Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,727)

Search Parameters:
Keywords = connected attention

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 7677 KiB  
Article
Hyperspectral Imaging Combined with a Dual-Channel Feature Fusion Model for Hierarchical Detection of Rice Blast
by Yuan Qi, Tan Liu, Songlin Guo, Peiyan Wu, Jun Ma, Qingyun Yuan, Weixiang Yao and Tongyu Xu
Agriculture 2025, 15(15), 1673; https://doi.org/10.3390/agriculture15151673 (registering DOI) - 2 Aug 2025
Abstract
Rice blast caused by Magnaporthe oryzae is a major cause of yield reductions and quality deterioration in rice. Therefore, early detection of the disease is necessary for controlling the spread of rice blast. This study proposed a dual-channel feature fusion model (DCFM) to [...] Read more.
Rice blast caused by Magnaporthe oryzae is a major cause of yield reductions and quality deterioration in rice. Therefore, early detection of the disease is necessary for controlling the spread of rice blast. This study proposed a dual-channel feature fusion model (DCFM) to achieve effective identification of rice blast. The DCFM model extracted spectral features using successive projection algorithm (SPA), random frog (RFrog), and competitive adaptive reweighted sampling (CARS), and extracted spatial features from spectral images using MobileNetV2 combined with the convolutional block attention module (CBAM). Then, these features were fused using the feature fusion adaptive conditioning module in DCFM and input into the fully connected layer for disease identification. The results show that the model combining spectral and spatial features was superior to the classification models based on single features for rice blast detection, with OA and Kappa higher than 90% and 88%, respectively. The DCFM model based on SPA screening obtained the best results, with an OA of 96.72% and a Kappa of 95.97%. Overall, this study enables the early and accurate identification of rice blast, providing a rapid and reliable method for rice disease monitoring and management. It also offers a valuable reference for the detection of other crop diseases. Full article
Show Figures

Figure 1

22 pages, 24173 KiB  
Article
ScaleViM-PDD: Multi-Scale EfficientViM with Physical Decoupling and Dual-Domain Fusion for Remote Sensing Image Dehazing
by Hao Zhou, Yalun Wang, Wanting Peng, Xin Guan and Tao Tao
Remote Sens. 2025, 17(15), 2664; https://doi.org/10.3390/rs17152664 (registering DOI) - 1 Aug 2025
Viewed by 40
Abstract
Remote sensing images are often degraded by atmospheric haze, which not only reduces image quality but also complicates information extraction, particularly in high-level visual analysis tasks such as object detection and scene classification. State-space models (SSMs) have recently emerged as a powerful paradigm [...] Read more.
Remote sensing images are often degraded by atmospheric haze, which not only reduces image quality but also complicates information extraction, particularly in high-level visual analysis tasks such as object detection and scene classification. State-space models (SSMs) have recently emerged as a powerful paradigm for vision tasks, showing great promise due to their computational efficiency and robust capacity to model global dependencies. However, most existing learning-based dehazing methods lack physical interpretability, leading to weak generalization. Furthermore, they typically rely on spatial features while neglecting crucial frequency domain information, resulting in incomplete feature representation. To address these challenges, we propose ScaleViM-PDD, a novel network that enhances an SSM backbone with two key innovations: a Multi-scale EfficientViM with Physical Decoupling (ScaleViM-P) module and a Dual-Domain Fusion (DD Fusion) module. The ScaleViM-P module synergistically integrates a Physical Decoupling block within a Multi-scale EfficientViM architecture. This design enables the network to mitigate haze interference in a physically grounded manner at each representational scale while simultaneously capturing global contextual information to adaptively handle complex haze distributions. To further address detail loss, the DD Fusion module replaces conventional skip connections by incorporating a novel Frequency Domain Module (FDM) alongside channel and position attention. This allows for a more effective fusion of spatial and frequency features, significantly improving the recovery of fine-grained details, including color and texture information. Extensive experiments on nine publicly available remote sensing datasets demonstrate that ScaleViM-PDD consistently surpasses state-of-the-art baselines in both qualitative and quantitative evaluations, highlighting its strong generalization ability. Full article
Show Figures

