Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (334)

Search Parameters:
Keywords = construction land transition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2459 KiB  
Article
Comparative Life Cycle Assessment of Rubberized Warm-Mix Asphalt Pavements: A Cradle-to-Gate Plus Maintenance Approach
by Ana María Rodríguez-Alloza and Daniel Garraín
Coatings 2025, 15(8), 899; https://doi.org/10.3390/coatings15080899 (registering DOI) - 1 Aug 2025
Viewed by 173
Abstract
In response to the escalating climate crisis, reducing greenhouse gas emissions (GHG) has become a top priority for both the public and private sectors. The pavement industry plays a key role in this transition, offering innovative technologies that minimize environmental impacts without compromising [...] Read more.
In response to the escalating climate crisis, reducing greenhouse gas emissions (GHG) has become a top priority for both the public and private sectors. The pavement industry plays a key role in this transition, offering innovative technologies that minimize environmental impacts without compromising performance. Among these, the incorporation of recycled tire rubber and warm-mix asphalt (WMA) additives represents a promising strategy to reduce energy consumption and resource depletion in road construction. This study conducts a comparative life cycle assessment (LCA) to evaluate the environmental performance of an asphalt pavement incorporating recycled rubber and a WMA additive—referred to as R-W asphalt—against a conventional hot-mix asphalt (HMA) pavement. The analysis follows the ISO 14040/44 standards, covering material production, transport, construction, and maintenance. Two service-life scenarios are considered: one assuming equivalent durability and another with a five-year extension for the R-W pavement. The results demonstrate environmental impact reductions of up to 57%, with average savings ranging from 32% to 52% across key impact categories such as climate change, land use, and resource use. These benefits are primarily attributed to lower production temperatures and extended maintenance intervals. The findings underscore the potential of R-W asphalt as a cleaner engineering solution aligned with circular economy principles and climate mitigation goals. Full article
(This article belongs to the Special Issue Surface Protection of Pavements: New Perspectives and Applications)
Show Figures

Figure 1

15 pages, 847 KiB  
Article
Structural Analysis of Farming Systems in Western Macedonia: A Cluster-Based Approach
by Theodoros Siogkas, Katerina Melfou, Georgia Koutouzidou, Efstratios Loizou and Athanasios Ragkos
Agriculture 2025, 15(15), 1650; https://doi.org/10.3390/agriculture15151650 - 31 Jul 2025
Viewed by 172
Abstract
This paper examines the farming systems and operational structures in the Region of Western Macedonia (RWM), Greece and constructs a typology of farms based on structural, operational, and socio-economic characteristics. Agriculture remains a vital pillar of the regional economy, particularly in the context [...] Read more.
This paper examines the farming systems and operational structures in the Region of Western Macedonia (RWM), Greece and constructs a typology of farms based on structural, operational, and socio-economic characteristics. Agriculture remains a vital pillar of the regional economy, particularly in the context of RWM’s ongoing transition to a post-lignite development model. Using farm-level data from the 2018 Farm Accountancy Data Network (FADN), Principal Component Analysis (PCA) identified four latent dimensions of farm heterogeneity—income and productivity, asset base, land size, and labour structure. Hierarchical and K-means cluster analysis revealed three distinct farm types: (1) medium-sized, high-efficiency farms with moderate reliance on subsidies (30% of the sample); (2) small-scale, family farms with modest productivity and limited capitalisation (48%); and (3) large, asset-rich farms exhibiting structural inefficiencies and lower output per hectare (22%). These findings highlight structural vulnerabilities, particularly the predominance of undercapitalised smallholdings, and provide a data-driven foundation for Thdesigning differentiated policies that support farm resilience, generational renewal, and sustainable rural development. Full article
(This article belongs to the Section Agricultural Economics, Policies and Rural Management)
Show Figures

