very harmful. Therefore, the recycling of e-waste is very important, and the willingness of residents to participate is crucial in e-waste recycling. Taking Jiangsu Province, China as [...] Read more.
E-waste, a form of solid waste, contains many recyclable metals, but improper disposal can make it very harmful. Therefore, the recycling of e-waste is very important, and the willingness of residents to participate is crucial in e-waste recycling. Taking Jiangsu Province, China as an example, we used the theory of reasoned action (TRA) to construct a research model to investigate the factors influencing residents’ willingness to participate in e-waste recycling. The paper introduces impression management motivation and further reveals the application of the Hawthorne effect in e-waste recycling. The paper also introduces the awareness of benefits, which encompasses personal economic benefits, physical health benefits, and environmental benefits, with physical health benefits being ignored by most of the previous literature. In addition, knowledge and convenience are also introduced in this paper. A total of 400 valid responses were used to test the hypotheses of the structural equation model. It was found that all factors positively influenced residents’ willingness to engage in e-waste recycling. Attitude has a mediating role in the effects of convenience, knowledge, and awareness of benefits on willingness, and subjective norms have a mediating role in the effects of impression management motivation on willingness. The model explains 82.9% of the variance in residents’ willingness to recycle e-waste, surpassing the original TRA model’s explanatory power and confirming the strength of the extended framework. The study provides valuable policy implications for the government to promote e-waste recycling. Full article
Show Figures

Figure 1

26 pages, 11239 KiB  
Review
Microbial Mineral Gel Network for Enhancing the Performance of Recycled Concrete: A Review
by Yuanxun Zheng, Liwei Wang, Hongyin Xu, Tianhang Zhang, Peng Zhang and Menglong Qi
Gels 2025, 11(8), 581; https://doi.org/10.3390/gels11080581 - 27 Jul 2025
Viewed by 235
Abstract
The dramatic increase in urban construction waste poses severe environmental challenges. Utilizing waste concrete to produce recycled aggregates (RA) for manufacturing recycled concrete (RC) represents an effective strategy for resource utilization. However, inherent defects in RA, such as high porosity, microcracks, and adherent [...] Read more.
The dramatic increase in urban construction waste poses severe environmental challenges. Utilizing waste concrete to produce recycled aggregates (RA) for manufacturing recycled concrete (RC) represents an effective strategy for resource utilization. However, inherent defects in RA, such as high porosity, microcracks, and adherent old mortar layers, lead to significant performance degradation of the resulting RC, limiting its widespread application. Traditional methods for enhancing RA often suffer from limitations, including high energy consumption, increased costs, or the introduction of new pollutants. MICP offers an innovative approach for enhancing RC performance. This technique employs the metabolic activity of specific microorganisms to induce the formation of a three-dimensionally interwoven calcium carbonate gel network within the pores and on the surface of RA. This gel network can improve the inherent defects of RA, thereby enhancing the performance of RC. Compared to conventional techniques, this approach demonstrates significant environmental benefits and enhances concrete compressive strength by 5–30%. Furthermore, embedding mineralizing microbial spores within the pores of RA enables the production of self-healing RC. This review systematically explores recent research advances in microbial mineral gel network for improving RC performance. It begins by delineating the fundamental mechanisms underlying microbial mineralization, detailing the key biochemical reactions driving the formation of calcium carbonate (CaCO3) gel, and introducing the common types of microorganisms involved. Subsequently, it critically discusses the key environmental factors influencing the effectiveness of MICP treatment on RA and strategies for their optimization. The analysis focuses on the enhancement of critical mechanical properties of RC achieved through MICP treatment, elucidating the underlying strengthening mechanisms at the microscale. Furthermore, the review synthesizes findings on the self-healing efficiency of MICP-based RC, including such metrics as crack width healing ratio, permeability recovery, and restoration of mechanical properties. Key factors influencing self-healing effectiveness are also discussed. Finally, building upon the current research landscape, the review provides perspectives on future research directions for advancing microbial mineralization gel techniques to enhance RC performance, offering a theoretical reference for translating this technology into practical engineering applications. Full article
(This article belongs to the Special Issue Novel Polymer Gels: Synthesis, Properties, and Applications)
Show Figures

