Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (221)

Search Parameters:
Keywords = concrete surface treatment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3032 KiB  
Review
The Microstructure and Modification of the Interfacial Transition Zone in Lightweight Aggregate Concrete: A Review
by Jian Zhou, Yiding Dong, Tong Qiu, Jiaojiao Lv, Peng Guo and Xi Liu
Buildings 2025, 15(15), 2784; https://doi.org/10.3390/buildings15152784 - 6 Aug 2025
Abstract
The interfacial transition zone (ITZ) significantly influences the mechanical properties and durability of lightweight aggregate concrete (LWAC), yet existing research on the ITZ in LWAC remains fragmented due to varied characterization techniques, inconsistent definitions of ITZ thickness and porosity, and the absence of [...] Read more.
The interfacial transition zone (ITZ) significantly influences the mechanical properties and durability of lightweight aggregate concrete (LWAC), yet existing research on the ITZ in LWAC remains fragmented due to varied characterization techniques, inconsistent definitions of ITZ thickness and porosity, and the absence of standardized performance metrics. This review focuses primarily on structural LWAC produced with artificial and natural lightweight aggregates, with intended applications in high-performance civil engineering structures. This review systematically analyzes the microstructure, composition, and physical properties of the ITZ, including porosity, microhardness, and hydration product distribution. Quantitative data from recent studies are highlighted—for instance, incorporating 3% nano-silica increased ITZ bond strength by 134.12% at 3 days and 108.54% at 28 days, while using 10% metakaolin enhanced 28-day compressive strength by 24.6% and reduced chloride diffusion by 81.9%. The review categorizes current ITZ enhancement strategies such as mineral admixtures, nanomaterials, surface coatings, and aggregate pretreatment methods, evaluating their mechanisms, effectiveness, and limitations. By identifying key trends and research gaps—particularly the lack of predictive models and standardized characterization methods—this review aims to synthesize key findings and identify knowledge gaps to support future material design in LWAC. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

17 pages, 5565 KiB  
Article
Green Mild Acid Treatment of Recycled Concrete Aggregates: Concentration Thresholds for Mortar Removal While Avoiding Degradation of Original Limestone Aggregate and Concrete
by Shunquan Zhang and Yifan Zhang
Materials 2025, 18(15), 3673; https://doi.org/10.3390/ma18153673 - 5 Aug 2025
Viewed by 104
Abstract
While acetic acid has proven effective as a mild acidic treatment for removing adhered mortar from recycled concrete aggregate (RCA) surfaces, its potential for dissolving damage to the surface of the original natural coarse aggregate (NCA) within the RCA and its impact on [...] Read more.
While acetic acid has proven effective as a mild acidic treatment for removing adhered mortar from recycled concrete aggregate (RCA) surfaces, its potential for dissolving damage to the surface of the original natural coarse aggregate (NCA) within the RCA and its impact on the resultant concrete properties require careful consideration. This investigation systematically evaluates the effects of varying concentrations of dilute acetic acid solutions, commonly used in RCA treatment protocols, through a multi-methodological approach that includes comprehensive physical characterization, stylus and 3D optical profilometry, scanning electron microscopy (SEM), and nanoindentation analysis. The results show that even dilute acid solutions have an upper concentration limit, as excessive acid concentration, specifically 0.4 M, induces significant textural dislocations on NCA surfaces, creating millimeter-scale erosion pits that increase aggregate water absorption by 18.5%. These morphological changes significantly impair concrete workability and reduce compressive strength performance. Furthermore, microstructural analysis reveals a 45.24% expansion in interfacial transition zone (ITZ) thickness, accompanied by notable reductions in elastic modulus and microhardness characteristics. In practical RCA treatment applications, for RCA containing limestone-based NCA, it is recommended to use acetic acid concentrations between 0.1 and 0.3 M to avoid substantial physical and microstructural degradation of aggregates and concrete. Full article
Show Figures