Figure 1

25 pages, 8105 KiB  
Article
Monitoring Critical Mountain Vertical Zonation in the Surkhan River Basin Based on a Comparative Analysis of Multi-Source Remote Sensing Features
by Wenhao Liu, Hong Wan, Peng Guo and Xinyuan Wang
Remote Sens. 2025, 17(15), 2612; https://doi.org/10.3390/rs17152612 - 27 Jul 2025
Viewed by 325
Abstract
Amidst the intensification of global climate change and the increasing impacts of human activities, ecosystem patterns and processes have undergone substantial transformations. The distribution and evolutionary dynamics of mountain ecosystems have become a focal point in ecological research. The Surkhan River Basin is [...] Read more.
Amidst the intensification of global climate change and the increasing impacts of human activities, ecosystem patterns and processes have undergone substantial transformations. The distribution and evolutionary dynamics of mountain ecosystems have become a focal point in ecological research. The Surkhan River Basin is located in the transitional zone between the arid inland regions of Central Asia and the mountain systems, where its unique physical and geographical conditions have shaped distinct patterns of vertical zonation. Utilizing Landsat imagery, this study applies a hierarchical classification approach to derive land cover classifications within the Surkhan River Basin. By integrating the NDVI (normalized difference vegetation index) and DEM (digital elevation model (30 m SRTM)), an “NDVI-DEM-Land Cover” scatterplot is constructed to analyze zonation characteristics from 1980 to 2020. The 2020 results indicate that the elevation boundary between the temperate desert and mountain grassland zones is 1100 m, while the boundary between the alpine cushion vegetation zone and the ice/snow zone is 3770 m. Furthermore, leveraging DEM and LST (land surface temperature) data, a potential energy analysis model is employed to quantify potential energy differentials between adjacent zones, enabling the identification of ecological transition areas. The potential energy analysis further refines the transition zone characteristics, indicating that the transition zone between the temperate desert and mountain grassland zones spans 1078–1139 m with a boundary at 1110 m, while the transition between the alpine cushion vegetation and ice/snow zones spans 3729–3824 m with a boundary at 3768 m. Cross-validation with scatterplot results confirms that the scatterplot analysis effectively delineates stable zonation boundaries with strong spatiotemporal consistency. Moreover, the potential energy analysis offers deeper insights into ecological transition zones, providing refined boundary identification. The integration of these two approaches addresses the dimensional limitations of traditional vertical zonation studies, offering a transferable methodological framework for mountain ecosystem research. Full article
(This article belongs to the Special Issue Temporal and Spatial Analysis of Multi-Source Remote Sensing Images)
Show Figures

Figure 1

31 pages, 2472 KiB  
Article
Increase in Grain Production Potential of China Under 2030 Well-Facilitated Farmland Construction Goal
by Jianya Zhao, Fanhao Yang, Yanglan Zhang and Shu Wang
Land 2025, 14(8), 1538; https://doi.org/10.3390/land14081538 - 27 Jul 2025
Viewed by 374
Abstract
To promote high-quality agricultural development and implement the “storing grain in the land” strategy, the construction of Well-Facilitated Farmland (WFF) plays a critical role in enhancing grain production capacity and optimizing the spatial distribution of food supply, thereby contributing to national food security. [...] Read more.
To promote high-quality agricultural development and implement the “storing grain in the land” strategy, the construction of Well-Facilitated Farmland (WFF) plays a critical role in enhancing grain production capacity and optimizing the spatial distribution of food supply, thereby contributing to national food security. However, accurately assessing the potential impact of WFF construction on China’s grain production and regional self-sufficiency by 2030 remains a significant challenge. Existing studies predominantly focus on the provincial level, while fine-grained analyses at the city level are still lacking. This study quantifies the potential increase in grain production in China under the 2030 WFF construction target by employing effect size analysis, multi-weight prediction, and Monte Carlo simulation across multiple spatial scales (national, provincial, and city levels), thereby addressing the research gap at finer spatial resolutions. By integrating 2030 population projections and applying a grain self-sufficiency calculation formula, it further evaluates the contribution of WFF to regional grain self-sufficiency: (1) WFF could generate an additional 31–48 million tons of grain, representing a 5.26–8.25% increase; (2) grain supply in major crop-producing regions would expand, while the supply–demand gap in balanced regions would narrow; and (3) the number of cities with grain self-sufficiency ratios below 50% would decrease by 11.1%, while those exceeding 200% would increase by 25.5%. These findings indicate that WFF construction not only enhances overall grain production potential but also facilitates a transition from “overall supply-demand balance” to “structural security” within China’s food system. This study provides critical data support and policy insights for building a more resilient and regionally adaptive agricultural system. Full article
Show Figures