Graphical abstract

18 pages, 2783 KiB  
Article
Study of an SSA-BP Neural Network-Based Strength Prediction Model for Slag–Cement-Stabilized Soil
by Bei Zhang, Xingyu Tao, Han Zhang and Jun Yu
Materials 2025, 18(15), 3520; https://doi.org/10.3390/ma18153520 - 27 Jul 2025
Viewed by 408
Abstract
As an industrial waste, slag powder can be processed and incorporated into cement-based materials as an additive, significantly improving the engineering properties of cement–soil. The strength of slag–cement-stabilized soil is subject to nonlinear interactions among multiple factors, including cement content, slag powder dosage, [...] Read more.
As an industrial waste, slag powder can be processed and incorporated into cement-based materials as an additive, significantly improving the engineering properties of cement–soil. The strength of slag–cement-stabilized soil is subject to nonlinear interactions among multiple factors, including cement content, slag powder dosage, curing age, and moisture content, forming a complex influence mechanism. To achieve accurate strength prediction and mix proportion optimization for slag–cement-stabilized soil, this study prepared cement-stabilized soil specimens with different slag powder contents using typical sandy soil and clay from the Nantong region, and obtained sample data through unconfined compressive strength tests. A Back Propagation (BP) neural network prediction model was also established. Addressing the limitations of traditional BP neural networks in prediction accuracy caused by random initial weight thresholds and susceptibility to local optima, the sparrow search algorithm (SSA) was introduced to optimize initial network parameters, constructing an SSA-BP model that effectively enhances convergence speed and generalization capability. Research results demonstrated that the SSA-BP model reduced prediction error by 53.4% compared with the traditional BP model, showing superior prediction accuracy and effective characterization of multifactor nonlinear relationships. This study provides theoretical support and an efficient prediction tool for industrial waste recycling and environmentally friendly solidified soil engineering design. Full article
Show Figures

Figure 1

27 pages, 19505 KiB  
Article
Analysis on the Ductility of One-Part Geopolymer-Stabilized Soil with PET Fibers: A Deep Learning Neural Network Approach
by Guo Hu, Junyi Zhang, Ying Tang and Jun Wu
Buildings 2025, 15(15), 2645; https://doi.org/10.3390/buildings15152645 - 27 Jul 2025
Viewed by 277
Abstract
Geopolymers, as an eco-friendly alternative construction material to ordinary Portland cement (OPC), exhibit superior performance in soil stabilization. However, their inherent brittleness limits engineering applications. To address this, polyethylene terephthalate (PET) fibers can be incorporated into a one-part geopolymer (OPG) binder to enhance [...] Read more.
Geopolymers, as an eco-friendly alternative construction material to ordinary Portland cement (OPC), exhibit superior performance in soil stabilization. However, their inherent brittleness limits engineering applications. To address this, polyethylene terephthalate (PET) fibers can be incorporated into a one-part geopolymer (OPG) binder to enhance ductility while promoting plastic waste recycling. However, the evaluation of ductile behavior of OPG-stabilized soil with PET fiber normally demands extensive laboratory and field experiments. Leveraging artificial intelligence, a predictive model can be developed for this purpose. In this study, data were collected from compressive and tensile tests performed on the OPG-stabilized soil with PET fiber. Four deep learning neural network models, namely ANN, BPNN, CNN, and LSTM, were then used to construct prediction models. The input parameters in the model included the fly ash (FA) dosage, dosage and length of the PET fiber, and the Curing Time. Results revealed that the LSTM model had the best performance in predicting the three ductile properties (i.e., the compressive strength index [UCS], strain energy index [CSE], and tensile strength index [TES]). The SHAP and 2D-PDP methods were further used to verify the rationality of the LSTM model. It is found that the Curing Time was the most important factor for the strength and ductile behavior. The appropriate addition of PET fiber of a certain length had a positive impact on the ductility index. Thus, for the OPG-stabilized soil, the optimal dosage and length of PET fiber were found to be 1.5% and 9 mm, respectively. Additionally, there was a synergistic effect between FA and PET on the ductility metric. This research provides theoretical support for the application of geopolymer and PET fiber in enhancing the ductility of the stabilized soil. Full article
Show Figures

