Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = concentric double rings resonator

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 9081 KiB  
Article
Microstrip Patch Sensor for Characterizing Saline Solution Based on Complimentary Split-Ring Resonators (SC-SRRs)
by Hussein Jasim, Sadiq Ahmed, Iulia Andreea Mocanu and Amer Abbood Al-Behadili
Sensors 2025, 25(7), 2319; https://doi.org/10.3390/s25072319 - 5 Apr 2025
Viewed by 650
Abstract
This article presents a novel microstrip patch sensor featuring four rectangular rings represented by single complementary split-ring resonance (SC-SRR) to calculate the complex permittivity of saline solutions within the range of 0 ppt to 100 ppt. This sensor operates via the turbulence technique, [...] Read more.
This article presents a novel microstrip patch sensor featuring four rectangular rings represented by single complementary split-ring resonance (SC-SRR) to calculate the complex permittivity of saline solutions within the range of 0 ppt to 100 ppt. This sensor operates via the turbulence technique, utilizing its resonant properties as indicators to find the parameters of the liquid under test (LUT), which arise due to the variations in the salt concentration altering the complex permittivity. This alteration influences the resonant frequency (fr), reflection coefficient (S11), and quality factor (Q). The sensor was designed by using a high-frequency structure simulator (HFSS) and by using an FR-4 substrate and a Teflon box with a height of 1.4 mm and 13.7 mm, respectively. The values of S11 at resonance frequency were −34.48 dB, and 2.1328 GHz, respectively. A computer numerical control (CNC) machine was used to fabricate the sensor and Teflon box, and the Teflon box was situated above the four rings to create a strong interaction between the induced electric field and the LUT, thereby achieving high sensitivity in a non-contacting and non-destructive manner. The measurement and simulation results were consistent and aligned with those of Klien and Meissner (in comparison to the theoretical values derived from the single and double Debye models). We derived numerical equations for the conductivity (S/m), dielectric constant permittivity, and concentrations (ppt) using curve fitting origin software, and the results are in good agreement. Due to its performance, we expect that the proposed sensor could be used in agricultural applications to identify freshwater and in medical applications to detect the concentration of salt in saliva or blood and to identify diseases, in addition to many other applications involving mixed liquids. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

13 pages, 6163 KiB  
Article
Qualitative and Quantitative Detection of Typical Reproductive Hormones in Dairy Cows Based on Terahertz Spectroscopy and Metamaterial Technology
by Shuang Liang, Jingbo Zhao, Wenwen Zhao, Nan Jia, Zhiyong Zhang and Bin Li
Molecules 2024, 29(10), 2366; https://doi.org/10.3390/molecules29102366 - 17 May 2024
Cited by 1 | Viewed by 1994
Abstract
Progesterone (PROG) and estrone (E1) are typical reproductive hormones in dairy cows. Assessing the levels of these hormones in vivo can aid in estrus identification. In the present work, the feasibility of the qualitative and quantitative detection of PROG and E [...] Read more.
Progesterone (PROG) and estrone (E1) are typical reproductive hormones in dairy cows. Assessing the levels of these hormones in vivo can aid in estrus identification. In the present work, the feasibility of the qualitative and quantitative detection of PROG and E1 using terahertz time-domain spectroscopy (THz-TDS) and metamaterial technology was preliminarily investigated. First, the time domain spectra, frequency domain spectra, and absorption coefficients of PROG and E1 samples were collected and analyzed. A vibration analysis was conducted using density functional theory (DFT). Subsequently, a double-ring (DR) metamaterial structure was designed and simulated using the frequency domain solution algorithm in CST Studio Suite (CST) software. This aimed to ensure that the double resonance peaks of DR were similar to the absorption peaks of PROG and E1. Finally, the response of DR to different concentrations of PROG/E1 was analyzed and quantitatively modeled. The results show that a qualitative analysis can be conducted by comparing the corresponding DR resonance peak changes in PROG and E1 samples at various concentrations. The best R2 for the PROG quantitative model was 0.9872, while for E1, it was 0.9828. This indicates that terahertz spectral–metamaterial technology for the qualitative and quantitative detection of the typical reproductive hormones PROG and E1 in dairy cows is feasible and worthy of in-depth exploration. This study provides a reference for the identification of dairy cow estrus. Full article
Show Figures