Figure 1

19 pages, 11267 KiB  
Article
Urban–Rural Differences in Cropland Loss and Fragmentation Caused by Construction Land Expansion in Developed Coastal Regions: Evidence from Jiangsu Province, China
by Jiahao Zhai and Lijie Pu
Remote Sens. 2025, 17(14), 2470; https://doi.org/10.3390/rs17142470 - 16 Jul 2025
Viewed by 354
Abstract
With the acceleration of global urbanization, cropland loss and fragmentation due to construction land expansion have become critical threats to food security and ecological sustainability, particularly in rapidly developing coastal regions. Understanding urban–rural differences in these processes is essential as divergent governance policies, [...] Read more.
With the acceleration of global urbanization, cropland loss and fragmentation due to construction land expansion have become critical threats to food security and ecological sustainability, particularly in rapidly developing coastal regions. Understanding urban–rural differences in these processes is essential as divergent governance policies, socioeconomic pressures, and land use transition pathways may lead to uneven impacts on agricultural systems. However, past comparisons of urban–rural differences regarding this issue have been insufficient. Therefore, this study takes Jiangsu Province, China, as an example. Based on 30 m-resolution land use data, Geographic Information System (GIS) spatial analysis, and landscape pattern indices, it delves into the urban–rural differences in cropland loss and fragmentation caused by construction land expansion from 1990 to 2020. The results show that cropland in urban and rural areas decreased by 44.14% and 5.97%, respectively, while the area of construction land increased by 2.61 times and 90.14%, respectively. 94.36% of the newly added construction land originated from cropland, with the conversion of rural cropland to construction land being particularly prominent in northern Jiangsu, while the conversion of urban cropland to construction land is more pronounced in southern Jiangsu. The expansion of construction land has led to the continuous fragmentation of cropland, which is more severe in urban areas than in rural areas, while construction land is becoming increasingly agglomerated. There are significant differences in the degree of land use change between urban and rural areas, necessitating the formulation of differentiated land management policies to balance economic development with agricultural sustainability. Full article
Show Figures

Figure 1

30 pages, 34212 KiB  
Article
Spatiotemporal Mapping and Driving Mechanism of Crop Planting Patterns on the Jianghan Plain Based on Multisource Remote Sensing Fusion and Sample Migration
by Pengnan Xiao, Yong Zhou, Jianping Qian, Yujie Liu and Xigui Li
Remote Sens. 2025, 17(14), 2417; https://doi.org/10.3390/rs17142417 - 12 Jul 2025
Viewed by 258
Abstract
The accurate mapping of crop planting patterns is vital for sustainable agriculture and food security, particularly in regions with complex cropping systems and limited cloud-free observations. This research focuses on the Jianghan Plain in southern China, where diverse planting structures and persistent cloud [...] Read more.
The accurate mapping of crop planting patterns is vital for sustainable agriculture and food security, particularly in regions with complex cropping systems and limited cloud-free observations. This research focuses on the Jianghan Plain in southern China, where diverse planting structures and persistent cloud cover make consistent monitoring challenging. We integrated multi-temporal Sentinel-2 and Landsat-8 imagery from 2017 to 2021 on the Google Earth Engine platform and applied a sample migration strategy to construct multi-year training data. A random forest classifier was used to identify nine major planting patterns at a 10 m resolution. The classification achieved an average overall accuracy of 88.3%, with annual Kappa coefficients ranging from 0.81 to 0.88. A spatial analysis revealed that single rice was the dominant pattern, covering more than 60% of the area. Temporal variations in cropping patterns were categorized into four frequency levels (0, 1, 2, and 3 changes), with more dynamic transitions concentrated in the central-western and northern subregions. A multiscale geographically weighted regression (MGWR) model revealed that economic and production-related factors had strong positive associations with crop planting patterns, while natural factors showed relatively weaker explanatory power. This research presents a scalable method for mapping fine-resolution crop patterns in complex agroecosystems, providing quantitative support for regional land-use optimization and the development of agricultural policies. Full article
Show Figures

