Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = congenital tremor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2171 KiB  
Brief Report
Pulsatile Myofilament Activity in Myotrem Myopathy Associated with Myogenic Tremor
by Jennifer Megan Mariano, Laurin M. Hanft, Suhan Cho, Christopher W. Ward, Kerry S. McDonald and Aikaterini Kontrogianni-Konstantopoulos
Int. J. Mol. Sci. 2025, 26(11), 5252; https://doi.org/10.3390/ijms26115252 - 30 May 2025
Viewed by 498
Abstract
Myosin-binding protein C (MyBP-C) comprises a family of myofilament proteins that maintain sarcomeric structure and regulate actomyosin crossbridge cycling. Pathogenic variants in MYBPC1, the gene encoding the slow skeletal isoform (sMyBP-C), lead to a dominant congenital myopathy, termed Myotrem, characterized by muscle [...] Read more.
Myosin-binding protein C (MyBP-C) comprises a family of myofilament proteins that maintain sarcomeric structure and regulate actomyosin crossbridge cycling. Pathogenic variants in MYBPC1, the gene encoding the slow skeletal isoform (sMyBP-C), lead to a dominant congenital myopathy, termed Myotrem, characterized by muscle weakness, hypotonia, and a distinctive tremor of myogenic origin, in the absence of neuropathy. However, the molecular mechanism(s) of myogenic tremorgenesis is largely unknown. One potential mechanism is aberrant myofilament stretch activation, which is defined as a delayed increase in force after a rapid stretch. We utilized the Myotrem murine model harboring the pathogenic MYBPC1 E248K variant to test the hypothesis that stretch activation is augmented in permeabilized Myotrem E248K soleus fibers. We found that stretch activation was significantly increased in E248K soleus muscle fibers. Interestingly, once submaximally Ca2+ activated, a subpopulation of slow-twitch E248K fibers exhibited spontaneous pulsatile sarcomere oscillations. This pulsing behavior generated a sinusoidal waveform pattern in sarcomere length, which often persisted on a timescale of minutes. These results align with sMyBP-C as key regulator of the synchronous activation of myofilaments by dampening both spontaneous oscillatory activity and stretch-dependent activation. We propose that the presence of sMyBP-C-E248K disrupts this regulation, thereby driving pathogenic myogenic tremors. Full article
(This article belongs to the Special Issue Sarcomeric Proteins in Health and Disease: 3rd Edition)
Show Figures

Figure 1

15 pages, 1566 KiB  
Article
Isolation and Phylogenetic Analysis of Atypical Porcine Pestivirus Isolates Identified in Russian Swine Herds
by Afshona Anoyatbekova and Anton Yuzhakov
Viruses 2025, 17(1), 2; https://doi.org/10.3390/v17010002 - 24 Dec 2024
Cited by 1 | Viewed by 920
Abstract
Atypical porcine pestivirus (APPV) was first identified in 2015 in North America by high-throughput sequencing. APPV is associated with congenital tremor A-II and is widely distributed worldwide. In this study, a total of 2630 samples of domestic pigs obtained from 14 regions of [...] Read more.
Atypical porcine pestivirus (APPV) was first identified in 2015 in North America by high-throughput sequencing. APPV is associated with congenital tremor A-II and is widely distributed worldwide. In this study, a total of 2630 samples of domestic pigs obtained from 14 regions of Russia from 2020 to 2024 were screened for APPV presence by qRT-PCR. APPV was detected in 12 farms located in eight regions. The overall positive rate was 8.8%. It has been established that APPV has been circulating in Russian swine herds since at least 2020. The phylogenetic analysis demonstrated that the Russian isolates are variable and assigned into three clusters. The isolates from the Krasnoyarsk Krai, Belgorod, Tomsk, and Kursk regions and the Republic of Buryatia share a high nucleotide identity (94.3–98.8%) with the Hungarian strains, while the isolates from the Moscow and Pskov regions share a nucleotide identity (89.2–94.3%) with strains from the USA. The isolate from the Republic of Mordovia has a high nucleotide identity (97.1%) with the South Korean strain. In vitro studies of the Russian isolates revealed the replication of the Belgorod 151 strain in SPEV cells. Thus, this is the first large-scale study that confirms the circulation of APPV in swine herds in Russia and describes its isolation in cell culture. Full article
(This article belongs to the Special Issue Pestivirus 2024)
Show Figures