Graphical abstract

31 pages, 1741 KiB  
Review
Recycled Concrete Aggregate in Asphalt Mixtures: A Review
by Juan Gabriel Bastidas-Martínez, Hugo Alexander Rondón-Quintana and Luis Ángel Moreno-Anselmi
Recycling 2025, 10(4), 155; https://doi.org/10.3390/recycling10040155 - 2 Aug 2025
Viewed by 111
Abstract
Effective management and handling of construction and demolition waste (CDW) can yield significant technical and environmental benefits for road pavement construction. This article aims to provide a comprehensive and up-to-date chronological review of studies on the mechanical performance of asphalt mixtures—primarily hot mix [...] Read more.
Effective management and handling of construction and demolition waste (CDW) can yield significant technical and environmental benefits for road pavement construction. This article aims to provide a comprehensive and up-to-date chronological review of studies on the mechanical performance of asphalt mixtures—primarily hot mix asphalt (HMA)—incorporating recycled concrete aggregate (RCA). Since the main limitation of RCA is the presence of residual adhered mortar, the review also includes studies that applied various surface treatments (mechanical, chemical, and thermal, among others) to enhance mixture performance. The article summarizes the experimental procedures used and highlights the key findings and conclusions of the reviewed research. Although the results are varied and sometimes contradictory—mainly due to the source variability and heterogeneity of RCA—the use of these materials is technically viable. Moreover, their application can provide environmental, social, and economic advantages, particularly in the construction of low-traffic roadways. Finally, the article identifies research gaps and offers recommendations for future researches. Full article
(This article belongs to the Special Issue Recycled Materials in Sustainable Pavement Innovation)
Show Figures

Figure 1

26 pages, 11239 KiB  
Review
Microbial Mineral Gel Network for Enhancing the Performance of Recycled Concrete: A Review
by Yuanxun Zheng, Liwei Wang, Hongyin Xu, Tianhang Zhang, Peng Zhang and Menglong Qi
Gels 2025, 11(8), 581; https://doi.org/10.3390/gels11080581 - 27 Jul 2025
Viewed by 235
Abstract
The dramatic increase in urban construction waste poses severe environmental challenges. Utilizing waste concrete to produce recycled aggregates (RA) for manufacturing recycled concrete (RC) represents an effective strategy for resource utilization. However, inherent defects in RA, such as high porosity, microcracks, and adherent [...] Read more.
The dramatic increase in urban construction waste poses severe environmental challenges. Utilizing waste concrete to produce recycled aggregates (RA) for manufacturing recycled concrete (RC) represents an effective strategy for resource utilization. However, inherent defects in RA, such as high porosity, microcracks, and adherent old mortar layers, lead to significant performance degradation of the resulting RC, limiting its widespread application. Traditional methods for enhancing RA often suffer from limitations, including high energy consumption, increased costs, or the introduction of new pollutants. MICP offers an innovative approach for enhancing RC performance. This technique employs the metabolic activity of specific microorganisms to induce the formation of a three-dimensionally interwoven calcium carbonate gel network within the pores and on the surface of RA. This gel network can improve the inherent defects of RA, thereby enhancing the performance of RC. Compared to conventional techniques, this approach demonstrates significant environmental benefits and enhances concrete compressive strength by 5–30%. Furthermore, embedding mineralizing microbial spores within the pores of RA enables the production of self-healing RC. This review systematically explores recent research advances in microbial mineral gel network for improving RC performance. It begins by delineating the fundamental mechanisms underlying microbial mineralization, detailing the key biochemical reactions driving the formation of calcium carbonate (CaCO3) gel, and introducing the common types of microorganisms involved. Subsequently, it critically discusses the key environmental factors influencing the effectiveness of MICP treatment on RA and strategies for their optimization. The analysis focuses on the enhancement of critical mechanical properties of RC achieved through MICP treatment, elucidating the underlying strengthening mechanisms at the microscale. Furthermore, the review synthesizes findings on the self-healing efficiency of MICP-based RC, including such metrics as crack width healing ratio, permeability recovery, and restoration of mechanical properties. Key factors influencing self-healing effectiveness are also discussed. Finally, building upon the current research landscape, the review provides perspectives on future research directions for advancing microbial mineralization gel techniques to enhance RC performance, offering a theoretical reference for translating this technology into practical engineering applications. Full article
(This article belongs to the Special Issue Novel Polymer Gels: Synthesis, Properties, and Applications)
Show Figures