Figure 1

22 pages, 4465 KiB  
Article
Urban Expansion Scenario Prediction Model: Combining Multi-Source Big Data, a Graph Attention Network, a Vector Cellular Automata, and an Agent-Based Model
by Yunqi Gao, Dongya Liu, Xinqi Zheng, Xiaoli Wang and Gang Ai
Remote Sens. 2025, 17(13), 2272; https://doi.org/10.3390/rs17132272 - 2 Jul 2025
Cited by 1 | Viewed by 351
Abstract
The construction of transition rules is the core and difficulty faced by the cellular automata (CA) model. Dynamic mining of transition rules can more accurately simulate urban land use change. By introducing a graph attention network (GAT) to mine CA model transition rules, [...] Read more.
The construction of transition rules is the core and difficulty faced by the cellular automata (CA) model. Dynamic mining of transition rules can more accurately simulate urban land use change. By introducing a graph attention network (GAT) to mine CA model transition rules, the temporal and spatial dynamics of the model are increased based on the construction of a real-time dynamic graph structure. At the same time, by adding an agent-based model (ABM) to the CA model, the simulation evolution of different human decision-making behaviors can be achieved. Based on this, an urban expansion scenario prediction (UESP) model has been proposed: (1) the UESP model employs a multi-head attention mechanism to dynamically capture high-order spatial dependencies, supporting the efficient processing of large-scale datasets with over 50,000 points of interest (POIs); (2) it incorporates the behaviors of agents such as residents, governments, and transportation systems to more realistically reflect human micro-level decision-making; and (3) by integrating macro-structural learning with micro-behavioral modeling, it effectively addresses the existing limitations in representing high-order spatial relationships and human decision-making processes in urban expansion simulations. Based on the policy context of the Outline of the Beijing–Tianjin–Hebei (BTH) Coordinated Development Plan, four development scenarios were designed to simulate construction land change by 2030. The results show that (1) the UESP model achieved an overall accuracy of 0.925, a Kappa coefficient of 0.878, and a FoM index of 0.048, outperforming traditional models, with the FoM being 3.5% higher; (2) through multi-scenario simulation prediction, it is found that under the scenario of ecological conservation and farmland protection, forest and grassland increase by 3142 km2, and cultivated land increases by 896 km2, with construction land showing a concentrated growth trend; and (3) the expansion of construction land will mainly occur at the expense of farmland, concentrated around Beijing, Tianjin, Tangshan, Shijiazhuang, and southern core cities in Hebei, forming a “core-driven, axis-extended, and cluster-expanded” spatial pattern. Full article
Show Figures

Figure 1

37 pages, 1853 KiB  
Review
Remote-Sensing Indicators and Methods for Coastal-Ecosystem Health Assessment: A Review of Progress, Challenges, and Future Directions
by Lili Zhao, Xuncheng Fan and Shihong Xiao
Water 2025, 17(13), 1971; https://doi.org/10.3390/w17131971 - 30 Jun 2025
Viewed by 562
Abstract
This paper systematically reviews the progress of remote-sensing technology in coastal-ecosystem health assessment. Coastal ecosystems, as transitional zones between land and ocean, play vital roles in maintaining biodiversity, carbon sequestration, and coastal protection, but currently face severe challenges from climate change and human [...] Read more.
This paper systematically reviews the progress of remote-sensing technology in coastal-ecosystem health assessment. Coastal ecosystems, as transitional zones between land and ocean, play vital roles in maintaining biodiversity, carbon sequestration, and coastal protection, but currently face severe challenges from climate change and human activities. Remote-sensing technology, with its capability for large-scale, long time-series observations, has become a key tool for coastal-ecosystem health assessment. This paper analyzes the technical characteristics and advantages of optical remote sensing, radar remote sensing, and multi-source data fusion in coastal monitoring; constructs a health-assessment framework that includes water-quality indicators, vegetation and ecosystem function indicators, and human disturbance and landscape change indicators; discusses the application of advanced technologies from traditional methods to machine learning and deep learning in data processing; and demonstrates the role of multi-temporal analysis in revealing coastal-ecosystem change trends through typical case studies of mangroves, salt marshes, and coral reefs. Research indicates that, despite the enormous potential of remote-sensing technology in coastal monitoring, it still faces challenges such as sensor limitations, environmental interference, and data processing and validation. Future development should focus on advanced sensor technology, platform innovation, data-processing method innovation, and multi-source data fusion, while strengthening the effective integration of remote-sensing technology with management practices to provide scientific basis for the protection and sustainable management of coastal ecosystems. Full article
(This article belongs to the Special Issue Remote Sensing in Coastal Water Environment Monitoring)
Show Figures