Figure 1

19 pages, 481 KiB  
Article
Trust the Machine or Trust Yourself: How AI Usage Reshapes Employee Self-Efficacy and Willingness to Take Risks
by Zhiyong Han, Guoqing Song, Yanlong Zhang and Bo Li
Behav. Sci. 2025, 15(8), 1046; https://doi.org/10.3390/bs15081046 (registering DOI) - 1 Aug 2025
Viewed by 36
Abstract
As artificial intelligence (AI) technology becomes increasingly widespread in organizations, its impact on individual employees’ psychology and behavior has garnered growing attention. Existing research primarily focuses on AI’s effects on organizational performance and job design, with limited exploration of its mechanisms influencing individual [...] Read more.
As artificial intelligence (AI) technology becomes increasingly widespread in organizations, its impact on individual employees’ psychology and behavior has garnered growing attention. Existing research primarily focuses on AI’s effects on organizational performance and job design, with limited exploration of its mechanisms influencing individual employees, particularly in the critical area of risk-taking behavior, which is essential to organizational innovation. This research develops a moderated mediation model grounded in social cognitive theory (SCT) to explore how AI usage affects the willingness to take risks. A three-wave longitudinal study collected and statistically analyzed data from 442 participants. The findings reveal that (1) AI usage significantly enhances employees’ willingness to take risks; (2) self-efficacy serves as a partial mediator in the connection between AI usage and the willingness to take risks; and (3) learning goal orientation moderates both the relationship between AI usage and self-efficacy, as well as the mediating effect. This research enhances our understanding of AI’s impact on organizational behavior and provides valuable insights for human resource management in the AI era. Full article
Show Figures

Figure 1

21 pages, 719 KiB  
Review
Intra-Arterial Administration of Stem Cells and Exosomes for Central Nervous System Disease
by Taishi Honda, Masahito Kawabori and Miki Fujimura
Int. J. Mol. Sci. 2025, 26(15), 7405; https://doi.org/10.3390/ijms26157405 (registering DOI) - 31 Jul 2025
Viewed by 254
Abstract
Central nervous system (CNS) disorders present significant therapeutic challenges due to the limited regenerative capacity of neural tissues, resulting in long-term disability for many patients. Consequently, the development of novel therapeutic strategies is urgently warranted. Stem cell therapies show considerable potential for mitigating [...] Read more.
Central nervous system (CNS) disorders present significant therapeutic challenges due to the limited regenerative capacity of neural tissues, resulting in long-term disability for many patients. Consequently, the development of novel therapeutic strategies is urgently warranted. Stem cell therapies show considerable potential for mitigating brain damage and restoring neural connectivity, owing to their multifaceted properties, including anti-apoptotic, anti-inflammatory, neurogenic, and vasculogenic effects. Recent research has also identified exosomes—small vesicles enclosed by a lipid bilayer, secreted by stem cells—as a key mechanism underlying the therapeutic effects of stem cell therapies, and given their enhanced stability and superior blood–brain barrier permeability compared to the stem cells themselves, exosomes have emerged as a promising alternative treatment for CNS disorders. A key challenge in the application of both stem cell and exosome-based therapies for CNS diseases is the method of delivery. Currently, several routes are being investigated, including intracerebral, intrathecal, intravenous, intranasal, and intra-arterial administration. Intracerebral injection can deliver a substantial quantity of stem cells directly to the brain, but it carries the potential risk of inducing additional brain injury. Conversely, intravenous transplantation is minimally invasive but results in limited delivery of cells and exosomes to the brain, which may compromise the therapeutic efficacy. With advancements in catheter technology, intra-arterial administration of stem cells and exosomes has garnered increasing attention as a promising delivery strategy. This approach offers the advantage of delivering a significant number of stem cells and exosomes to the brain while minimizing the risk of additional brain damage. However, the investigation into the therapeutic potential of intra-arterial transplantation for CNS injury is still in its early stages. In this comprehensive review, we aim to summarize both basic and clinical research exploring the intra-arterial administration of stem cells and exosomes for the treatment of CNS diseases. Additionally, we will elucidate the underlying therapeutic mechanisms and provide insights into the future potential of this approach. Full article
(This article belongs to the Special Issue Stem Cells Research: Advancing Science and Medicine)
Show Figures

