Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = concentrated solar recuperator

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1331 KiB  
Review
The Allam Cycle: A Review of Numerical Modeling Approaches
by Fabrizio Reale
Energies 2023, 16(22), 7678; https://doi.org/10.3390/en16227678 - 20 Nov 2023
Cited by 6 | Viewed by 4188
Abstract
In recent years supercritical CO2 power plants have seen a growing interest in a wide range of applications (e.g., nuclear, waste heat recovery, solar concentrating plants). The Allam Cycle, also known as the Allam-Fetvedt or NET Power cycle, seems to be one [...] Read more.
In recent years supercritical CO2 power plants have seen a growing interest in a wide range of applications (e.g., nuclear, waste heat recovery, solar concentrating plants). The Allam Cycle, also known as the Allam-Fetvedt or NET Power cycle, seems to be one of the most interesting direct-fired sCO2 cycles. It is a semi-closed loop, high-pressure, low-pressure ratio, recuperated, direct-fired with oxy-combustion, trans-critical Brayton cycle. Numerical simulations play a key role in the study of this novel cycle. For this reason, the aim of this review is to offer the reader a wide array of modeling solutions, emphasizing the ones most frequently employed and endeavoring to provide guidance on which choices seem to be deemed most appropriate. Furthermore, the review also focuses on the system’s performance and on the opportunities related to the integration of the Allam cycle with a series of processes, e.g., cold energy storage, LNG regasification, biomass or coal gasification, and ammonia production. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

26 pages, 1730 KiB  
Article
Exergy Analysis and Off-Design Modeling of a Solar-Driven Supercritical CO2 Recompression Brayton Cycle
by Felipe G. Battisti, Carlos F. Klein, Rodrigo A. Escobar and José M. Cardemil
Energies 2023, 16(12), 4755; https://doi.org/10.3390/en16124755 - 16 Jun 2023
Cited by 1 | Viewed by 1675
Abstract
The latest generation of concentrated solar power (CSP) systems uses supercritical carbon dioxide (s-CO2) as the working fluid in a high-performance recompression Brayton cycle (RcBC), whose off-design performance under different environmental conditions has yet to be fully explored. This study presents [...] Read more.
The latest generation of concentrated solar power (CSP) systems uses supercritical carbon dioxide (s-CO2) as the working fluid in a high-performance recompression Brayton cycle (RcBC), whose off-design performance under different environmental conditions has yet to be fully explored. This study presents a model developed using the Engineering Equation Solver (EES) and System Advisor Model (SAM) to evaluate the operation of two solar-driven s-CO2 RcBCs over a year, considering meteorological conditions in northern Chile. Under design conditions, the power plant outputs a net power of 25 MW with a first-law efficiency of 48.3%. An exergy analysis reveals that the high-temperature recuperator contributes the most to the exergy destruction under nominal conditions. However, the yearly simulation shows that the gas cooler’s exergy destruction increases at high ambient temperatures, as does the turbine’s during off-design operation. The proposed cycle widens the operational range, offering a higher flexibility and synergistic turndown strategy by throttling the mass flow. The proposed cycle’s seasonal first-law efficiency of 39% outweighs the literature cycle’s 29%. When coupled to a thermal energy storage system, the proposed cycle’s capacity factor could reach 93.45%, compared to the value 76.45% reported for the cycle configuration taken from the literature. Full article
(This article belongs to the Special Issue Hybrid Solar Photovoltaic/Thermal Systems)
Show Figures