Figure 1

30 pages, 9389 KiB  
Article
Evaluating Coupling Security and Joint Risks in Northeast China Agricultural Systems Based on Copula Functions and the Rel–Cor–Res Framework
by Huanyu Chang, Yong Zhao, Yongqiang Cao, He Ren, Jiaqi Yao, Rong Liu and Wei Li
Agriculture 2025, 15(13), 1338; https://doi.org/10.3390/agriculture15131338 - 21 Jun 2025
Cited by 2 | Viewed by 458
Abstract
Ensuring the security of agricultural systems is essential for achieving national food security and sustainable development. Given that agricultural systems are inherently complex and composed of coupled subsystems—such as water, land, and energy—a comprehensive and multidimensional assessment of system security is necessary. This [...] Read more.
Ensuring the security of agricultural systems is essential for achieving national food security and sustainable development. Given that agricultural systems are inherently complex and composed of coupled subsystems—such as water, land, and energy—a comprehensive and multidimensional assessment of system security is necessary. This study focuses on Northeast China, a major food-producing region, and introduces the concept of agricultural system coupling security, defined as the integrated performance of an agricultural system in terms of resource adequacy, internal coordination, and adaptive resilience under external stress. To operationalize this concept, a coupling security evaluation framework is constructed based on three key dimensions: reliability (Rel), coordination (Cor), and resilience (Res). An Agricultural System Coupling Security Index (AS-CSI) is developed using the entropy weight method, the Criteria Importance Through Intercriteria Correlation (CRITIC) method, and the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method, while obstacle factor diagnosis is employed to identify key constraints. Furthermore, bivariate and trivariate Copula models are used to estimate joint risk probabilities. The results show that from 2001 to 2022, the AS-CSI in Northeast China increased from 0.38 to 0.62, indicating a transition from insecurity to relative security. Among the provinces, Jilin exhibited the highest CSI due to balanced performance across all Rel-Cor-Res dimensions, while Liaoning experienced lower Rel, hindering its overall security level. Five indicators, including area under soil erosion control, reservoir storage capacity per capita, pesticide application amount, rural electricity consumption per capita, and proportion of agricultural water use, were identified as critical threats to regional agricultural system security. Copula-based risk analysis revealed that the probability of Rel–Cor reaching the relatively secure threshold (0.8) was the highest at 0.7643, and the probabilities for Rel–Res and Cor–Res to reach the same threshold were lower, at 0.7164 and 0.7318, respectively. The probability of Rel–Cor-Res reaching the relatively secure threshold (0.8) exceeds 0.54, with Jilin exhibiting the highest probability at 0.5538. This study provides valuable insights for transitioning from static assessments to dynamic risk identification and offers a scientific basis for enhancing regional sustainability and economic resilience in agricultural systems. Full article
(This article belongs to the Section Agricultural Economics, Policies and Rural Management)
Show Figures