Graphical abstract

10 pages, 220 KiB  
Article
Surface Application of Different Insecticides Against Two Coleopteran Pests of Stored Products
by Paraskevi Agrafioti, Marina Gourgouta, Dimitrios Kateris and Christos G. Athanassiou
Appl. Sci. 2025, 15(15), 8306; https://doi.org/10.3390/app15158306 - 25 Jul 2025
Viewed by 171
Abstract
The present study highlights the critical role of surface type, insect species, and exposure duration in determining the efficacy of surface-applied insecticides in stored-product pest management. Four insecticides were sprayed and evaluated on different surfaces (concrete, metallic, plastic, and ceramic) against two beetles: [...] Read more.
The present study highlights the critical role of surface type, insect species, and exposure duration in determining the efficacy of surface-applied insecticides in stored-product pest management. Four insecticides were sprayed and evaluated on different surfaces (concrete, metallic, plastic, and ceramic) against two beetles: the red flour beetle and the tobacco beetle. Alpha-cypermethrin and spinosad exhibited rapid and high efficacy, particularly on non-porous surfaces such as metal and ceramic, whereas pirimiphos-methyl was less effective initially and required extended exposure to achieve complete mortality, especially against Tribolium castaneum. In contrast, Lasioderma serricorne showed greater susceptibility across all insecticides and surfaces. Spinosad maintained high efficacy across all surface types, suggesting broader applicability under variable conditions. The reduced performance of insecticides on concrete surfaces underscores the influence of substrate porosity on insecticide bioavailability. Additionally, the observed delayed mortality effect in all treatments indicates that even brief exposure can result in lethal outcomes, emphasizing the long-term potential of these applications. These findings underscore the need for surface-specific application strategies and support the integration of surface treatments into comprehensive pest management programs. Further research is warranted under simulated field conditions to assess residual efficacy over time and in the presence of food, thereby enhancing the relevance of laboratory findings to real-world storage environments. Full article
(This article belongs to the Special Issue Advanced Computational Techniques for Plant Disease Detection)
20 pages, 8022 KiB  
Article
Corrosion Response of Steel to Penetration of Chlorides in DC-Treated Hardened Portland Cement Mortar
by Milan Kouřil, Jan Saksa, Vojtěch Hybášek, Ivona Sedlářová, Jiří Němeček, Martina Kohoutková and Jiří Němeček
Materials 2025, 18(14), 3365; https://doi.org/10.3390/ma18143365 - 17 Jul 2025
Viewed by 250
Abstract
Electrochemical treatment by means of direct current (DC) is usually used as a measure for steel rebar corrosion protection, e.g., cathodic protection (CP), electrochemical chloride extraction (ECE), and re-alkalization (RA). However, the passage of an electrical charge through the pore system of concrete [...] Read more.
Electrochemical treatment by means of direct current (DC) is usually used as a measure for steel rebar corrosion protection, e.g., cathodic protection (CP), electrochemical chloride extraction (ECE), and re-alkalization (RA). However, the passage of an electrical charge through the pore system of concrete or mortar, coupled with the migration of ions, concentration changes, and resulting phase changes, may alter its chloride penetration resistance and, subsequently, the time until rebar corrosion activation. Porosity changes in hardened Portland cement mortar were studied by means of mercury intrusion porosimetry (MIP) and electrochemical impedance spectroscopy (EIS), and alterations in the mortar surface phase composition were observed by means of X-ray diffraction (XRD). In order to innovatively investigate the impact of DC treatment on the properties of the mortar–electrolyte interface, the cathode-facing mortar surface and the anode-facing mortar surface were analyzed separately. The corrosion of steel coupons embedded in DC-treated hardened mortar was monitored by means of the free corrosion potential (Eoc) and polarization resistance (Rp). The results showed that the DC treatment affected the surface porosity of the hardened Portland cement mortar at the nanoscale. Up to two-thirds of the small pores (0.001–0.01 µm) were replaced by medium-sized pores (0.01–0.06 µm), which may be significant for chloride ingress. Although the porosity and phase composition alterations were confirmed using other techniques (EIS and XRD), corrosion tests revealed that they did not significantly affect the time until the corrosion activation of the steel coupons in the mortar. Full article
Show Figures