Figure 1

13 pages, 9860 KiB  
Article
Nano Application of Oil Concentration Detection Using Double-Tooth Ring Plasma Sensing
by Lei Li, Shubin Yan, Yang Cui, Chuanhui Zhu, Taiquan Wu, Qizhi Zhang and Guowang Gao
Appl. Nano 2024, 5(1), 20-32; https://doi.org/10.3390/applnano5010003 - 23 Feb 2024
Viewed by 1791
Abstract
Based on the unique properties of optical Fano resonance and plasmonic-waveguide coupling systems, this paper explores a novel refractive index concentration sensor structure. The sensor structure is composed of a metal–insulator–metal (MIM) waveguide and two identically shaped and sized double-tooth ring couplers (DTR). [...] Read more.
Based on the unique properties of optical Fano resonance and plasmonic-waveguide coupling systems, this paper explores a novel refractive index concentration sensor structure. The sensor structure is composed of a metal–insulator–metal (MIM) waveguide and two identically shaped and sized double-tooth ring couplers (DTR). The performance structure of the nanoscale refractive index sensor with DTR cavity was comprehensively assessed using the finite element method (FEM). Due to the impact of various geometric parameters on the sensing characteristics, including the rotation angles, the widths between the double-tooth rings, and the gaps between the cavity and the waveguide, we identified an optimal novel refractive index sensor structure that boasts the best performance indices. Finally, the DTR cavity sensor achieved a sensitivity of 4137 nm/RIU and Figure of merit (FOM) of 59.1. Given the high complexity and sensitivity of the overall structure, this nanoscale refractive index sensor can be applied to the detection of oil concentration in industrial oil–water mixtures, yielding highly precise results. Full article
(This article belongs to the Collection Feature Papers for Applied Nano)
Show Figures

Figure 1

14 pages, 6986 KiB  
Article
Plasmonic Sensing and Switches Enriched by Tailorable Multiple Fano Resonances in Rotational Misalignment Metasurfaces
by Xiaofeng Xu, Xiao-Qing Luo, Qinke Liu, Yan Li, Weihua Zhu, Zhiyong Chen, Wuming Liu and Xin-Lin Wang
Nanomaterials 2022, 12(23), 4226; https://doi.org/10.3390/nano12234226 - 28 Nov 2022
Cited by 5 | Viewed by 2139
Abstract
Fano resonances that feature strong field enhancement in the narrowband range have motivated extensive studies of light–matter interactions in plasmonic nanomaterials. Optical metasurfaces that are subject to different mirror symmetries have been dedicated to achieving nanoscale light manipulation via plasmonic Fano resonances, thus [...] Read more.
Fano resonances that feature strong field enhancement in the narrowband range have motivated extensive studies of light–matter interactions in plasmonic nanomaterials. Optical metasurfaces that are subject to different mirror symmetries have been dedicated to achieving nanoscale light manipulation via plasmonic Fano resonances, thus enabling advantages for high-sensitivity optical sensing and optical switches. Here, we investigate the plasmonic sensing and switches enriched by tailorable multiple Fano resonances that undergo in-plane mirror symmetry or asymmetry in a hybrid rotational misalignment metasurface, which consists of periodic metallic arrays with concentric C-shaped- and circular-ring-aperture unit cells. We found that the plasmonic double Fano resonances can be realized by undergoing mirror symmetry along the X-axis. The plasmonic multiple Fano resonances can be tailored by adjusting the level of the mirror asymmetry along the Z-axis. Moreover, the Fano-resonance-based plasmonic sensing that suffer from mirror symmetry or asymmetry can be implemented by changing the related structural parameters of the unit cells. The passive dual-wavelength plasmonic switches of specific polarization can be achieved within mirror symmetry and asymmetry. These results could entail benefits for metasurface-based devices, which are also used in sensing, beam-splitter, and optical communication systems. Full article
(This article belongs to the Special Issue Nano-Photonics and Meta-Nanomaterials)
Show Figures