Graphical abstract

13 pages, 1879 KiB  
Article
Dynamic Graph Convolutional Network with Dilated Convolution for Epilepsy Seizure Detection
by Xiaoxiao Zhang, Chenyun Dai and Yao Guo
Bioengineering 2025, 12(8), 832; https://doi.org/10.3390/bioengineering12080832 (registering DOI) - 31 Jul 2025
Viewed by 120
Abstract
The electroencephalogram (EEG), widely used for measuring the brain’s electrophysiological activity, has been extensively applied in the automatic detection of epileptic seizures. However, several challenges remain unaddressed in prior studies on automated seizure detection: (1) Methods based on CNN and LSTM assume that [...] Read more.
The electroencephalogram (EEG), widely used for measuring the brain’s electrophysiological activity, has been extensively applied in the automatic detection of epileptic seizures. However, several challenges remain unaddressed in prior studies on automated seizure detection: (1) Methods based on CNN and LSTM assume that EEG signals follow a Euclidean structure; (2) Algorithms leveraging graph convolutional networks rely on adjacency matrices constructed with fixed edge weights or predefined connection rules. To address these limitations, we propose a novel algorithm: Dynamic Graph Convolutional Network with Dilated Convolution (DGDCN). By leveraging a spatiotemporal attention mechanism, the proposed model dynamically constructs a task-specific adjacency matrix, which guides the graph convolutional network (GCN) in capturing localized spatial and temporal dependencies among adjacent nodes. Furthermore, a dilated convolutional module is incorporated to expand the receptive field, thereby enabling the model to capture long-range temporal dependencies more effectively. The proposed seizure detection system is evaluated on the TUSZ dataset, achieving AUC values of 88.7% and 90.4% on 12-s and 60-s segments, respectively, demonstrating competitive performance compared to current state-of-the-art methods. Full article
(This article belongs to the Section Biosignal Processing)
Show Figures