Figure 1

16 pages, 4224 KiB  
Article
Optimizing Museum Acoustics: How Absorption Magnitude and Surface Location of Finishing Materials Influence Acoustic Performance
by Milena Jonas Bem and Jonas Braasch
Acoustics 2025, 7(3), 43; https://doi.org/10.3390/acoustics7030043 - 11 Jul 2025
Viewed by 348
Abstract
The architecture of contemporary museums often emphasizes visual aesthetics, such as large volumes, open-plan layouts, and highly reflective finishes, resulting in acoustic challenges, such as excessive reverberation, poor speech intelligibility, elevated background noise, and reduced privacy. This study quantified the impact of surface—specific [...] Read more.
The architecture of contemporary museums often emphasizes visual aesthetics, such as large volumes, open-plan layouts, and highly reflective finishes, resulting in acoustic challenges, such as excessive reverberation, poor speech intelligibility, elevated background noise, and reduced privacy. This study quantified the impact of surface—specific absorption treatments on acoustic metrics across eight gallery spaces. Room impulse responses calibrated virtual models, which simulated nine absorption scenarios (low, medium, and high on ceilings, floors, and walls) and evaluated reverberation time (T20), speech transmission index (STI), clarity (C50), distraction distance (rD), Spatial Decay Rate of Speech (D2,S), and Speech Level at 4 m (Lp,A,S,4m). The results indicate that going from concrete to a wooden floor yields the most rapid T20 reductions (up to −1.75 s), ceiling treatments deliver the greatest STI and C50 gains (e.g., STI increases of +0.16), and high-absorption walls maximize privacy metrics (D2,S and Lp,A,S,4m). A linear regression model further predicted the STI from T20, total absorption (Sabins), and room volume, with an 84.9% conditional R2, enabling ±0.03 accuracy without specialized testing. These findings provide empirically derived, surface-specific “first-move” guidelines for architects and acousticians, underscoring the necessity of integrating acoustics early in museum design to balance auditory and visual objectives and enhance the visitor experience. Full article
Show Figures

Figure 1

22 pages, 16538 KiB  
Article
Experimental Study on Interface Bonding Performance of Frost-Damaged Concrete Reinforced with Yellow River Sedimentary Sand Engineered Cementitious Composites
by Binglin Tan, Ali Raza, Ge Zhang and Chengfang Yuan
Materials 2025, 18(14), 3278; https://doi.org/10.3390/ma18143278 - 11 Jul 2025
Viewed by 395
Abstract
Freeze–thaw damage is a critical durability challenge in cold climates that leads to surface spalling, cracking, and degradation of structural performance. In northern China, the severity of winter conditions further accelerates the degradation of concrete infrastructure. This study investigates the reinforcement of frost-damaged [...] Read more.
Freeze–thaw damage is a critical durability challenge in cold climates that leads to surface spalling, cracking, and degradation of structural performance. In northern China, the severity of winter conditions further accelerates the degradation of concrete infrastructure. This study investigates the reinforcement of frost-damaged concrete using engineered cementitious composites (ECC) prepared with Yellow River sedimentary sand (YRS), employed as a 100% mass replacement for quartz sand to promote sustainability. The interface bonding performance of ECC-C40 specimens was evaluated by testing the impact of various surface roughness treatments, freeze–thaw cycles, and interface agents. A multi-factor predictive formula for determining interface bonding strength was created, and the bonding mechanism and model were examined through microscopic analysis. The results show that ECC made with YRS significantly improved the interface bonding performance of ECC-C40 specimens. Specimens treated with a cement expansion slurry as the interface agent and those subjected to the splitting method for surface roughness achieves the optimal reinforced condition, exhibited a 27.57%, 35.17%, 43.57%, and 42.92% increase in bonding strength compared to untreated specimens under 0, 50, 100, and 150 cycles, respectively. Microscopic analysis revealed a denser interfacial microstructure. Without an interface agent, the bond interface followed a dual-layer, three-zone model; with the interface agent, a three-layer, three-zone model was observed. Full article
Show Figures