Figure 1

11 pages, 9214 KiB  
Article
A Nano Refractive Index Sensing Structure for Monitoring Hemoglobin Concentration in Human Body
by Guoquan Zhou, Shubin Yan, Lili Chen, Xiaoyu Zhang, Lifang Shen, Pengwei Liu, Yang Cui, Jilai Liu, Tingsong Li and Yifeng Ren
Nanomaterials 2022, 12(21), 3784; https://doi.org/10.3390/nano12213784 - 27 Oct 2022
Cited by 9 | Viewed by 2459
Abstract
This paper proposes a nanosensor structure consisting of a metal–insulator–metal (MIM) waveguide with a rectangular root and a double-ring (SRRDR) with a rectangular cavity. In this paper, the cause and internal mechanism of Fano resonance are investigated by the finite element method (FEM), [...] Read more.
This paper proposes a nanosensor structure consisting of a metal–insulator–metal (MIM) waveguide with a rectangular root and a double-ring (SRRDR) with a rectangular cavity. In this paper, the cause and internal mechanism of Fano resonance are investigated by the finite element method (FEM), and the transport characteristics are optimized by changing various parameters of the structure. The results show that the structure can achieve double Fano resonance. Due to the destructive disturbance between the wideband mode of the inverted rectangle on the bus waveguide and the narrowband mode of the SRRDR, the output spectrum of the system shows an obvious asymmetric Fano diagram, and the structural parameters of the sensor have a great influence on the Fano resonance. By changing the sensitive parameters, the optimal sensitivity of the refractive index nanosensor is 2280 nm/RIU, and the coefficient of excellence (FOM) is 76.7. In addition, the proposed high-sensitivity nanosensor will be used to detect hemoglobin concentration in blood, which has positive applications for biosensors and has great potential for future nanosensing and optical integration systems. Full article
(This article belongs to the Special Issue 2D Nanomaterials for Optoelectronic Devices)
Show Figures

Figure 1

9 pages, 3144 KiB  
Article
Triple-Mode Switchable Terahertz Metamaterial Absorber with Tunable Absorption Characteristics
by Ying Zhang, Tianli Dong, You Li and Xunjun He
Crystals 2022, 12(9), 1258; https://doi.org/10.3390/cryst12091258 - 5 Sep 2022
Cited by 5 | Viewed by 2354
Abstract
Dynamically tunable terahertz metamaterial absorbers integrating with active materials have been widely explored. However, there are still problems that need to be urgently solved, such as modulation depth deficiency, a lack of multiparameter-tunable characteristics, and so on. In this paper, a multiparameter-tunable terahertz [...] Read more.
Dynamically tunable terahertz metamaterial absorbers integrating with active materials have been widely explored. However, there are still problems that need to be urgently solved, such as modulation depth deficiency, a lack of multiparameter-tunable characteristics, and so on. In this paper, a multiparameter-tunable terahertz absorber composed of two concentric double-opening resonant rings is proposed. Semiconductor silicon and germanium are introduced to fill the openings, so that the absorber possesses three different absorption modes. Regulating semiconductor conductivities using different pump lasers allows dynamic switching among the three absorption modes to be realized. Adjusting the polarization angle of incident THz waves through device rotation facilitates easy and convenient modulation of the absorption amplitude. Calculation results show that the maximum modulation range for amplitude is 0 to 90.1%. Thus, due to the existence of two regulatory degrees of freedom, absorption mode switching and amplitude modulation are realized simultaneously. Most importantly, continuous modulation of the absorption amplitude is obtained at every resonant point in all three absorption modes without frequency drift. This scheme provides a new perspective for exploring future terahertz absorbers. Full article
Show Figures

Figure 1

12 pages, 2977 KiB  
Article
Miniaturized Sensors for Detection of Ethanol in Water Based on Electrical Impedance Spectroscopy and Resonant Perturbation Method—A Comparative Study
by Angelo Leo, Anna Grazia Monteduro, Silvia Rizzato, Angelo Milone and Giuseppe Maruccio
Sensors 2022, 22(7), 2742; https://doi.org/10.3390/s22072742 - 2 Apr 2022
Cited by 7 | Viewed by 3704
Abstract
The development of highly sensitive, portable and low-cost sensors for the evaluation of ethanol content in liquid is particularly important in several monitoring processes, from the food industry to the pharmaceutical industry. In this respect, we report the optimization of two sensing approaches [...] Read more.
The development of highly sensitive, portable and low-cost sensors for the evaluation of ethanol content in liquid is particularly important in several monitoring processes, from the food industry to the pharmaceutical industry. In this respect, we report the optimization of two sensing approaches based on electrical impedance spectroscopy (EIS) and complementary double split ring resonators (CDSRRs) for the detection of ethanol in water. Miniaturized EIS sensors were realized with interdigitated electrodes, and the ethanol sensing was carried out in liquid solutions without any functionalization of the electrodes. Impedance fitting analysis, with an equivalent circuit over a frequency range from 100 Hz to 1 MHz, was performed to estimate the electric parameters, which allowed us to evaluate the amount of ethanol in water solutions. On the other hand, complementary double split ring resonators (CDSRRs) were optimized by adjusting the device geometry to achieve higher quality factors while operating at a low fundamental frequency despite the small size (useful for compact electronic packaging). Both sensors were found to be efficient for the detection of low amounts of ethanol in water, even in the presence of salts. In particular, EIS sensors proved to be effective in performing a broadband evaluation of ethanol concentration and are convenient when low cost is the priority. On the other end, the employment of split ring resonators allowed us to achieve a very low limit of detection of 0.2 v/v%, and provides specific advantages in the case of known environments where they can enable fast real-time single-frequency measurements. Full article
(This article belongs to the Special Issue Intelligent Sensors for Industrial Process Monitoring)
Show Figures