Figure 1

36 pages, 5042 KiB  
Review
The Fungus Among Us: Innovations and Applications of Mycelium-Based Composites
by Zahra Parhizi, John Dearnaley, Kate Kauter, Deirdre Mikkelsen, Priya Pal, Tristan Shelley and Paulomi (Polly) Burey
J. Fungi 2025, 11(8), 549; https://doi.org/10.3390/jof11080549 - 23 Jul 2025
Viewed by 580
Abstract
Mycelium-based composites (MBCs) are an emerging category of cost-effective and environmentally sustainable materials that are attracting significant research and commercial interest across various industries, including construction, manufacturing, agriculture, and biomedicine. These materials harness the natural growth of fungi as a low-energy bio-fabrication method, [...] Read more.
Mycelium-based composites (MBCs) are an emerging category of cost-effective and environmentally sustainable materials that are attracting significant research and commercial interest across various industries, including construction, manufacturing, agriculture, and biomedicine. These materials harness the natural growth of fungi as a low-energy bio-fabrication method, converting abundant agricultural by-products and waste into sustainable alternatives to energy-intensive synthetic construction materials. Their affordability and eco-friendly characteristics make them attractive for both research and commercialisation. Currently, mycelium-based foams and sandwich composites are being actively developed for applications in construction. These materials offer exceptional thermal insulation, excellent acoustic absorption, and superior fire safety compared to conventional building materials like synthetic foams and engineered wood. As a result, MBCs show great potential for applications in thermal and acoustic insulation. However, their foam-like mechanical properties, high water absorption, and limited documentation of material properties restrict their use to non- or semi-structural roles, such as insulation, panelling, and furniture. This paper presents a comprehensive review of the fabrication process and the factors affecting the production and performance properties of MBCs. It addresses key elements such as fungal species selection, substrate choice, optimal growth conditions, dehydration methods, post-processing techniques, mechanical and physical properties, termite resistance, cost comparison, and life cycle assessment. Full article
Show Figures

Figure 1

8 pages, 706 KiB  
Proceeding Paper
Developing a Nature-Inspired Sustainability Assessment Tool: The Role of Materials Efficiency
by Olusegun Oguntona
Mater. Proc. 2025, 22(1), 3; https://doi.org/10.3390/materproc2025022003 - 17 Jul 2025
Viewed by 216
Abstract
The global push for sustainable development has intensified the need for innovative tools to assess and enhance sustainability in the built environment. This study explores the role of materials efficiency (ME) within a nature-inspired sustainability assessment framework, focusing on green building projects in [...] Read more.
The global push for sustainable development has intensified the need for innovative tools to assess and enhance sustainability in the built environment. This study explores the role of materials efficiency (ME) within a nature-inspired sustainability assessment framework, focusing on green building projects in South Africa. Using a nature-based (biomimicry) approach, this study identifies and prioritises key ME criteria such as eco-friendly materials, local sourcing, and responsible processing. The methodology employed the Analytic Hierarchy Process (AHP), with input from 38 carefully sampled construction experts, to rank ME criteria through pairwise comparisons. The findings revealed that eco-friendly materials (29.5%) and locally sourced materials (25.1%) were the highest-weighted factors, with strong expert consensus (CR = 0.01). The study highlights how nature-inspired principles like closed-loop systems and minimal waste can guide sustainable construction aligned with global goals such as the UN Sustainable Development Goals. The conclusion advocates for integrating ME criteria into green certification systems, industry collaboration, and further research to scale the framework globally. This study bridges biomimicry theory with practical sustainability assessment, offering actionable insights for the built environment. Full article
Show Figures

Figure 1

17 pages, 3606 KiB  
Article
Determinants of Construction and Demolition Waste Management Performance at City Level: Insights from the Greater Bay Area, China
by Run Chen, Huanyu Wu, Hongping Yuan, Qiaoqiao Yong and Daniel Oteng
Buildings 2025, 15(14), 2476; https://doi.org/10.3390/buildings15142476 - 15 Jul 2025
Viewed by 333
Abstract
The rapid growth of construction and demolition waste (CDW) presents significant challenges to sustainable urban development, particularly in densely populated regions, such as the Guangdong–Hong Kong–Macao Greater Bay Area (GBA). Despite substantial disparities in CDW management (CDWM) performance across cities, the key influencing [...] Read more.
The rapid growth of construction and demolition waste (CDW) presents significant challenges to sustainable urban development, particularly in densely populated regions, such as the Guangdong–Hong Kong–Macao Greater Bay Area (GBA). Despite substantial disparities in CDW management (CDWM) performance across cities, the key influencing factors and effective strategies remain underexplored, limiting the development of localized and evidence-based CDWM solutions. Therefore, this study formulated three hypotheses concerning the relationships among CDWM performance, city attributes, and governance capacity to identify the key determinants of CDWM outcomes. These hypotheses were tested using clustering and correlation analysis based on data from 11 GBA cities. The study identified three distinct city clusters based on CDW recycling, reuse, and landfill rates. Institutional support and recycling capacity were key determinants shaping CDWM performance. CDW governance capacity acted as a mediator between city attributes and performance outcomes. In addition, the study examined effective strategies and institutional measures adopted by successful GBA cities. By highlighting the importance of institutional and capacity-related factors, this research offers novel empirical insights into CDW governance in rapidly urbanizing contexts. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