Graphical abstract

20 pages, 4718 KiB  
Article
Shear Performance of New-to-Old Concrete Under Different Interface Treatments
by Shoukun Shi, Da Wang, Zhiyun Li, Yan Jiang, Jinchao Yue and Yibin Huang
Coatings 2025, 15(7), 805; https://doi.org/10.3390/coatings15070805 - 9 Jul 2025
Viewed by 378
Abstract
In shield tunneling, ensuring bonding performance at new-to-old concrete interfaces between segments and linings is crucial for composite lining stability. While extensive research exists on the mechanical bonding behavior of such interfaces, comparative studies on two prevalent treatment methods—scabbling and grooving—remain limited. This [...] Read more.
In shield tunneling, ensuring bonding performance at new-to-old concrete interfaces between segments and linings is crucial for composite lining stability. While extensive research exists on the mechanical bonding behavior of such interfaces, comparative studies on two prevalent treatment methods—scabbling and grooving—remain limited. This study systematically evaluates these techniques’ effects on interfacial bonding via direct shear tests, benchmarking against smooth-interface specimens. Complementary cohesive zone modeling simulations further analyze stress distribution and damage evolution during shear failure. The results demonstrate that scabbled specimens exhibit 10.5%~18.2% higher shear strength than grooved counterparts under increasing normal stress, with both treatments significantly enhancing load–transfer synergy through mechanical interlocking. Furthermore, the energy-based bilinear cohesive model accurately predicts full-interface behavior, providing practical guidance for interface treatment selection in tunneling engineering. Full article
Show Figures

Figure 1

19 pages, 6021 KiB  
Article
Hyperspectral Signatures for Detecting the Concrete Hydration Process Using Neural Networks
by Shiming Li, Alfred Strauss, Damjan Grba, Maximilian Granzner, Benjamin Täubling-Fruleux and Thomas Zimmermann
Infrastructures 2025, 10(7), 172; https://doi.org/10.3390/infrastructures10070172 - 4 Jul 2025
Viewed by 300
Abstract
The curing process of a concrete sample has a significant influence on hydration and its strength. This means that inadequate curing conditions lead to a loss of concrete quality and negative consequences in structural engineering. In addition, different state-of-the-art (SOTA) curing surface treatments [...] Read more.
The curing process of a concrete sample has a significant influence on hydration and its strength. This means that inadequate curing conditions lead to a loss of concrete quality and negative consequences in structural engineering. In addition, different state-of-the-art (SOTA) curing surface treatments and hydration periods have a significant effect on durability. This paper introduces an innovative non-destructive method to detect the development of the hydration process under different treatment conditions. Hyperspectral imaging is a non-contact measurement technique that provides detailed information on hydration characteristics within an electromagnetic wavelength range. A comparative laboratory measurement was conducted on twelve concrete samples, subjected to three curing treatments and four curing surface treatments, over a hydration period from the 1st to the 56th day. Additionally, artificial neural networks and convolutional neural networks have achieved classification accuracies of 67.8% (hydration time), 83.3% (curing regime), and 87.6% (surface type), demonstrating the feasibility of using neural networks for hydration monitoring. In this study, the results revealed differences in near-infrared spectral signatures, representing the type of curing treatment, curing surface, and hydration time of the concrete. The dataset was classified and analyzed using neural networks. For each hydration treatment, three different models were developed to achieve better prediction performance for hyperspectral imaging analysis. This method demonstrated a high level of reliability in investigating curing surface treatments, curing treatments, and hydration time. A recommended method for using hyperspectral imaging to evaluate the cured quality of concrete will be developed in future research. Full article
(This article belongs to the Special Issue Advances in Structural Health Monitoring of the Built Environment)
Show Figures