Figure 1

14 pages, 4172 KiB  
Article
Network of Interactions between the Mut Domains of the E2 Protein of Atypical Porcine Pestivirus and Host Proteins
by Yuai Yang, Guangfei Jiang, Weiqi He, Xin Tian, Huanli Zheng, Bin Xiang and Yongke Sun
Genes 2024, 15(8), 991; https://doi.org/10.3390/genes15080991 - 27 Jul 2024
Viewed by 1218
Abstract
Atypical porcine pestivirus (APPV) can cause congenital tremor type A-II in neonatal piglets, posing a significant threat to swine herd health globally. Our previous study demonstrated that the Mut domains, comprising 112 amino acids at the N-terminus, are the primary functional regions of [...] Read more.
Atypical porcine pestivirus (APPV) can cause congenital tremor type A-II in neonatal piglets, posing a significant threat to swine herd health globally. Our previous study demonstrated that the Mut domains, comprising 112 amino acids at the N-terminus, are the primary functional regions of the E2 protein of APPV. This study identified 14 host cellular proteins that exhibit potential interactions with the Mut domains of the E2 protein using yeast two-hybrid screening. Using bioinformatics analysis, we discovered that the Mut domains of the E2 protein might exert regulatory effects on apoptosis by modulating energy metabolism within the mitochondria. We also conducted co-immunoprecipitation, glutathione S-transferase pull-down, and immunofluorescence assays to confirm the interaction between the Mut domains of the E2 protein and cathepsin H and signal sequence receptor subunit 4 (SSR4). Ultimately, SSR4 enhanced APPV replication in vitro. In summary, our study successfully elucidated the interactions between the Mut domains of the E2 protein and host cell protein, predicted the potential pathways implicated in these interactions, and demonstrated SSR4 involvement in APPV infection. These significant findings contribute valuable knowledge toward a deeper understanding of APPV pathogenesis and the role of the Mut domains of the E2 protein in this intricate process. Full article
(This article belongs to the Special Issue Animal Viruses Molecular Biology)
Show Figures

Figure 1

14 pages, 4880 KiB  
Article
Isolation and Molecular Characterization of Atypical Porcine Pestivirus Emerging in China
by Hao Song, Xiaowei Gao, Yanhui Fu, Jing Li, Gaocheng Fan, Lina Shao, Jiaoer Zhang, Hua-Ji Qiu and Yuzi Luo
Viruses 2023, 15(11), 2149; https://doi.org/10.3390/v15112149 - 25 Oct 2023
Cited by 4 | Viewed by 2026
Abstract
Atypical porcine pestivirus (APPV) is a recently discovered and very divergent species of the genus Pestivirus within the family Flaviviridae, which causes congenital tremor (CT) in newborn piglets. In this study, an APPV epidemiological investigation was conducted by studying 975 swine samples [...] Read more.
Atypical porcine pestivirus (APPV) is a recently discovered and very divergent species of the genus Pestivirus within the family Flaviviridae, which causes congenital tremor (CT) in newborn piglets. In this study, an APPV epidemiological investigation was conducted by studying 975 swine samples (562 tissue and 413 serum samples) collected from different parts of China from 2017 to 2021. The results revealed that the overall positive rate of the APPV genome was 7.08% (69/975), among which 50.7% (35/69) of the samples tested positive for one or more other common swine viruses, especially porcine circovirus type 2 (PCV2) with a coinfection rate of 36.2% (25/69). Subsequently, a novel APPV strain, named China/HLJ491/2017, was isolated in porcine kidney (PK)-15 cells for the first time from a weaned piglet that was infected with both APPV and PCV2. The new APPV isolate was confirmed by RT-PCR, sequencing, immunofluorescence assay, and transmission electron microscopy. After clearing PCV2, a pure APPV strain was obtained and further stably propagated in PK-15 cells for more than 30 passages. Full genome sequencing and phylogenetic analysis showed that the China/HLJ491/2017 strain was classified as genotype 2, sharing 80.8 to 97.6% of its nucleotide identity with previously published APPV strains. In conclusion, this study enhanced our knowledge of this new pestivirus and the successful isolation of the APPV strain provides critical material for the investigation of the biological and pathogenic properties of this emerging virus, as well as the development of vaccines and diagnostic reagents. Full article
(This article belongs to the Special Issue Porcine Viruses 2023)
Show Figures