Figure 1

26 pages, 2245 KiB  
Review
Life Cycle Assessment with Carbon Footprint Analysis in Glulam Buildings: A Review
by Ruijing Liu, Lihong Yao, Yingchun Gong and Zhen Wang
Buildings 2025, 15(12), 2127; https://doi.org/10.3390/buildings15122127 - 19 Jun 2025
Viewed by 733
Abstract
This study provides a bibliometric analysis of life cycle assessments (LCAs) to explore the sustainability potential of mass timber buildings, focusing on glulam. The analysis highlights regional differences in carbon footprint performance within the ISO 14040 and EN 15978 frameworks. LCA results from [...] Read more.
This study provides a bibliometric analysis of life cycle assessments (LCAs) to explore the sustainability potential of mass timber buildings, focusing on glulam. The analysis highlights regional differences in carbon footprint performance within the ISO 14040 and EN 15978 frameworks. LCA results from representative countries across six continents show that wood buildings, compared to traditional materials, have a reduced carbon footprint. The geographical distribution of forest resources significantly influences the carbon footprint of glulam production. Europe and North America demonstrate optimal performance metrics (e.g., carbon sequestration), attributable to advanced technology and investment in long-term sustainable forest management. Our review research shows the lowest glulam carbon footprints (28–70% lower than traditional materials) due to clean energy and sustainable practices. In contrast, Asia and Africa exhibit systemic deficits, driven by resource scarcity, climatic stressors, and land-use pressures. South America and Oceania display transitional dynamics, with heterogeneous outcomes influenced by localized deforestation trends and conservation efficacy. Glulam buildings outperformed concrete and steel across 11–18 environmental categories, with carbon storage offsetting 30–47% of emissions and energy mixes cutting operational impacts by up to 67%. Circular strategies like recycling and prefabrication reduced end-of-life emissions by 12–29% and cut construction time and costs. Social benefits included job creation (e.g., 1 million in the EU) and improved well-being in wooden interiors. To further reduce carbon footprint disparities, this study emphasizes sustainable forest management, longer building lifespans, optimized energy mixes, shorter transport distances, advanced production technologies, and improved recycling systems. Additionally, the circular economy and social benefits of glulam buildings, such as reduced construction costs, value recovery, and job creation, are highlighted. In the future, prioritizing equitable partnerships and enhancing international exchanges of technical expertise will facilitate the adoption of sustainable practices in glulam buildings and advance decarbonization goals in the global building sector. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

44 pages, 34279 KiB  
Article
Identification and Optimization of Urban Avian Ecological Corridors in Kunming: Framework Construction Based on Multi-Model Coupling and Multi-Scenario Simulation
by Xiaoli Zhang and Zhe Zhang
Diversity 2025, 17(6), 427; https://doi.org/10.3390/d17060427 - 17 Jun 2025
Viewed by 729
Abstract
This study employs a multi-model coupling and multi-scenario simulation approach to construct a framework for identifying and optimizing avian ecological corridors in the urban core of Kunming. The framework focuses on the ecological needs of resident birds (64.72%), woodland-dependent birds (39.87%), and low-mobility [...] Read more.
This study employs a multi-model coupling and multi-scenario simulation approach to construct a framework for identifying and optimizing avian ecological corridors in the urban core of Kunming. The framework focuses on the ecological needs of resident birds (64.72%), woodland-dependent birds (39.87%), and low-mobility birds (47.29%) to address habitat fragmentation and enhance urban biodiversity conservation. This study identifies 54 core ecological corridors, totaling 183.58 km, primarily located in forest–urban transition zones. These corridors meet the continuous habitat requirements of resident and woodland-dependent birds, providing a stable environment for species. Additionally, 55 general corridors, spanning 537.30 km, focus on facilitating short-distance movements of low-mobility birds, enhancing habitat connectivity in urban fringe areas through ecological stepping stones. Eighteen ecological pinch points (total area 5.63 km2) play a crucial role in the network. The northern pinch points, dominated by forest land, serve as vital breeding and refuge habitats for woodland-dependent and resident birds. The southern pinch points, located in wetland-forest ecotones, function as critical stopover sites for low-mobility waterbirds. Degradation of these pinch points would significantly reduce available habitat for birds. The 27 ecological barrier points (total area 89.79 km2), characterized by urban land use, severely impede the movement of woodland-dependent birds and increase the migratory energy expenditure of low-mobility birds in agricultural areas. Following optimization, resistance to resident birds in core corridors is significantly reduced, and habitat utilization by generalist species in general corridors is markedly improved. Moreover, multi-scenario optimization measures, including the addition of ecological stepping stones, barrier improvement, and pinch-point protection, have effectively increased ecological sources, met avian habitat requirements, and secured migratory pathways for waterbirds. These measures validate the scientific rationale of a multidimensional management strategy. The comprehensive framework developed in this study, integrating species needs, corridor design, and spatial optimization, provides a replicable model for avian ecological corridor construction in subtropical montane cities. Future research may incorporate bird-tracking technologies to further validate corridor efficacy and explore planning pathways for climate-adaptive corridors. Full article
Show Figures