Figure 1

12 pages, 4250 KiB  
Article
A MIM Waveguide Structure of a High-Performance Refractive Index and Temperature Sensor Based on Fano Resonance
by Pengwei Liu, Shubin Yan, Yifeng Ren, Xiaoyu Zhang, Tingsong Li, Xiushan Wu, Lifang Shen and Ertian Hua
Appl. Sci. 2021, 11(22), 10629; https://doi.org/10.3390/app112210629 - 11 Nov 2021
Cited by 21 | Viewed by 5183
Abstract
A plasmonic refractive index nanosensor structure consisting of a metal-insulator-metal (MIM) waveguide with two symmetrical rectangle baffles coupled with a connected-concentric-double rings resonator (CCDRR) is presented. In this study, its transmission characteristics were investigated using the finite element method (FEM). The consequences, studied [...] Read more.
A plasmonic refractive index nanosensor structure consisting of a metal-insulator-metal (MIM) waveguide with two symmetrical rectangle baffles coupled with a connected-concentric-double rings resonator (CCDRR) is presented. In this study, its transmission characteristics were investigated using the finite element method (FEM). The consequences, studied via simulation, revealed that the transmission spectrum of the system presents a sharp asymmetric Fano profile due to the destructive interference between the wide-band mode of two rectangle baffles on the bus waveguide and the narrow-band mode of the CCDRR. The effects of the geometric parameters of the structure on the transmission characteristics were investigated comprehensively. A sensitivity of 2260 nm/RIU and figure of merit (FOM) of 56.5 were the best levels of performance that the designed structure could achieve. In addition, the system could act as a sensor for use for temperature sensing, with a sensitivity that could reach 1.48 nm/°C. The designed structure advances with technology with new detection positions and has good application prospects in other high-sensitivity nanosensor fields, for example, acting as a biosensor to detect the hemoglobin level in the blood. Full article
Show Figures

Figure 1

15 pages, 4588 KiB  
Article
Compact Double Notch Coplanar and Microstrip Bandstop Filters Using Metamaterial—Inspired Open Ring Resonators
by Juan Hinojosa, Félix L. Martínez-Viviente and Alejandro Alvarez-Melcon
Electronics 2021, 10(3), 330; https://doi.org/10.3390/electronics10030330 - 1 Feb 2021
Cited by 6 | Viewed by 3155
Abstract
Compact double notch coplanar and microstrip bandstop filters are described. They are based on a version of the open interconnected split ring resonator (OISRR) integrated in microstrip or coplanar waveguides. The OISRR introduces an RLC resonator connected in parallel with the propagating microstrip [...] Read more.
Compact double notch coplanar and microstrip bandstop filters are described. They are based on a version of the open interconnected split ring resonator (OISRR) integrated in microstrip or coplanar waveguides. The OISRR introduces an RLC resonator connected in parallel with the propagating microstrip line. Therefore, this resonator can be modeled as a shunt circuit to ground, with the R, L and C elements connected in series. The consequence for the frequency response of the device is a notch band at the resonant frequency of the RLC shunt circuit. The number of notch bands can be controlled by adding more OISRRs, since each pair of rings can be modeled as a shunt circuit and therefore introduces an additional notch band. In this paper, we demonstrate that these additional rings can be introduced in a concentric way in the same cell, so the size of the device does not increase and a compact multi-notch bandstop response is achieved, with the same number of notch bands as pairs of concentric rings, plus an additional spurious band at a higher frequency. Full article
(This article belongs to the Special Issue RF, Microwave and Millimeter Wave Devices and Integrated Systems)
Show Figures