Figure 1

11 pages, 1491 KiB  
Article
Dynamics of Infection of Atypical Porcine Pestivirus in Commercial Pigs from Birth to Market: A Longitudinal Study
by Alexandra C. Buckley, Juan-Carlos Mora-Díaz, Ronaldo L. Magtoto, Amberly Van Hulzen, Franco Matias Ferreyra, Shollie M. Falkenberg, Luis G. Giménez-Lirola and Bailey L. Arruda
Viruses 2023, 15(8), 1767; https://doi.org/10.3390/v15081767 - 18 Aug 2023
Cited by 2 | Viewed by 2079
Abstract
Atypical porcine pestivirus (APPV) was found to be associated with pigs demonstrating congenital tremors (CT), and clinical signs in pigs have been reproduced after experimental challenge. Subsequently, APPV has been identified in both symptomatic and asymptomatic swine of all ages globally. The objective [...] Read more.
Atypical porcine pestivirus (APPV) was found to be associated with pigs demonstrating congenital tremors (CT), and clinical signs in pigs have been reproduced after experimental challenge. Subsequently, APPV has been identified in both symptomatic and asymptomatic swine of all ages globally. The objective of this research was to perform a longitudinal study following two cohorts of pigs, those born in litters with pigs exhibiting CT and those born in litters without CT, to analyze the virus and antibody dynamics of APPV infection in serum from birth to market. There was a wide range in the percentage of affected pigs (8–75%) within CT-positive litters. After co-mingling with CT-positive litters at weaning, pigs from CT-negative litters developed viremia that was cleared after approximately 2 months, with the majority seroconverting by the end of the study. In contrast, a greater percentage of pigs exhibiting CT remained PCR positive throughout the growing phase, with less than one-third of these animals seroconverting. APPV RNA was present in multiple tissues from pigs in both groups at the time of marketing. This study improved our understanding of the infection dynamics of APPV in swine and the impact that the immune status and timing of infection have on the persistence of APPV in serum and tissues. Full article
(This article belongs to the Special Issue Pestivirus 2024)
Show Figures

Figure 1

11 pages, 2778 KiB  
Article
Development of a Crystal Digital RT-PCR for the Detection of Atypical Porcine Pestivirus
by Huixin Liu, Kaichuang Shi, Shuping Feng, Yanwen Yin, Feng Long and Hongbin Si
Vet. Sci. 2023, 10(5), 330; https://doi.org/10.3390/vetsci10050330 - 4 May 2023
Cited by 1 | Viewed by 2264
Abstract
Atypical porcine pestivirus (APPV), a newly discovered virus, is associated with the type A-II congenital tremor (CT) in neonatal piglets. APPV distributes throughout the world and causes certain economic losses to the swine industry. The specific primers and probe were designed targeting the [...] Read more.
Atypical porcine pestivirus (APPV), a newly discovered virus, is associated with the type A-II congenital tremor (CT) in neonatal piglets. APPV distributes throughout the world and causes certain economic losses to the swine industry. The specific primers and probe were designed targeting the 5′ untranslated region (UTR) of APPV to amplify a 90 bp fragment, and the recombinant standard plasmid was constructed. After optimizing the concentrations of primers and probe, annealing temperature, and reaction cycles, a crystal digital RT-PCR (cdRT-PCR) and real-time quantitative RT-PCR (qRT-PCR) were successfully established. The results showed that the standard curves of the qRT-PCR and the cdRT-PCR had R2 values of 0.999 and 0.9998, respectively. Both methods could specifically detect APPV, and no amplification signal was obtained from other swine viruses. The limit of detection (LOD) of the cdRT-PCR was 0.1 copies/µL, and that of the qRT-PCR was 10 copies/µL. The intra-assay and inter-assay coefficients of variation of repeatability and reproducibility were less than 0.90% for the qRT-PCR and less than 5.27% for the cdRT-PCR. The 60 clinical tissue samples were analyzed using both methods, and the positivity rates of APPV were 23.33% by the qRT-PCR and 25% by the cdRT-PCR, with a coincidence rate of 98.33%. The results indicated that the cdRT-PCR and the qRT-PCR developed here are highly specific, sensitive methods for the rapid and accurate detection of APPV. Full article
(This article belongs to the Special Issue Prevention and Control of Swine Infectious Diseases)
Show Figures