24 pages, 237 KiB  
Article
Student Perceptions of Sustainability in the HoReCa Sector: Awareness, Engagement, and Challenges
by Marian Mocan, Larisa Ivascu, Timea Agache and Andrei Agache
Sustainability 2025, 17(14), 6384; https://doi.org/10.3390/su17146384 - 11 Jul 2025
Viewed by 332
Abstract
The HoReCa (Hotels, Restaurants, and Cafes) sector plays a pivotal role in the economy due to its strong connections with various other industries, including agriculture, food and beverage, construction, packaging, waste management, water, and textiles. Given its broad impact, understanding the perceptions of [...] Read more.
The HoReCa (Hotels, Restaurants, and Cafes) sector plays a pivotal role in the economy due to its strong connections with various other industries, including agriculture, food and beverage, construction, packaging, waste management, water, and textiles. Given its broad impact, understanding the perceptions of students—emerging consumers and future professionals—could provide valuable insights for businesses seeking to enhance sustainable practices in ways that resonate with younger generations and improve their competitiveness. However, there is still limited understanding of how students perceive and engage with sustainability in this sector. This study explores student perceptions of sustainability practices within the HoReCa sector, examining their awareness levels, expectations, and behavior. The objective is to assess how effectively current business approaches align with student values regarding sustainability initiatives and identify key factors influencing their engagement. A structured questionnaire was distributed among university students, and the collected data was analyzed using statistical techniques to identify meaningful trends and correlations. Findings revealed a notable disconnect between students’ professed sustainability values and their actual behavior. Primary obstacles included price sensitivity, skepticism toward environmental marketing claims, and insufficient access to clear sustainability information from businesses. Despite supporting sustainable initiatives in principle, students often struggle to translate their values into purchasing decisions. The research suggests that greater business transparency, enhanced sustainability education, and incentive programs could foster increased student engagement. Full article
33 pages, 2352 KiB  
Article
A Hybrid Approach for Battery Selection Based on Green Criteria in Electric Vehicles: DEMATEL-QFD-Interval Type-2 Fuzzy VIKOR
by Müslüm Öztürk
Sustainability 2025, 17(14), 6277; https://doi.org/10.3390/su17146277 - 9 Jul 2025
Viewed by 252
Abstract
Production involves processes such as raw material extraction, energy consumption, and waste management, which can lead to significant environmental consequences. Therefore, supplier selection based not only on technical performance but also on environmental sustainability criteria has become a fundamental component of eco-friendly manufacturing [...] Read more.
Production involves processes such as raw material extraction, energy consumption, and waste management, which can lead to significant environmental consequences. Therefore, supplier selection based not only on technical performance but also on environmental sustainability criteria has become a fundamental component of eco-friendly manufacturing strategies. Moreover, in the selection of electric vehicle batteries, it is essential to consider customer demands alongside environmental factors. Accordingly, selected suppliers should fulfill company expectations while also reflecting the “voice” of the customer. The objective of this study is to propose an integrated approach for green supplier selection by taking into account various environmental performance requirements and criteria. The proposed approach evaluates battery suppliers with respect to both customer requirements and green criteria. To construct the relational structure, the DEMATEL method was employed to analyze the interrelationships among customer requirements (CRs). Subsequently, the Quality Function Deployment (QFD) model was used to establish a central relational matrix that captures the degree of correlation between each pair of supplier selection criteria and CRs. Finally, to evaluate and rank alternative suppliers, the Interval Type-2 Fuzzy VIKOR (IT2 F-VIKOR) method was applied. The hybrid approach proposed by us, integrating DEMATEL, QFD, and IT2 F-VIKOR, offers significant improvements over traditional methods. Unlike previous approaches that focus independently on customer preferences or supplier criteria, our model provides a unified evaluation by considering both dimensions simultaneously. Furthermore, the use of Interval Type-2 Fuzzy Logic enables the model to better manage uncertainty and ambiguity in expert judgments, yielding more reliable results compared to conventional fuzzy approaches. Additionally, the applicability of the model has been demonstrated through a real-world case study, confirming its practical relevance and robustness in the selection of green suppliers for electric vehicle battery procurement. Full article
Show Figures