Figure 1

31 pages, 5943 KiB  
Article
A Novel Hybrid Fuzzy Comprehensive Evaluation and Machine Learning Framework for Solar PV Suitability Mapping in China
by Yanchun Liao, Shuangxi Miao, Wenjing Fan and Xingchen Liu
Remote Sens. 2025, 17(12), 2070; https://doi.org/10.3390/rs17122070 - 16 Jun 2025
Viewed by 547
Abstract
As technological progress and population growth continue to drive rising energy demand, renewable energy has emerged as a key focus of the global energy transition due to its environmental sustainability. However, in suitability assessments and site selection for green energy projects such as [...] Read more.
As technological progress and population growth continue to drive rising energy demand, renewable energy has emerged as a key focus of the global energy transition due to its environmental sustainability. However, in suitability assessments and site selection for green energy projects such as photovoltaic (PV) power generation, key criteria such as supply–demand balance and land price are often inadequately considered, despite their direct impact on decision outcomes. Moreover, excessive reliance on expert judgment for weighting, along with the neglect of inter-criterion relationships, introduces uncertainty. Combined with the presence of ill-posed problems, these issues limit the practical value of the evaluation results. This study integrates economic cost–benefit analysis into the evaluation criteria system alongside climatic and geographical criteria, constructing a set of 11 spatial indicators, including global horizontal irradiation (GHI), land prices, and regional power demand, to support PV site selection. Furthermore, a comprehensive evaluation framework is proposed that combines geographic information systems (GIS), multi-criteria decision analysis (MCDA), fuzzy comprehensive evaluation (FCE), and machine learning (ML). The framework enables the collaborative optimization of expert-constrained and data-driven criteria weighting. A national suitability zoning map for PV power plants was developed and validated against actual construction cases. The results demonstrate that the proposed methodology outperforms traditional approaches, achieving a 0.1178 improvement in weight determination compared to expert-based methods, producing a photovoltaic suitability map that more accurately reflects actual construction trends, thereby providing better and more effective support for PV site planning. Full article
Show Figures

Figure 1

27 pages, 5221 KiB  
Article
Spatiotemporal Patterns and Zoning-Based Compensation Mechanisms for Land-Use-Driven Carbon Emissions Towards Sustainable Development: County-Level Evidence from Shaanxi Province, China
by Shuangshuang Qi, Zhenyu Zhang, Abudukeyimu Abulizi and Yongfu Zhang
Sustainability 2025, 17(12), 5395; https://doi.org/10.3390/su17125395 - 11 Jun 2025
Viewed by 630
Abstract
Under the global climate governance framework, advancing China’s “Dual Carbon” goals within the context of sustainable development requires detailed, micro-level research. While existing studies predominantly focus on national or provincial macro scales, there remains a critical gap in county-level analyses that account for [...] Read more.
Under the global climate governance framework, advancing China’s “Dual Carbon” goals within the context of sustainable development requires detailed, micro-level research. While existing studies predominantly focus on national or provincial macro scales, there remains a critical gap in county-level analyses that account for regional heterogeneity—particularly in geographically and economically transitional provinces like Shaanxi. This study focuses on 107 counties in Shaanxi Province, using land-use data from 2000 to 2022 to construct carbon emission and carbon compensation accounting models. We measure horizontal carbon compensation standards, examine spatiotemporal patterns of carbon emissions, delineate compensation zones, and propose regional low-carbon development strategies to inform sustainable development planning. The results show the following: (1) They reveal a steady increase in CO2 emissions over the period (from 940 million tons in 2000 to 2.089 billion tons in 2022), highlighting an ongoing challenge for sustainability, with a spatial pattern of “high in the north, low in the south, and outward expansion from the center.” (2) In 2022, carbon payments across the province totaled CNY 1.068 billion, while compensation reached CNY 670 million, with significant spatial heterogeneity: 87 counties identified as payers (66 heavy) and 20 as receivers (17 heavy). (3) By integrating the Economic Contribution Coefficient, Ecological Support Coefficient, and Carbon Offset Rate with Major Function-oriented Zoning, we classify the counties into 12 carbon compensation subregions and recommend gradient-based development strategies. This refined zoning framework provides a clear operational framework for formulating differentiated low-carbon land-use optimization strategies and regional carbon compensation policies tailored to the characteristics of different functional zones. The research findings offer differentiated compensation standards and low-carbon land-use planning guidelines to support Shaanxi Province’s transition towards sustainable development, serving as a reference for carbon governance and sustainable development practices in China’s provinces with transitional geographical features and promoting the realization of China’s “Dual Carbon” targets as integral components of national sustainable development. Full article
Show Figures