Figure 1

9 pages, 159 KiB  
Article
The Mask and the Giant: Shakespearean Acting and Reputation Management
by Darren Tunstall
Humanities 2025, 14(8), 159; https://doi.org/10.3390/h14080159 - 31 Jul 2025
Viewed by 101
Abstract
I use Shakespeare to teach acting to students. A key to my work is impression management: what Shakespeare called reputation. I view the management of reputation as a route into Shakespearean character, which I present to students as a mask attuned to sacred [...] Read more.
I use Shakespeare to teach acting to students. A key to my work is impression management: what Shakespeare called reputation. I view the management of reputation as a route into Shakespearean character, which I present to students as a mask attuned to sacred values. The physical basis from which the actor can discover the mask is what Hamlet calls ‘smoothness’, which I explain with an acting exercise. We discover the force of sacred values by noticing the ubiquity of keywords in the text such as honor, virtue, reason, shame and faith. By holding characters to the fire of their sacred values, I shift the actor’s attention from an individualist idea of authentic representation towards a sense of character as a battleground of mind-shaping. The resulting performance work is scaled up to a more expansive and energized degree than the actor may be used to delivering in a social media-saturated environment in which what is often prioritized is a quasi-confessional self-revelation. The revelation of an inner life then emerges through a committed exploration of antithetical relations, a strategy basic both to mask work and to Shakespeare’s poetics. The actor finds their personal connection to the material by facing the contradiction between the objective standards of behavior demanded of the character and the character’s attempt to control their status, that is, how they are seen. The final value of the performance work is that the actor learns how to manage their reputation so that they come to appear like a giant who is seen from a distance. Full article
37 pages, 406 KiB  
Review
Self-Medication as a Global Health Concern: Overview of Practices and Associated Factors—A Narrative Review
by Vedrana Aljinović-Vučić
Healthcare 2025, 13(15), 1872; https://doi.org/10.3390/healthcare13151872 - 31 Jul 2025
Viewed by 192
Abstract
Self-medication is a subject of global importance. If practiced responsibly, self-medication represents a part of self-care or positive care of an individual or a community in promoting their own health. However, today’s practices of self-medication are often inappropriate and irresponsible, and as such [...] Read more.
Self-medication is a subject of global importance. If practiced responsibly, self-medication represents a part of self-care or positive care of an individual or a community in promoting their own health. However, today’s practices of self-medication are often inappropriate and irresponsible, and as such appear all over the world. Inappropriate self-medication can be connected with possible serious health risks and consequences. Therefore, it represents a global health issue. It can even generate additional health problems, which will eventually become a burden to healthcare systems and can induce significant costs, which also raises socioeconomic concerns. Hence, self-medication attracts the attention of researchers and practitioners globally in efforts to clarify the current status and define feasible measures that should be implemented to address this issue. This narrative review aims to give an overview of the situation in the field of self-medication globally, including current practices and attitudes, as well as implications for actions needed to improve this problem. A PubMed/MEDLINE search was conducted for articles published in the period from 1995 up to March 2025 using keywords “self-medication” or “selfmedication” alone or in combinations with terms related to specific subthemes related to self-medication, such as COVID-19, antimicrobials, healthcare professionals, and storing habits of medicines at home. Studies were included if self-medication was their main focus. Publications that only mentioned self-medication in different contexts, but not as their main focus, were excluded. Considering the outcomes of research on self-medication in various contexts, increasing awareness of responsible self-medication through education and informing, together with surveillance of particular medicines and populations, could lead to more appropriate and beneficial self-medication in the future. Full article
29 pages, 15488 KiB  
Article
GOFENet: A Hybrid Transformer–CNN Network Integrating GEOBIA-Based Object Priors for Semantic Segmentation of Remote Sensing Images
by Tao He, Jianyu Chen and Delu Pan
Remote Sens. 2025, 17(15), 2652; https://doi.org/10.3390/rs17152652 (registering DOI) - 31 Jul 2025
Viewed by 213
Abstract
Geographic object-based image analysis (GEOBIA) has demonstrated substantial utility in remote sensing tasks. However, its integration with deep learning remains largely confined to image-level classification. This is primarily due to the irregular shapes and fragmented boundaries of segmented objects, which limit its applicability [...] Read more.
Geographic object-based image analysis (GEOBIA) has demonstrated substantial utility in remote sensing tasks. However, its integration with deep learning remains largely confined to image-level classification. This is primarily due to the irregular shapes and fragmented boundaries of segmented objects, which limit its applicability in semantic segmentation. While convolutional neural networks (CNNs) excel at local feature extraction, they inherently struggle to capture long-range dependencies. In contrast, Transformer-based models are well suited for global context modeling but often lack fine-grained local detail. To overcome these limitations, we propose GOFENet (Geo-Object Feature Enhanced Network)—a hybrid semantic segmentation architecture that effectively fuses object-level priors into deep feature representations. GOFENet employs a dual-encoder design combining CNN and Swin Transformer architectures, enabling multi-scale feature fusion through skip connections to preserve both local and global semantics. An auxiliary branch incorporating cascaded atrous convolutions is introduced to inject information of segmented objects into the learning process. Furthermore, we develop a cross-channel selection module (CSM) for refined channel-wise attention, a feature enhancement module (FEM) to merge global and local representations, and a shallow–deep feature fusion module (SDFM) to integrate pixel- and object-level cues across scales. Experimental results on the GID and LoveDA datasets demonstrate that GOFENet achieves superior segmentation performance, with 66.02% mIoU and 51.92% mIoU, respectively. The model exhibits strong capability in delineating large-scale land cover features, producing sharper object boundaries and reducing classification noise, while preserving the integrity and discriminability of land cover categories. Full article
Show Figures

Figure 1

22 pages, 2437 KiB  
Article
Anomaly Detection of Acoustic Signals in Ultra-High Voltage Converter Valves Based on the FAVAE-AS
by Shuyan Pan, Mingzhu Tang, Na Li, Jiawen Zuo and Xingpeng Zhou
Sensors 2025, 25(15), 4716; https://doi.org/10.3390/s25154716 (registering DOI) - 31 Jul 2025
Viewed by 174
Abstract
The converter valve is the core component of the ultra-high voltage direct current (UHVDC) transmission system, and its fault detection is very important to ensure the safe and stable operation of the transmission system. However, the voiceprint signals collected by converter stations under [...] Read more.
The converter valve is the core component of the ultra-high voltage direct current (UHVDC) transmission system, and its fault detection is very important to ensure the safe and stable operation of the transmission system. However, the voiceprint signals collected by converter stations under complex operating conditions are often affected by background noise, spikes, and nonlinear interference. Traditional methods make it difficult to achieve high-precision detection due to the lack of feature extraction ability and poor noise robustness. This paper proposes a fault-aware variational self-encoder model (FAVAE-AS) based on a weak correlation between attention and self-supervised learning. It extracts probability features via a conditional variational autoencoder, strengthens feature representation using multi-layer convolution and residual connections, and introduces a weak correlation attention mechanism to capture global time point relationships. A self-supervised learning module with six signal transformations improves generalization, while KL divergence-based correlation inconsistency quantization with dynamic thresholds enables accurate anomaly detection. Experiments show that FAVAE-AS achieves 0.925 accuracy in fault detection, which is 5% higher than previous methods, and has strong robustness. This research provides critical technical support for UHVDC system safety by addressing converter valve acoustic anomaly detection. It proposes an extensible framework for industrial intelligent maintenance. Full article
Show Figures