Figure 1

12 pages, 2105 KiB  
Article
New Emergence of the Novel Pestivirus Linda Virus in a Pig Farm in Carinthia, Austria
by Alexandra Kiesler, Lukas Schwarz, Christiane Riedel, Sandra Högler, René Brunthaler, Katharina Dimmel, Angelika Auer, Marianne Zaruba, Marlene Mötz, Kerstin Seitz, Andrea Ladinig, Benjamin Lamp and Till Rümenapf
Viruses 2022, 14(2), 326; https://doi.org/10.3390/v14020326 - 5 Feb 2022
Cited by 4 | Viewed by 2894
Abstract
Linda virus (LindaV) was first identified in a pig farm in Styria, Austria in 2015 and associated with congenital tremor (CT) type A-II in newborn piglets. Since then, only one more LindaV affected farm was retrospectively discovered 10 km away from the initially [...] Read more.
Linda virus (LindaV) was first identified in a pig farm in Styria, Austria in 2015 and associated with congenital tremor (CT) type A-II in newborn piglets. Since then, only one more LindaV affected farm was retrospectively discovered 10 km away from the initially affected farm. Here, we report the recent outbreak of a novel LindaV strain in a farrow-to-finish farm in the federal state Carinthia, Austria. No connection between this farm and the previously affected farms could be discovered. The outbreak was characterized by severe CT cases in several litters and high preweaning mortality. A herd visit two months after the onset of clinical symptoms followed by a diagnostic workup revealed the presence of several viremic six-week-old nursery pigs. These animals shed large amounts of virus via feces and saliva, implying an important epidemiological role for within- and between-herd virus transmission. The novel LindaV strain was isolated and genetically characterized. The findings underline a low prevalence of LindaV in the Austrian pig population and highlight the threat when introduced into a pig herd. Furthermore, the results urge the need to better understand the routes of persistence and transmission of this enigmatic pestivirus in the pig population. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

14 pages, 3667 KiB  
Article
Fc-Mediated E2-Dimer Subunit Vaccines of Atypical Porcine Pestivirus Induce Efficient Humoral and Cellular Immune Responses in Piglets
by Xujiao Ren, Ping Qian, Shudan Liu, Huanchun Chen and Xiangmin Li
Viruses 2021, 13(12), 2443; https://doi.org/10.3390/v13122443 - 6 Dec 2021
Cited by 8 | Viewed by 2941
Abstract
Congenital tremor (CT) type A-II in piglets is caused by an emerging atypical porcine pestivirus (APPV), which is prevalent in swine herds and a serious threat to the pig production industry. This study aimed to construct APPV E2 subunit vaccines fused with Fc [...] Read more.
Congenital tremor (CT) type A-II in piglets is caused by an emerging atypical porcine pestivirus (APPV), which is prevalent in swine herds and a serious threat to the pig production industry. This study aimed to construct APPV E2 subunit vaccines fused with Fc fragments and evaluate their immunogenicity in piglets. Here, APPV E2Fc and E2ΔFc fusion proteins expressed in Drosophila Schneider 2 (S2) cells were demonstrated to form stable dimers in SDS-PAGE and western blotting assays. Functional analysis revealed that aE2Fc and aE2ΔFc fusion proteins could bind to FcγRI on antigen-presenting cells (APCs), with the affinity of aE2Fc to FcγRI being higher than that of aE2ΔFc. Moreover, subunit vaccines based on aE2, aE2Fc, and aE2ΔFc fusion proteins were prepared, and their immunogenicity was evaluated in piglets. The results showed that the Fc fusion proteins emulsified with the ISA 201VG adjuvant elicited stronger humoral and cellular immune responses than the IMS 1313VG adjuvant. These findings suggest that APPV E2 subunit vaccines fused with Fc fragments may be a promising vaccine candidate against APPV. Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
Show Figures