Figure 1

14 pages, 3650 KiB  
Article
Delocalization of the Unpaired Electron in the Quercetin Radical: Comparison of Experimental ESR Data with DFT Calculations
by Zhengwen Li, Mohamed Moalin, Ming Zhang, Lily Vervoort, Alex Mommers and Guido R.M.M. Haenen
Int. J. Mol. Sci. 2020, 21(6), 2033; https://doi.org/10.3390/ijms21062033 - 16 Mar 2020
Cited by 17 | Viewed by 4117
Abstract
In the antioxidant activity of quercetin (Q), stabilization of the energy in the quercetin radical (Q) by delocalization of the unpaired electron (UE) in Q is pivotal. The aim of this study is to further examine the delocalization of the [...] Read more.
In the antioxidant activity of quercetin (Q), stabilization of the energy in the quercetin radical (Q) by delocalization of the unpaired electron (UE) in Q is pivotal. The aim of this study is to further examine the delocalization of the UE in Q, and to elucidate the importance of the functional groups of Q for the stabilization of the UE by combining experimentally obtained spin resonance spectroscopy (ESR) measurements with theoretical density functional theory (DFT) calculations. The ESR spectrum and DFT calculation of Q and structurally related radicals both suggest that the UE of Q is mostly delocalized in the B ring and partly on the AC ring. The negatively charged oxygen groups in the B ring (3′ and 4′) of Q have an electron-donating effect that attract and stabilize the UE in the B ring. Radicals structurally related to Q indicate that the negatively charged oxygen at 4′ has more of an effect on concentrating the UE in ring B than the negatively charged oxygen at 3′. The DFT calculation showed that an OH group at the 3-position of the AC ring is essential for concentrating the radical on the C2–C3 double bond. All these effects help to explain how the high energy of the UE is captured and a stable Q is generated, which is pivotal in the antioxidant activity of Q. Full article
(This article belongs to the Special Issue Redox Modulation: Restoring Homeostasis with Antioxidants)
Show Figures

Graphical abstract

10 pages, 3506 KiB  
Article
Tunable Graphene-Based Plasmon-Induced Transparency Based on Edge Mode in the Mid-Infrared Region
by Heng Xu, Zhaojian Zhang, Shangwu Wang, Yun Liu, Jingjing Zhang, Dingbo Chen, Jianming Ouyang and Junbo Yang
Nanomaterials 2019, 9(3), 448; https://doi.org/10.3390/nano9030448 - 17 Mar 2019
Cited by 10 | Viewed by 3290
Abstract
A monolayer-graphene-based concentric-double-rings (CDR) structure is reported to achieve broadband plasmon-induced transparency (PIT) on the strength of edge mode in the mid-infrared regime. The theoretical analysis and simulation results reveal that the structure designed here has two plasmonic resonance peaks at 39.1 and [...] Read more.
A monolayer-graphene-based concentric-double-rings (CDR) structure is reported to achieve broadband plasmon-induced transparency (PIT) on the strength of edge mode in the mid-infrared regime. The theoretical analysis and simulation results reveal that the structure designed here has two plasmonic resonance peaks at 39.1 and 55.4 THz, and a transparency window with high transmission amplitude at the frequency of 44.1 THz. Based on the edge mode coupling between neighbor graphene ribbons, PIT phenomenon is produced through the interference between different (bright and dark) modes. The frequency and bandwidth of the transparency window and slow light time could be effectively adjusted and controlled via changing geometrical parameters of graphene or applying different gate voltages. Additionally, this structure is insensitive to the polarization and incident angle. This work has potential application on the optical switches and slow light modulators. Full article
(This article belongs to the Special Issue Graphene-Based Nanostructures and Optoelectronic Applications)
Show Figures