Figure 1

20 pages, 251 KiB  
Article
Insecticidal and Residual Effects of Spinosad, Alpha-Cypermethrin, and Pirimiphos-Methyl on Surfaces Against Tribolium castaneum, Sitophilus granarius, and Lasioderma serricorne
by Paraskevi Agrafioti, Marina Gourgouta, Dimitrios Kateris and Christos G. Athanassiou
Agriculture 2025, 15(11), 1133; https://doi.org/10.3390/agriculture15111133 - 24 May 2025
Viewed by 508
Abstract
Contact insecticides are classified into two categories: as grain protectants, which are applied directly on grains, and as surface treatments, which are applied on cracks and crevices. The aim of this study was to evaluate the long-term residual efficacy of these insecticides across [...] Read more.
Contact insecticides are classified into two categories: as grain protectants, which are applied directly on grains, and as surface treatments, which are applied on cracks and crevices. The aim of this study was to evaluate the long-term residual efficacy of these insecticides across different surfaces and target species. Thus, we investigated the efficacy of three insecticidal formulations, spinosad, alpha-cypermethrin, and pirimiphos-methyl against stored product beetles on different surfaces (concrete, metallic, plastic, and ceramic). Adults of Tribolium castaneum, Sitophilus granarius, and Lasioderma serricorne were used in the experiments. Bioassays were carried out during a six-month period, with mortality measured after 3, 7, 14, and 21 days after exposure. Among the different insecticides tested, spinosad was the least effective against T. castaneum, especially on concrete, where mortality had decreased to zero by Month 2, whereas in most of the cases, close to 100% was recorded. Regarding S. granarius, pirimiphos-methyl and spinosad remained effective on ceramic and metallic surfaces for a six-month period, whereas alpha-cypermethrin had the lowest mortality rate. For L. serricorne, spinosad caused high mortality levels, whereas pirimiphos-methyl was the least effective after Month 4. Based on our finding, among the tested insecticides, spinosad had the long-term residual effect on stored product protection. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
16 pages, 3334 KiB  
Article
Burnt Building Material Carbonation Evaluation Using Primary Color Analysis
by Ali Alhakim, Shen-En Chen, Nicole L. Braxtan, Brett Tempest, Qiang Sun, Wala’a Almakhadmeh and Yuchun Zhang
CivilEng 2025, 6(2), 29; https://doi.org/10.3390/civileng6020029 - 23 May 2025
Viewed by 718
Abstract
When exposed to events such as fires or elevated temperatures, carbonation is an eventual outcome in cementitious building materials and can compromise the structural integrity of the material. Monitoring the pH levels in cement-based materials using color dyes, such as phenolphthalein, can offer [...] Read more.
When exposed to events such as fires or elevated temperatures, carbonation is an eventual outcome in cementitious building materials and can compromise the structural integrity of the material. Monitoring the pH levels in cement-based materials using color dyes, such as phenolphthalein, can offer insights into their chemical stability and the potential for early aging. These chemicals are traditionally used to detect carbonation depth in concrete, and recently, it has been suggested that they be applied to the concrete surface to determine the pH levels and the associated changes within these materials after heat treatment. This study utilizes image processing techniques to analyze the extent of fire damage by evaluating the primary color changes induced by phenolphthalein in cemented clay-based building materials. The primary color analysis can reduce the complexity in image processing, and while analyzing the color changes, it is found that the CMYK color model is superior to the RGB model for the cemented clay brick samples analyzed. The objective of this study is to develop rapid image processing techniques to automate the detection of carbonation in heat-treated cementitious materials. This study highlighted significant color transformations across different temperature exposures, providing valuable insights into the carbonation processes in burnt building materials. This study also identified the temperature range limitation (100 °C to 400 °C) of phenolphthalein indicators, which was not previously identified, and suggested the need for more robust carbonation indicators. Full article
(This article belongs to the Section Construction and Material Engineering)
Show Figures

Figure 1

26 pages, 2534 KiB  
Article
Study of Basalt Fibers and Graphene Enriched Polymers on Bond Behavior of FRP Bars in Concrete
by Guilherme M. Bueno and Eduardo Bittencourt
Appl. Sci. 2025, 15(11), 5838; https://doi.org/10.3390/app15115838 - 22 May 2025
Viewed by 386
Abstract
In this work is investigated the bond behavior of FRP bars considering basalt as a fiber and also cases where graphene is introduced as a polymer filler. Standard FRP bars where glass is used as fiber is tested under the same conditions in [...] Read more.
In this work is investigated the bond behavior of FRP bars considering basalt as a fiber and also cases where graphene is introduced as a polymer filler. Standard FRP bars where glass is used as fiber is tested under the same conditions in order to have a benchmark. Three different temperatures are considered in the tests, including room temperature and a temperature higher than the glass transition of the polymer. At room temperature the effect of concrete strength and the bar diameter on bond is also investigated. The study developed is experimental, through pull-out tests, as well as numerical, through simulations by the Finite Element method. Cases where basalt fibers are associated to helically-wounded surface treatment showed at least 41.7% superior bond behavior among all cases considered with this fiber at room temperature. Studies with graphene were exploratory and limited to only one percentage of addition. However, results suggest that the addition is able to improve behavior of the polyester resin of the matrix at room temperatures by 49% and at higher temperatures bond degradation was 44% smaller when compared with the literature. It was not observed a statistically significant influence of the concrete strength on bond. Diameter influence on bond was mostly linked to surface treatment. Full article
Show Figures