Figure 1

30 pages, 3898 KiB  
Article
Application of Information and Communication Technologies for Public Services Management in Smart Villages
by Ingrida Kazlauskienė and Vilma Atkočiūnienė
Businesses 2025, 5(3), 31; https://doi.org/10.3390/businesses5030031 (registering DOI) - 31 Jul 2025
Viewed by 128
Abstract
Information and communication technologies (ICTs) are becoming increasingly important for sustainable rural development through the smart village concept. This study aims to model ICT’s potential for public services management in European rural areas. It identifies ICT applications across rural service domains, analyzes how [...] Read more.
Information and communication technologies (ICTs) are becoming increasingly important for sustainable rural development through the smart village concept. This study aims to model ICT’s potential for public services management in European rural areas. It identifies ICT applications across rural service domains, analyzes how these technologies address specific rural challenges, and evaluates their benefits, implementation barriers, and future prospects for sustainable rural development. A qualitative content analysis method was applied using purposive sampling to analyze 79 peer-reviewed articles from EBSCO and Elsevier databases (2000–2024). A deductive approach employed predefined categories to systematically classify ICT applications across rural public service domains, with data coded according to technology scope, problems addressed, and implementation challenges. The analysis identified 15 ICT application domains (agriculture, healthcare, education, governance, energy, transport, etc.) and 42 key technology categories (Internet of Things, artificial intelligence, blockchain, cloud computing, digital platforms, mobile applications, etc.). These technologies address four fundamental rural challenges: limited service accessibility, inefficient resource management, demographic pressures, and social exclusion. This study provides the first comprehensive systematic categorization of ICT applications in smart villages, establishing a theoretical framework connecting technology deployment with sustainable development dimensions. Findings demonstrate that successful ICT implementation requires integrated urban–rural cooperation, community-centered approaches, and balanced attention to economic, social, and environmental sustainability. The research identifies persistent challenges, including inadequate infrastructure, limited digital competencies, and high implementation costs, providing actionable insights for policymakers and practitioners developing ICT-enabled rural development strategies. Full article
Show Figures

Figure 1

34 pages, 725 KiB  
Article
A Qualitative Exploration of the Lived Experiences and Perspectives of Equine-Assisted Services Practitioners in the UK and Ireland
by Rita Seery, Lisa Graham-Wisener and Deborah L. Wells
Animals 2025, 15(15), 2240; https://doi.org/10.3390/ani15152240 - 30 Jul 2025
Viewed by 475
Abstract
Equine-Assisted Services (EAS), which incorporate horses in a variety of ways in an effort to improve human wellbeing, have grown in popularity in recent years. Although much research has been conducted regarding the benefits that horses may provide for human health and wellbeing, [...] Read more.
Equine-Assisted Services (EAS), which incorporate horses in a variety of ways in an effort to improve human wellbeing, have grown in popularity in recent years. Although much research has been conducted regarding the benefits that horses may provide for human health and wellbeing, little attention has been paid to practitioners’ experiences and perspectives of the field, despite the fact they are uniquely positioned to advance our understanding of this area. This study aimed to explore practitioners’ lived experiences of EAS, focusing on the benefits they observed, possible underlying mechanisms for any health benefits witnessed, and challenges faced in the area. Fifteen EAS practitioners from the UK/Ireland took part in qualitative semi-structured interviews, analysed using reflexive thematic analysis. Five themes were identified, three of which related to the horse’s influence on building connections, relationships, and enriching the process, whilst the remainder explored challenges within the field of EAS. These themes were explored through the practitioners’ lens, where possible linking them to our current understanding of human–animal interactions and related fields in the literature. Findings showed that horses, through EAS, were considered invaluable for building relationships, relational skills, and motivation to engage in whichever service was being provided. However, EAS was also viewed as complex. Concerns regarding competencies to practice, training, and lack of governance were expressed. These areas need further exploration and progress if EAS is to grow in efficacy and attain professional status. Full article
(This article belongs to the Special Issue Animal-Assisted Interventions: Effects and Mechanisms of Action)
Show Figures