Figure 1

20 pages, 10391 KiB  
Article
Tracking the Construction Land Expansion and Its Dynamics of Ho Chi Minh City Metropolitan Area in Vietnam
by Yutian Liang, Jie Zhang, Wei Sun, Zijing Guo and Shangqian Li
Land 2025, 14(6), 1253; https://doi.org/10.3390/land14061253 - 11 Jun 2025
Viewed by 1384
Abstract
International industrial transfer has driven rapid construction land expansion in emerging metropolitan areas, posing challenges for sustainable land management. However, existing research has largely overlooked the spatiotemporal patterns and driving mechanisms of this expansion, particularly in Southeast Asian metropolitan regions. To address this [...] Read more.
International industrial transfer has driven rapid construction land expansion in emerging metropolitan areas, posing challenges for sustainable land management. However, existing research has largely overlooked the spatiotemporal patterns and driving mechanisms of this expansion, particularly in Southeast Asian metropolitan regions. To address this gap, we focused on the Ho Chi Minh City metropolitan area, utilizing construction land data from GLC_FCS30D to analyze the dynamics of construction land expansion during this period. Findings indicated that: (1) Continuous expansion of construction land, with the expansion rate during 2010–2020 being five times that of 2000–2010; (2) The spatial pattern evolved from initial infilling development in urban cores to subsequent leapfrogging and edge expansion toward peripheral counties and transportation corridors; (3) The expansion of construction land occurred alongside substantial losses of wetland and cultivated land. Between 2000 and 2020, the conversion of cultivated land to construction land increased significantly, particularly during 2010–2020 when cultivated land conversion accounted for 93.76% of newly developed construction land. Wetland conversion also showed notable growth during this period, comprising 3.86% of total newly added construction land; (4) Foreign direct investment (FDI) served as the primary catalyst, while industrial park development and transport infrastructure projects functioned as secondary accelerants. This study constructed a framework to systematically analyze the global and local driving mechanisms of metropolitan land expansion. The findings deepen the understanding of land-use transitions in emerging countries and provide both theoretical support and policy references for sustainable land management. Full article
Show Figures

Figure 1

23 pages, 5382 KiB  
Article
Effects of Urbanization-Induced Land Use Changes on Ecosystem Services: A Case Study of the Anhui Province, China
by Xinmiao Liu, Xudong Zhang, Qi Shu, Zengwang Yao, Hailong Wu and Shenghua Gao
Land 2025, 14(6), 1238; https://doi.org/10.3390/land14061238 - 9 Jun 2025
Viewed by 501
Abstract
Urbanization has profoundly reshaped ecosystem services (ESs), yet how diverse urbanization drivers interact with land use and land cover (LULC) changes to influence ESs remains insufficiently studied. To address these gaps, this study offers a comprehensive assessment of urbanization induced ESs transformations across [...] Read more.
Urbanization has profoundly reshaped ecosystem services (ESs), yet how diverse urbanization drivers interact with land use and land cover (LULC) changes to influence ESs remains insufficiently studied. To address these gaps, this study offers a comprehensive assessment of urbanization induced ESs transformations across Anhui Province, China. We selected five key regulating and provisioning services closely linked to LULC dynamics, revealing that southern mountainous areas consistently supported higher ES levels, whereas central and northern urbanizing zones experienced severe ES degradation. By using random forest ensemble learning and Partial Least Square Path Modeling, we identified population density, urban construction proportion, and agricultural intensification as key urbanization drivers shaped LULC changes and indirectly influenced ES distributions. Notably, we also found that urbanization drivers and land use transitions did not act independently but interacted to jointly affect ES dynamics. These findings underscored the critical role of land use changes in mediating the impacts of urbanization on ESs and highlighted the importance of integrating land use management with urban planning to support sustainable regional development. Full article
Show Figures

Figure 1

Back to TopTop