Figure 1

15 pages, 11347 KiB  
Article
Binder Jet Additive Manufacturing Process and Material Characterization for High Temperature Heat Exchangers Used in Concentrated Solar Power Applications
by William D. Gerstler, Ananda Barua, Shenyan Huang, Daniel J. Erno, Yongxiang Wang, Siyeong Ju and Naveenan Thiagarajan
Metals 2023, 13(3), 617; https://doi.org/10.3390/met13030617 - 19 Mar 2023
Cited by 4 | Viewed by 3137
Abstract
The U.S. Department of Energy’s (DOE) Sunshot 2030 initiative has a goal of reducing the cost of concentrating solar power (CSP) to 5 cents per kWh for baseload power plants. One of the potential pathways to this goal includes a reduction in the [...] Read more.
The U.S. Department of Energy’s (DOE) Sunshot 2030 initiative has a goal of reducing the cost of concentrating solar power (CSP) to 5 cents per kWh for baseload power plants. One of the potential pathways to this goal includes a reduction in the cost of the supercritical CO2 (sCO2) power block to 0.9 cents per kWh. Recuperators—high and low temperatures, used in the sCO2 power cycle, contribute to >50% of the cost of the power cycle. This work studies the feasibility towards a ≥10% cost reduction for High Temperature Recuperators (HTR) used in the sCO2 power cycle. One way to address the cost reduction is by leveraging low-cost additive manufacturing, specifically, Binder Jet Additive Manufacturing (BJAM) to 3D print HTRs at scale. This study focuses on the development of a BJAM process towards 3D printing HTR cores using Stainless Steel alloy 316L (SS316L). To evaluate the suitability of the BJ process towards the HTR, high level specifications of the application are translated to materials capability requirements. Subsequently, at-temperature materials testing is conducted on as-printed and sintered additively manufactured coupons. Data from the coupons are compared against cast and wrought SS316L data obtained from the literature. Results show that the tensile properties from the BJ process compare well against cast properties. Furthermore, a baseline analysis of creep testing data is established for the BJ process, and insights are drawn from the results towards future improvements of the process. Full article
(This article belongs to the Section Additive Manufacturing)
Show Figures

Figure 1

20 pages, 5978 KiB  
Article
Effect of Actual Recuperators’ Effectiveness on the Attainable Efficiency of Supercritical CO2 Brayton Cycles for Solar Thermal Power Plants
by George Stamatellos and Tassos Stamatelos
Energies 2022, 15(20), 7773; https://doi.org/10.3390/en15207773 - 20 Oct 2022
Cited by 5 | Viewed by 1733
Abstract
One of the most promising concentrated solar power technologies is the central receiver tower power station with heliostat field, which has attracted renewed research interest in the current decade. The introduction of the sCO2 recompression Brayton cycles in the near future installations [...] Read more.
One of the most promising concentrated solar power technologies is the central receiver tower power station with heliostat field, which has attracted renewed research interest in the current decade. The introduction of the sCO2 recompression Brayton cycles in the near future installations instead of the Rankine cycle is very probable, due to the prospects of a significant efficiency improvement, process equipment size and capital cost reduction. In this study, energy and exergy analysis of a recompression Brayton cycle configuration for a central receiver power station are performed. Special emphasis is given to the computation of actual performance for the High-Temperature Recuperator and the Low-Temperature Recuperator. The results define realistic thermal and exergetic efficiency limits for the specific cycle configurations applied on a central receiver solar power plant with variable turbine entry temperature. Thermal efficiency, predicted with the improved accuracy of heat exchanger computations, does not exceed the 50% target. Overall, a realizable total power plant efficiency of 37% at 900 K turbine entry temperature is predicted, which is a significant improvement on the current state-of-the-art with steam Rankine cycles. Full article
(This article belongs to the Special Issue Modern Technologies for Renewable Energy Development and Utilization)
Show Figures