Figure 1

23 pages, 7739 KiB  
Article
AGS-YOLO: An Efficient Underwater Small-Object Detection Network for Low-Resource Environments
by Weikai Sun, Xiaoqun Liu, Juan Hao, Qiyou Yao, Hailin Xi, Yuwen Wu and Zhaoye Xing
J. Mar. Sci. Eng. 2025, 13(8), 1465; https://doi.org/10.3390/jmse13081465 - 30 Jul 2025
Viewed by 189
Abstract
Detecting underwater targets is crucial for ecological evaluation and the sustainable use of marine resources. To enhance environmental protection and optimize underwater resource utilization, this study proposes AGS-YOLO, an innovative underwater small-target detection model based on YOLO11. Firstly, this study proposes AMSA, a [...] Read more.
Detecting underwater targets is crucial for ecological evaluation and the sustainable use of marine resources. To enhance environmental protection and optimize underwater resource utilization, this study proposes AGS-YOLO, an innovative underwater small-target detection model based on YOLO11. Firstly, this study proposes AMSA, a multi-scale attention module, and optimizes the C3k2 structure to improve the detection and precise localization of small targets. Secondly, a streamlined GSConv convolutional module is incorporated to minimize the parameter count and computational load while effectively retaining inter-channel dependencies. Finally, a novel and efficient cross-scale connected neck network is designed to achieve information complementarity and feature fusion among different scales, efficiently capturing multi-scale semantics while decreasing the complexity of the model. In contrast with the baseline model, the method proposed in this paper demonstrates notable benefits for use in underwater devices constrained by limited computational capabilities. The results demonstrate that AGS-YOLO significantly outperforms previous methods in terms of accuracy on the DUO underwater dataset, with mAP@0.5 improving by 1.3% and mAP@0.5:0.95 improving by 2.6% relative to those of the baseline YOLO11n model. In addition, the proposed model also shows excellent performance on the RUOD dataset, demonstrating its competent detection accuracy and reliable generalization. This study proposes innovative approaches and methodologies for underwater small-target detection, which have significant practical relevance. Full article
Show Figures

Figure 1

16 pages, 2030 KiB  
Article
Study on Comb-Drive MEMS Acceleration Sensor Used for Medical Purposes: Monitoring of Balance Disorders
by Michał Szermer and Jacek Nazdrowicz
Electronics 2025, 14(15), 3033; https://doi.org/10.3390/electronics14153033 - 30 Jul 2025
Viewed by 219
Abstract
This article presents a comprehensive modeling and simulation framework for a capacitive MEMS accelerometer integrated with a sigma-delta analog-to-digital converter (ADC), with a focus on applications in wearable health and motion monitoring devices. The accelerometer used in the system is connected to a [...] Read more.
This article presents a comprehensive modeling and simulation framework for a capacitive MEMS accelerometer integrated with a sigma-delta analog-to-digital converter (ADC), with a focus on applications in wearable health and motion monitoring devices. The accelerometer used in the system is connected to a smartphone equipped with dedicated software and will be used to assess the risk of falling, which is crucial for patients with balance disorders. The authors designed the accelerometer with special attention paid to the specification required in a system, where the acceleration is ±2 g and the frequency is 100 Hz. They investigated the sensor’s behavior in the DC, AC, and time domains, capturing both the mechanical response of the proof mass and the resulting changes in output capacitance due to external acceleration. A key component of the simulation is the implementation of a second-order sigma-delta modulator designed to digitize the small capacitance variations generated by the sensor. The Simulink model includes the complete signal path from analog input to quantization, filtering, decimation, and digital-to-analog reconstruction. By combining MEMS+ modeling with MATLAB-based system-level simulations, the workflow offers a fast and flexible alternative to traditional finite element methods and facilitates early-stage design optimization for MEMS sensor systems intended for real-world deployment. Full article
(This article belongs to the Special Issue Wearable Sensors for Human Position, Attitude and Motion Tracking)
Show Figures