Figure 1

22 pages, 1425 KiB  
Article
Study on Multi-Objective Optimization of Construction of Yellow River Grand Bridge
by Jing Hu, Jinke Ji, Mengyuan Wang and Qingfu Li
Buildings 2025, 15(13), 2371; https://doi.org/10.3390/buildings15132371 - 6 Jul 2025
Viewed by 333
Abstract
As an important transportation hub connecting the two sides of the Yellow River, the Yellow River Grand Bridge is of great significance for strengthening regional exchanges and promoting the high-quality development of the Yellow River Basin. However, due to the complex terrain, changeable [...] Read more.
As an important transportation hub connecting the two sides of the Yellow River, the Yellow River Grand Bridge is of great significance for strengthening regional exchanges and promoting the high-quality development of the Yellow River Basin. However, due to the complex terrain, changeable climate, high sediment concentration, long construction duration, complicated process, strong dynamic, and many factors affecting construction. It often brings many problems, including low quality, waste of resources, and environmental pollution, which makes it difficult to achieve the balance of multiple objectives at the same time. Therefore, it is very important to carry out multi-objective optimization research on the construction of the Yellow River Grand Bridge. This paper takes the Yellow River Grand Bridge on a highway as the research object and combines the concept of “green construction” and the national policy of “carbon neutrality and carbon peaking” to construct six major construction projects, including construction time, cost, quality, environment, resources, and carbon emission. Then, according to the multi-attribute utility theory, the objectives of different attributes are normalized, and the multi-objective equilibrium optimization model of construction time-cost-quality-environment-resource-carbon emission of the Yellow River Grand Bridge is obtained; finally, in order to avoid the shortcomings of a single algorithm, the particle swarm optimization algorithm and the simulated annealing algorithm are combined to obtain the simulated annealing particle swarm optimization (SA-PSO) algorithm. The multi-objective equilibrium optimization model of the construction of the Yellow River Grand Bridge is solved. The optimization result is 108 days earlier than the construction period specified in the contract, which is 9.612 million yuan less than the maximum cost, 6.3% higher than the minimum quality level, 11.1% lower than the maximum environmental pollution level, 4.8% higher than the minimum resource-saving level, and 3.36 million tons lower than the maximum carbon emission level. It fully illustrates the effectiveness of the SA-PSO algorithm for solving multi-objective problems. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

23 pages, 335 KiB  
Review
Urban Phytoremediation: A Nature-Based Solution for Environmental Reclamation and Sustainability
by Luca Di Stasio, Annamaria Gentile, Dario Nicola Tangredi, Paolo Piccolo, Gianmaria Oliva, Giovanni Vigliotta, Angela Cicatelli, Francesco Guarino, Werther Guidi Nissim, Massimo Labra and Stefano Castiglione
Plants 2025, 14(13), 2057; https://doi.org/10.3390/plants14132057 - 4 Jul 2025
Viewed by 886
Abstract
Starting from the Industrial Revolution in the 18th century to date, urban areas have faced increasing environmental challenges due to the diffusion of harmful substances, resulting from vehicular traffic, the activities of different industries, waste, and building construction, etc. These pollutants are dangerous, [...] Read more.
Starting from the Industrial Revolution in the 18th century to date, urban areas have faced increasing environmental challenges due to the diffusion of harmful substances, resulting from vehicular traffic, the activities of different industries, waste, and building construction, etc. These pollutants are dangerous, since they pose a threat to both the environment and human health. Phytoremediation is an environmentally friendly and low-cost technique that uses plants and their associated microorganisms to clean-up contaminated sites. In this review, we explore its main applications in urban settings. Specifically, we investigate how phytoremediation works, highlighting the most effective plants for its success in a city context. Moreover, we also describe the main factors influencing its effectiveness, such as soil, climate, and pollutants. In this regard, several case studies, conducted worldwide, have reported on how phytoremediation can successfully reclaim contaminated areas, transforming them into reusable city green spaces, with reduced costs compared to traditional remediation techniques (e.g., soil replacement, soil washing, etc.). Moreover, by integrating it into urban planning, cities can address environmental pollution, while promoting biodiversity, enhancing the landscape, and increasing its social acceptance. This nature-based solution offers a practical path toward more sustainable and resilient urban environments, especially in regard to the climate change framework. Full article
Back to TopTop