Figure 1

14 pages, 1740 KiB  
Review
Mechanisms of Ethanol-Induced Cerebellar Ataxia: Underpinnings of Neuronal Death in the Cerebellum
by Hiroshi Mitoma, Mario Manto and Aasef G. Shaikh
Int. J. Environ. Res. Public Health 2021, 18(16), 8678; https://doi.org/10.3390/ijerph18168678 - 18 Aug 2021
Cited by 37 | Viewed by 10225
Abstract
Ethanol consumption remains a major concern at a world scale in terms of transient or irreversible neurological consequences, with motor, cognitive, or social consequences. Cerebellum is particularly vulnerable to ethanol, both during development and at the adult stage. In adults, chronic alcoholism elicits, [...] Read more.
Ethanol consumption remains a major concern at a world scale in terms of transient or irreversible neurological consequences, with motor, cognitive, or social consequences. Cerebellum is particularly vulnerable to ethanol, both during development and at the adult stage. In adults, chronic alcoholism elicits, in particular, cerebellar vermis atrophy, the anterior lobe of the cerebellum being highly vulnerable. Alcohol-dependent patients develop gait ataxia and lower limb postural tremor. Prenatal exposure to ethanol causes fetal alcohol spectrum disorder (FASD), characterized by permanent congenital disabilities in both motor and cognitive domains, including deficits in general intelligence, attention, executive function, language, memory, visual perception, and communication/social skills. Children with FASD show volume deficits in the anterior lobules related to sensorimotor functions (Lobules I, II, IV, V, and VI), and lobules related to cognitive functions (Crus II and Lobule VIIB). Various mechanisms underlie ethanol-induced cell death, with oxidative stress and endoplasmic reticulum (ER) stress being the main pro-apoptotic mechanisms in alcohol abuse and FASD. Oxidative and ER stresses are induced by thiamine deficiency, especially in alcohol abuse, and are exacerbated by neuroinflammation, particularly in fetal ethanol exposure. Furthermore, exposure to ethanol during the prenatal period interferes with neurotransmission, neurotrophic factors and retinoic acid-mediated signaling, and reduces the number of microglia, which diminishes expected cerebellar development. We highlight the spectrum of cerebellar damage induced by ethanol, emphasizing physiological-based clinical profiles and biological mechanisms leading to cell death and disorganized development. Full article
(This article belongs to the Special Issue New Horizons in Cerebellar Research)
Show Figures

Figure 1

15 pages, 2163 KiB  
Article
Prevalence of Linda Virus Neutralizing Antibodies in the Austrian Pig Population
by Alexandra Kiesler, Jakob Plankensteiner, Lukas Schwarz, Christiane Riedel, Kerstin Seitz, Marlene Mötz, Andrea Ladinig, Benjamin Lamp and Till Rümenapf
Viruses 2021, 13(6), 1001; https://doi.org/10.3390/v13061001 - 27 May 2021
Cited by 9 | Viewed by 3273
Abstract
A novel pestivirus species, termed Lateral-shaking Inducing Neuro-Degenerative Agent virus (LindaV), was discovered in a piglet-producing farm in Austria in 2015 related to severe congenital tremor cases. Since the initial outbreak LindaV has not been found anywhere else. In this study, we determined [...] Read more.
A novel pestivirus species, termed Lateral-shaking Inducing Neuro-Degenerative Agent virus (LindaV), was discovered in a piglet-producing farm in Austria in 2015 related to severe congenital tremor cases. Since the initial outbreak LindaV has not been found anywhere else. In this study, we determined the seroprevalence of LindaV infections in the domestic pig population of Austria. A fluorophore labeled infectious cDNA clone of LindaV (mCherry-LindaV) was generated and used in serum virus neutralization (SVN) assays for the detection of LindaV specific neutralizing antibodies in porcine serum samples. In total, 637 sera from sows and gilts from five federal states of Austria, collected between the years 2015 and 2020, were analyzed. We identified a single serum showing a high neutralizing antibody titer, that originated from a farm (Farm S2) in the proximity of the initially affected farm. The analysis of 57 additional sera from Farm S2 revealed a wider spread of LindaV in this pig herd. Furthermore, a second LindaV strain originating from this farm could be isolated in cell culture and was further characterized at the genetic level. Possible transmission routes and virus reservoir hosts of this emerging porcine virus need to be addressed in future studies. Full article
(This article belongs to the Special Issue Advances in Pestivirus Research)
Show Figures