Figure 1

21 pages, 6988 KiB  
Article
Research on Anti-Slip and Wear Resistance of Concrete Pavement After Optimization of Stone-Planting Process
by Jianbo Yuan, Zezhong Feng and Pei Cui
Materials 2025, 18(10), 2210; https://doi.org/10.3390/ma18102210 - 10 May 2025
Viewed by 354
Abstract
This research was conducted to improve the slip and abrasion resistance of concrete pavements by introducing the stone-planting process into concrete pavements. The anti-slip and abrasion resistance of stone-planted concrete pavements was investigated by studying the type of stone, particle size, stone spreading [...] Read more.
This research was conducted to improve the slip and abrasion resistance of concrete pavements by introducing the stone-planting process into concrete pavements. The anti-slip and abrasion resistance of stone-planted concrete pavements was investigated by studying the type of stone, particle size, stone spreading rate, stone indentation depth, and concrete surface treatment process parameters in the stone-planting process. The slip resistance of stone-planted concrete pavements was investigated using a pendulum tribometer and hand laying sand test. The fort Kentucky fretting abrasion test was used to study the abrasion resistance of stone-planted concrete pavement. The resulting surface had the following characteristics: the stone material was dolerite, the stone granularity was 13.2 mm, the stone spreading rate was 40%, the indentation depth was 0.8, and the surface of the stone-planted concrete pavement had better anti-slip and abrasion resistance. Therefore, the stone-planting process can effectively improve the anti-slip and wear-resistant performance of concrete pavement, improve the service life of pavement, and provide a scientific basis for research into long-lasting surface pavement. Full article
Show Figures

Graphical abstract

22 pages, 63084 KiB  
Article
New Challenges in the Conservation of Fair-Faced Reinforced Concrete with Aesthetic Value: The Lessons from an Italian Brutalist Monument
by Linda Sermasi and Elisa Franzoni
Heritage 2025, 8(5), 152; https://doi.org/10.3390/heritage8050152 - 26 Apr 2025
Viewed by 498
Abstract
The conservation of experimental building materials that were introduced during the 20th-century currently represents one of the main challenges in building restoration. Fair-faced concrete is especially affected by durability problems and requires careful assessment to implement effective conservation methods, even more so when [...] Read more.
The conservation of experimental building materials that were introduced during the 20th-century currently represents one of the main challenges in building restoration. Fair-faced concrete is especially affected by durability problems and requires careful assessment to implement effective conservation methods, even more so when the building has artistic and expressive value. In addition, the literature in this field is still limited and case studies are very rare. In this paper, the Partisan Ossuary Monument, a brutalist monument at the Certosa of Bologna, was studied and analysed in order to find the most effective restoration techniques, especially for its concretes, which have a particularly expressive texture. The aim was to combine both the preservation of the aesthetics and functional quality of the building with the use of existing technologies in this field. Firstly, archive research was carried out to discover the original building techniques and the materials used. The literature on the Monument was studied to unveil the expressive role given to the concretes’ surface finishing. Then, after an on-site investigation, all the materials used in the Monument and the degradation processes were analysed and mapped out. Significant samples of the Monument were manually collected whilst limiting invasiveness. Then, diagnostic tests were carried out to identify the causes of degradation and to comprehend the nature of certain superficial finishes. Several techniques were used, i.e., X-ray diffraction, optical microscopy, and FT-IR spectrometry. Finally, guidelines were drafted for possible future restoration, merging all the results from the previous phases of this study with compliance with heritage structures’ restoration requirements. Many technologies commonly used for the repair of concrete structures could not be applied to this Monument due to its features. Hence, new solutions were studied and proposed. The results obtained may contribute to an increased awareness of the need to restore 20th-century heritage buildings in order to limit degradation and partial reconstruction. Many concrete heritage buildings of this period suffer from the same problems, and this paper could offer an important starting point for future research. Full article
Show Figures

Figure 1

Back to TopTop