Figure 1

20 pages, 6254 KiB  
Article
Two-Dimensional Latent Space Manifold of Brain Connectomes Across the Spectrum of Clinical Cognitive Decline
by Güneş Bayır, Demet Yüksel Dal, Emre Harı, Ulaş Ay, Hakan Gurvit, Alkan Kabakçıoğlu and Burak Acar
Bioengineering 2025, 12(8), 819; https://doi.org/10.3390/bioengineering12080819 - 29 Jul 2025
Viewed by 233
Abstract
Alzheimer’s Disease and Dementia (ADD) progresses along a continuum of cognitive decline, typically from Subjective Cognitive Impairment (SCI) to Mild Cognitive Impairment (MCI) and eventually to dementia. While many studies have focused on classifying these clinical stages, fewer have examined whether brain connectomes [...] Read more.
Alzheimer’s Disease and Dementia (ADD) progresses along a continuum of cognitive decline, typically from Subjective Cognitive Impairment (SCI) to Mild Cognitive Impairment (MCI) and eventually to dementia. While many studies have focused on classifying these clinical stages, fewer have examined whether brain connectomes encode this continuum in a low-dimensional, interpretable form. Motivated by the hypothesis that structural brain connectomes undergo complex yet compact changes across cognitive decline, we propose a Graph Neural Network (GNN)-based framework that embeds these connectomes into a two-dimensional manifold to capture the evolving patterns of structural connectivity associated with cognitive deterioration. Using attention-based graph aggregation and Principal Component Analysis (PCA), we find that MCI subjects consistently occupy an intermediate position between SCI and ADD, and that the observed transitions align with known clinical biomarkers of ADD pathology. This hypothesis-driven analysis is further supported by the model’s robust separation performance, with ROC-AUC scores of 0.93 for ADD vs. SCI and 0.81 for ADD vs. MCI. These findings offer an interpretable and neurologically grounded representation of dementia progression, emphasizing structural connectome alterations as potential markers of cognitive decline. Full article
(This article belongs to the Section Biosignal Processing)
Show Figures

Figure 1

12 pages, 211 KiB  
Article
Reading as Spiritual Experience: Theological, Affective, and Cognitive Approaches
by Dennis Kinlaw
Religions 2025, 16(8), 987; https://doi.org/10.3390/rel16080987 - 29 Jul 2025
Viewed by 227
Abstract
This article explores the often-overlooked question of how literary reading might give rise to experiences that readers themselves identify as spiritual. Framed by William James’s account of “mystical susceptibility” and recent psychological models of spirituality as altered states of consciousness involving shifts in [...] Read more.
This article explores the often-overlooked question of how literary reading might give rise to experiences that readers themselves identify as spiritual. Framed by William James’s account of “mystical susceptibility” and recent psychological models of spirituality as altered states of consciousness involving shifts in perception, affect, and cognition, the essay asks how engagement with narrative may occasion such states. Drawing from selected examples and critical traditions, it examines the conditions under which reading becomes spiritually resonant. Theologically, the piece considers the formation of attentiveness and imaginative receptivity in writers such as Teresa of Avila and Jessica Hooten Wilson. From affect theory, it engages Rita Felski’s language of enchantment; from cognitive studies, it draws on empirical approaches to literary studies and Tanya Luhrmann’s work on absorption and the cultivation of spiritual perception. By drawing attention to absorption as a psychological and aesthetic phenomenon, this article suggests a renewed interdisciplinary approach—one that connects empirical studies of attention and transformation with older theological and affective insights. In this way, literature may be examined not as a site of doctrinal meaning or subjective feeling alone, but as a form of engagement capable of opening readers to spiritual insight whose impact might be measured through qualitative means. Full article
(This article belongs to the Special Issue Imagining Ultimacy: Religious and Spiritual Experience in Literature)
Back to TopTop