Figure 1

7 pages, 476 KiB  
Article
Detection of Atypical Porcine Pestivirus in Piglets from Danish Sow Herds
by Kasper Pedersen, Charlotte Sonne Kristensen, Bertel Strandbygaard, Anette Bøtner and Thomas Bruun Rasmussen
Viruses 2021, 13(5), 717; https://doi.org/10.3390/v13050717 - 21 Apr 2021
Cited by 12 | Viewed by 2727
Abstract
Atypical porcine pestivirus (APPV) was first discovered in North America in 2015 and was later shown to be associated with congenital tremor (CT) in piglets. CT is an occasional challenge in some Danish sow herds. Therefore, we initiated an observational case control study [...] Read more.
Atypical porcine pestivirus (APPV) was first discovered in North America in 2015 and was later shown to be associated with congenital tremor (CT) in piglets. CT is an occasional challenge in some Danish sow herds. Therefore, we initiated an observational case control study to clarify a possible relationship between CT and APPV in Danish pig production. Blood samples were collected from piglets affected by CT (n = 55) in ten different sow herds and from healthy piglets in five sow herds without a history of CT piglets (n = 25), as well as one sow herd with a sporadic occurrence of CT (n = 5). APPV was detected by RT-qPCR in all samples from piglets affected by CT and in three out of five samples from piglets in the herd with a sporadic occurrence of CT. In the herds without a history of CT, only one out of 25 piglets were positive for APPV. In addition, farmers or veterinarians in CT-affected herds were asked about their experience of the issue. CT is most often seen in gilt litters, and a substantial increase in pre-weaning mortality is only observed in severe cases. According to our investigations, APPV is a common finding in piglets suffering from CT in Denmark. Full article
(This article belongs to the Special Issue Advances in Pestivirus Research)
Show Figures

Figure 1

16 pages, 600 KiB  
Article
Atypical Porcine Pestivirus Circulation and Molecular Evolution within an Affected Swine Herd
by Alba Folgueiras-González, Robin van den Braak, Bartjan Simmelink, Martin Deijs, Lia van der Hoek and Ad de Groof
Viruses 2020, 12(10), 1080; https://doi.org/10.3390/v12101080 - 25 Sep 2020
Cited by 14 | Viewed by 3172
Abstract
Atypical porcine pestivirus (APPV) is a single-stranded RNA virus from the family Flaviviridae, which is linked to congenital tremor (CT) type A-II in newborn piglets. Here, we retrospectively investigated the molecular evolution of APPV on an affected herd between 2013 and 2019. Monitoring [...] Read more.
Atypical porcine pestivirus (APPV) is a single-stranded RNA virus from the family Flaviviridae, which is linked to congenital tremor (CT) type A-II in newborn piglets. Here, we retrospectively investigated the molecular evolution of APPV on an affected herd between 2013 and 2019. Monitoring was done at regular intervals, and the same genotype of APPV was found during the entire study period, suggesting no introductions from outside the farm. The nucleotide substitutions over time did not show substantial amino acid variation in the structural glycoproteins. Furthermore, the evolution of the virus showed mainly purifying selection, and no positive selection. The limited pressure on the virus to change at immune-dominant regions suggested that the immune pressure at the farm might be low. In conclusion, farms can have circulation of APPV for years, and massive testing and removal of infected animals are not sufficient to clear the virus from affected farms. Full article
(This article belongs to the Special Issue Bovine Viral Diarrhea Virus and Related Pestiviruses)
Show Figures