Figure 1

4 pages, 845 KiB  
Proceeding Paper
Loop Antenna Driven Double Microwave Resonator-Based Sensors Incorporating PDMS Microchannels on Glass Substrates
by Berk Camli, Emre Altinagac, Huseyin Kizil, Hamdi Torun, Gunhan Dundar and Arda D. Yalcinkaya
Proceedings 2018, 2(13), 1064; https://doi.org/10.3390/proceedings2131064 - 16 Nov 2018
Cited by 2 | Viewed by 1944
Abstract
Microwave resonator-based sensors offer low-cost, contactless, label-free sensing solutions in a variety of applications. Sensing is done by the observation of the shifts in resonant frequency of the sensor structure, which depends on resonator geometry, material and physical properties of the environment. It [...] Read more.
Microwave resonator-based sensors offer low-cost, contactless, label-free sensing solutions in a variety of applications. Sensing is done by the observation of the shifts in resonant frequency of the sensor structure, which depends on resonator geometry, material and physical properties of the environment. It is observed that the readings can be significantly affected by changes in secondary physical parameters or sample localization on resonator. A double microwave resonator sensing system incorporating microchannels on glass substrates are proposed to address these challenges. PDMS microchannels bonded on glass substrates are mounted on split ring resonators fabricated via low-cost processes. Experiments are performed with glucose solutions of 1.4 mg/mL–3.0 mg/mL concentration range. Results confirm that the use of double resonators increase rejection of background noise, whereas microchannel use increases measurement stability. Overall measurement sensitivity is shown to be 0.92 MHz/(mg/mL). Further improvements are aimed with the bonding of microchannels directly on resonators fabricated on glass substrates. Full article
(This article belongs to the Proceedings of EUROSENSORS 2018)
Show Figures

Figure 1

14 pages, 7333 KiB  
Article
Plasmonic Refractive Index Sensor with High Figure of Merit Based on Concentric-Rings Resonator
by Zhaojian Zhang, Junbo Yang, Xin He, Jingjing Zhang, Jie Huang, Dingbo Chen and Yunxin Han
Sensors 2018, 18(1), 116; https://doi.org/10.3390/s18010116 - 4 Jan 2018
Cited by 176 | Viewed by 8655
Abstract
A plasmonic refractive index (RI) sensor based on metal-insulator-metal (MIM) waveguide coupled with concentric double rings resonator (CDRR) is proposed and investigated numerically. Utilizing the novel supermodes of the CDRR, the FWHM of the resonant wavelength can be modulated, and a sensitivity of [...] Read more.
A plasmonic refractive index (RI) sensor based on metal-insulator-metal (MIM) waveguide coupled with concentric double rings resonator (CDRR) is proposed and investigated numerically. Utilizing the novel supermodes of the CDRR, the FWHM of the resonant wavelength can be modulated, and a sensitivity of 1060 nm/RIU with high figure of merit (FOM) 203.8 is realized in the near-infrared region. The unordinary modes, as well as the influence of structure parameters on the sensing performance, are also discussed. Such plasmonic sensor with simple framework and high optical resolution could be applied to on-chip sensing systems and integrated optical circuits. Besides, the special cases of bio-sensing and triple rings are also discussed. Full article
(This article belongs to the Special Issue Surface Plasmon Resonance Sensing)
Show Figures

Figure 1

15 pages, 968 KiB  
Article
Double-Slot Hybrid Plasmonic Ring Resonator Used for Optical Sensors and Modulators
by Xu Sun, Daoxin Dai, Lars Thylén and Lech Wosinski
Photonics 2015, 2(4), 1116-1130; https://doi.org/10.3390/photonics2041116 - 25 Nov 2015
Cited by 58 | Viewed by 10116
Abstract
An ultra-high sensitivity double-slot hybrid plasmonic (DSHP) ring resonator, used for optical sensors and modulators, is developed. Due to high index contrast, as well as plasmonic enhancement, a considerable part of the optical energy is concentrated in the narrow slots between Si and [...] Read more.
An ultra-high sensitivity double-slot hybrid plasmonic (DSHP) ring resonator, used for optical sensors and modulators, is developed. Due to high index contrast, as well as plasmonic enhancement, a considerable part of the optical energy is concentrated in the narrow slots between Si and plasmonic materials (silver is used in this paper), which leads to high sensitivity to the infiltrating materials. By partial opening of the outer plasmonic circular sheet of the DSHP ring, a conventional side-coupled silicon on insulator (SOI) bus waveguide can be used. Experimental results demonstrate ultra-high sensitivity (687.5 nm/RIU) of the developed DSHP ring resonator, which is about five-times higher than for the conventional Si ring with the same geometry. Further discussions show that a very low detection limit (5.37 × 10−6 RIU) can be achieved after loaded Q factor modifications. In addition, the plasmonic metal structures offer also the way to process optical and electronic signals along the same hybrid plasmonic circuits with small capacitance (~0.275 fF) and large electric field, which leads to possible applications in compact high-efficiency electro-optic modulators, where no extra electrodes for electronic signals are required. Full article
Show Figures

Graphical abstract

Back to TopTop