Figure 1

18 pages, 5024 KiB  
Article
Experimental Investigation of a Moving Packed-Bed Heat Exchanger Suitable for Concentrating Solar Power Applications
by Nader S. Saleh, Shaker Alaqel, Eldwin Djajadiwinata, Rageh S. Saeed, Zeyad Al-Suhaibani, Obida Zeitoun, Hany Al-Ansary, Abdulelah Alswaiyd, Abdelrahman El-Leathy, Syed Danish, Sheldon Jeter, Ashley Byman, Neville Jordison and David Moon
Appl. Sci. 2022, 12(8), 4055; https://doi.org/10.3390/app12084055 - 17 Apr 2022
Cited by 15 | Viewed by 3419
Abstract
This paper presents a thermal performance evaluation of a novel particle-to-air heat exchanger. The heat exchanger has a patented design with a shell-and-tube configuration. Solid particles move as a dense packed-bed inside the vertical tubes of the heat exchanger whereas air flows on [...] Read more.
This paper presents a thermal performance evaluation of a novel particle-to-air heat exchanger. The heat exchanger has a patented design with a shell-and-tube configuration. Solid particles move as a dense packed-bed inside the vertical tubes of the heat exchanger whereas air flows on the shell-side. This design avoids a number of limitations associated with the state-of-the-art heat exchangers in the same category, such as the stagnant/void zones and the prolonged residence time. The heat exchanger has a 50-kW thermal duty; it has been integrated into the particle-based concentrating solar power facility located at the campus of King Saud University in Riyadh, Saudi Arabia. The detailed description of the heat exchanger and the integration process is introduced. The recuperated air of the facility’s power cycle is used to heat the solid particles being circulated inside the facility. The solid particles used in this study are engineered particles called Carbobead CP with 0.3 mm mean diameter. The effect of particle flow rate on the thermal performance of the heat exchanger is investigated. The results show that as the particle flow rate increases, the overall heat transfer coefficient (U) increases; a maximum value was measured to be 150 W/m2-°C based on LMTD calculations. The measurement accuracy was verified by repeating several tests; a slight variation was observed in the measured U. The results also show that only a small air pressure drop (~5 kPa) was measured across the heat exchanger. Furthermore, it was found that a significant part of the heat exchange occurred at the bottom section of the heat exchanger. Full article
Show Figures

Figure 1

24 pages, 1333 KiB  
Article
Modeling of Combined Lead Fast Reactor and Concentrating Solar Power Supercritical Carbon Dioxide Cycles to Demonstrate Feasibility, Efficiency Gains, and Cost Reductions
by Brian T. White, Michael J. Wagner, Ty Neises, Cory Stansbury and Ben Lindley
Sustainability 2021, 13(22), 12428; https://doi.org/10.3390/su132212428 - 10 Nov 2021
Cited by 5 | Viewed by 2225
Abstract
Solar power has innate issues with weather, grid demand and time of day, which can be mitigated through use of thermal energy storage for concentrating solar power (CSP). Nuclear reactors, including lead-cooled fast reactors (LFRs), can adjust power output according to demand; but [...] Read more.
Solar power has innate issues with weather, grid demand and time of day, which can be mitigated through use of thermal energy storage for concentrating solar power (CSP). Nuclear reactors, including lead-cooled fast reactors (LFRs), can adjust power output according to demand; but with high fixed costs and low operating costs, there may not be sufficient economic incentive to make this worthwhile. We investigate potential synergies through coupling CSP and LFR together in a single supercritical CO2 Brayton cycle and/or using the same thermal energy storage. Combining these cycles allows for the LFR to thermally charge the salt storage in the CSP cycle during low-demand periods to be dispatched when grid demand increases. The LFR/CSP coupling into one cycle is modeled to find the preferred location of the LFR heat exchanger, CSP heat exchanger, sCO2-to-salt heat exchanger (C2S), turbines, and recuperators within the supercritical CO2 Brayton cycle. Three cycle configurations have been studied: two-cycle configuration, which uses CSP and LFR heat for dedicated turbocompressors, has the highest efficiencies but with less component synergies; a combined cycle with CSP and LFR heat sources in parallel is the simplest with the lowest efficiencies; and a combined cycle with separate high-temperature recuperators for both the CSP and LFR is a compromise between efficiency and component synergies. Additionally, four thermal energy storage charging techniques are studied: the turbine positioned before C2S, requiring a high LFR outlet temperature for viability; the turbine after the C2S, reducing turbine inlet temperature and therefore power; the turbine parallel to the C2S producing moderate efficiency; and a dedicated circulator loop. While all configurations have pros and cons, use of a single cycle offers component synergies with limited efficiency penalty. Using a turbine in parallel with the C2S heat exchanger is feasible but results in a low charging efficiency, while a dedicated circulator loop offers flexibility and near-perfect heat storage efficiency but increasing cost with additional cycle components. Full article
(This article belongs to the Special Issue Hybrid Energy System)
Show Figures