Figure 1

11 pages, 248 KiB  
Review
Pestivirus K (Atypical Porcine Pestivirus): Update on the Virus, Viral Infection, and the Association with Congenital Tremor in Newborn Piglets
by Alais M. Dall Agnol, Alice F. Alfieri and Amauri A. Alfieri
Viruses 2020, 12(8), 903; https://doi.org/10.3390/v12080903 - 18 Aug 2020
Cited by 16 | Viewed by 4115
Abstract
The atypical porcine pestivirus (APPV) belongs to the species Pestivirus K of the genus Pestivirus and the family Flaviviridae, and it has been associated with congenital tremor (CT) type A-II in newborn piglets. Although APPV was discovered in 2015, evidence shows that [...] Read more.
The atypical porcine pestivirus (APPV) belongs to the species Pestivirus K of the genus Pestivirus and the family Flaviviridae, and it has been associated with congenital tremor (CT) type A-II in newborn piglets. Although APPV was discovered in 2015, evidence shows that APPV has circulated in pig herds for many years, at least since 1986. Due to the frequently reported outbreaks of CT on different continents, the importance of this virus for global pig production is notable. Since 2015, several studies have been conducted to clarify the association between APPV and CT. However, some findings regarding APPV infection and the measures taken to control and prevent the spread of this virus need to be contextualized to understand the infection better. This review attempts to highlight advances in the understanding of APPV associated with type A-II CT, such as etiology, epidemiology, diagnosis, and control and prevention measures, and also describes the pathophysiology of the infection and its consequences for pig production. Further research still needs to be conducted to elucidate the host’s immune response to APPV infection, the control and prevention of this infection, and the possible development of vaccines. Full article
(This article belongs to the Special Issue Bovine Viral Diarrhea Virus and Related Pestiviruses)
10 pages, 3116 KiB  
Article
Prevalence and Genetic Diversity of Atypical Porcine Pestivirus (APPV) Detected in South Korean Wild Boars
by SeEun Choe, Gyu-Nam Park, Ra Mi Cha, Bang-Hun Hyun, Bong-Kyun Park and Dong-Jun An
Viruses 2020, 12(6), 680; https://doi.org/10.3390/v12060680 - 24 Jun 2020
Cited by 20 | Viewed by 3315
Abstract
Atypical porcine pestivirus (APPV), currently classified as pestivirus K, causes congenital tremor (CT) type A-II in piglets. Eighteen APPV strains were identified from 2297 South Korean wild boars captured in 2019. Phylogenetic analysis of the structural protein E2 and nonstructural proteins NS3 [...] Read more.
Atypical porcine pestivirus (APPV), currently classified as pestivirus K, causes congenital tremor (CT) type A-II in piglets. Eighteen APPV strains were identified from 2297 South Korean wild boars captured in 2019. Phylogenetic analysis of the structural protein E2 and nonstructural proteins NS3 and Npro classified the APPV viruses, including reference strains, into Clades I, II and III. Clade I was divided into four subclades; however, the strains belonging to the four subclades differed slightly, depending on the tree analysis, the NS3, E2, and Npro genes. The maximum-likelihood method was assigned to South Korean wild boar APPV strains to various subclades within the three trees: subclades I.1 and I.2 in the E2 tree, subclade I.1 in the Npro tree, and subclades I.1 and I.4 in the NS3 ML tree. In conclusion, APPV among South Korean wild boars belonging to Clade I may be circulating at a higher level than among the South Korean domestic pig populations. Full article
(This article belongs to the Special Issue Bovine Viral Diarrhea Virus and Related Pestiviruses)
Show Figures

Figure 1

8 pages, 779 KiB  
Article
Molecular Survey and Phylogenetic Analysis of Atypical Porcine Pestivirus (APPV) Identified in Swine and Wild Boar from Northern Italy
by Enrica Sozzi, Cristian Salogni, Davide Lelli, Ilaria Barbieri, Ana Moreno, Giovanni Loris Alborali and Antonio Lavazza
Viruses 2019, 11(12), 1142; https://doi.org/10.3390/v11121142 - 10 Dec 2019
Cited by 23 | Viewed by 3462
Abstract
Atypical porcine pestivirus (APPV) is a newly recognized member of the Flaviviridae family. This novel porcine pestivirus was first described in 2015 in the USA, where it has been associated with congenital tremor type A-II in new-born piglets. APPV is widely distributed in [...] Read more.
Atypical porcine pestivirus (APPV) is a newly recognized member of the Flaviviridae family. This novel porcine pestivirus was first described in 2015 in the USA, where it has been associated with congenital tremor type A-II in new-born piglets. APPV is widely distributed in domestic pigs in Europe and Asia. In this study, a virological survey was performed in Northern Italy to investigate the presence of APPV using molecular methods. Testing of 360 abortion samples from pig herds revealed two APPV strains from distinct provinces in the Lombardy region and testing of 430 wild boar blood samples revealed three strains, one from Lombardy and two from Emilia Romagna. The nucleotide sequencing of a fragment of the nonstructural protein 3-coding region revealed a high similarity to the previously detected European strains (Spanish, German, and Italian) of APPV. Full article
(This article belongs to the Special Issue Bovine Viral Diarrhea Virus and Related Pestiviruses)
Show Figures

Figure 1

Back to TopTop