Figure 1

15 pages, 3159 KiB  
Article
Heat Transfer Effect on Micro Gas Turbine Performance for Solar Power Applications
by Mahmoud A. Khader, Mohsen Ghavami, Jafar Al-Zaili and Abdulnaser I. Sayma
Energies 2021, 14(20), 6745; https://doi.org/10.3390/en14206745 - 16 Oct 2021
Cited by 4 | Viewed by 3737
Abstract
This paper presents an experimentally validated computational study of heat transfer within a compact recuperated Brayton cycle microturbine. Compact microturbine designs are necessary for certain applications, such as solar dish concentrated power systems, to ensure a robust rotodynamic behaviour over the wide operating [...] Read more.
This paper presents an experimentally validated computational study of heat transfer within a compact recuperated Brayton cycle microturbine. Compact microturbine designs are necessary for certain applications, such as solar dish concentrated power systems, to ensure a robust rotodynamic behaviour over the wide operating envelope. This study aims at studying the heat transfer within a 6 kWe micro gas turbine to provide a better understanding of the effect of heat transfer on its components’ performance. This paper also investigates the effect of thermal losses on the gas turbine performance as a part of a solar dish micro gas turbine system and its implications on increasing the size and the cost of such system. Steady-state conjugate heat transfer analyses were performed at different speeds and expansion ratios to include a wide range of operating conditions. The analyses were extended to examine the effects of insulating the microturbine on its thermodynamic cycle efficiency and rated power output. The results show that insulating the microturbine reduces the thermal losses from the turbine side by approximately 11% without affecting the compressor’s performance. Nonetheless, the heat losses still impose a significant impact on the microturbine performance, where these losses lead to an efficiency drop of 7.1% and a net output power drop of 6.6% at the design point conditions. Full article
(This article belongs to the Collection Women in Thermal Management)
Show Figures

Figure 1

18 pages, 6590 KiB  
Article
Supercritical CO2 Mixtures for Advanced Brayton Power Cycles in Line-Focusing Solar Power Plants
by Robert Valencia-Chapi, Luis Coco-Enríquez and Javier Muñoz-Antón
Appl. Sci. 2020, 10(1), 55; https://doi.org/10.3390/app10010055 - 19 Dec 2019
Cited by 28 | Viewed by 3767
Abstract
This work quantifies the impact of using sCO2-mixtures (s-CO2/He, s-CO2/Kr, s-CO2/H2S, s-CO2/CH4, s-CO2/C2H6, s-CO2/C3H8, s-CO2/C [...] Read more.
This work quantifies the impact of using sCO2-mixtures (s-CO2/He, s-CO2/Kr, s-CO2/H2S, s-CO2/CH4, s-CO2/C2H6, s-CO2/C3H8, s-CO2/C4H8, s-CO2/C4H10, s-CO2/C5H10, s-CO2/C5H12 and s-CO2/C6H6) as the working fluid in the supercritical CO2 recompression Brayton cycle coupled with line-focusing solar power plants (with parabolic trough collectors (PTC) or linear Fresnel (LF)). Design parameters assessed are the solar plant performance at the design point, heat exchange dimensions, solar field aperture area, and cost variations in relation with admixtures mole fraction. The adopted methodology for the plant performance calculation is setting a constant heat recuperator total conductance (UAtotal). The main conclusion of this work is that the power cycle thermodynamic efficiency improves by about 3–4%, on a scale comparable to increasing the turbine inlet temperature when the cycle utilizes the mentioned sCO2-mixtures as the working fluid. On one hand, the substances He, Kr, CH4, and C2H6 reduce the critical temperature to approximately 273.15 K; in this scenario, the thermal efficiency is improved from 49% to 53% with pure s-CO2. This solution is very suitable for concentrated solar power plants coupled to s-CO2 Brayton power cycles (CSP-sCO2) with night sky cooling. On the other hand, when adopting an air-cooled heat exchanger (dry-cooling) as the ultimate heat sink, the critical temperatures studied at compressor inlet are from 318.15 K to 333.15 K, for this scenario other substances (C3H8, C4H8, C4H10, C5H10, C5H12 and C6H6) were analyzed. Thermodynamic results confirmed that the Brayton cycle efficiency also increased by about 3–4%. Since the ambient temperature variation plays an important role in solar power plants with dry-cooling systems, a CIT sensitivity analysis was also conducted, which constitutes the first approach to defining the optimum working fluid mixture for a given operating condition. Full article
(This article belongs to the Special Issue Engineering Thermodynamics)
Show Figures

Figure 1

Back to TopTop