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Abstract: One of the most promising concentrated solar power technologies is the central receiver
tower power station with heliostat field, which has attracted renewed research interest in the current
decade. The introduction of the sCO2 recompression Brayton cycles in the near future installations
instead of the Rankine cycle is very probable, due to the prospects of a significant efficiency improve-
ment, process equipment size and capital cost reduction. In this study, energy and exergy analysis
of a recompression Brayton cycle configuration for a central receiver power station are performed.
Special emphasis is given to the computation of actual performance for the High-Temperature Re-
cuperator and the Low-Temperature Recuperator. The results define realistic thermal and exergetic
efficiency limits for the specific cycle configurations applied on a central receiver solar power plant
with variable turbine entry temperature. Thermal efficiency, predicted with the improved accuracy of
heat exchanger computations, does not exceed the 50% target. Overall, a realizable total power plant
efficiency of 37% at 900 K turbine entry temperature is predicted, which is a significant improvement
on the current state-of-the-art with steam Rankine cycles.

Keywords: solar thermal; heliostat field; recompression Brayton cycle; supercritical carbon dioxide;
heat exchanger effectiveness; printed circuit heat exchangers

1. Introduction

Concentrated Solar Power (CSP) systems, based on a heliostat field and a high-
temperature central receiver, are capable of generating electricity at a very low cost per kWh,
particularly in places with high insolation and low cost of land use. The first large-scale
pilot project of this kind was Solar One in the Mojave Desert near Barstow, CA, USA in
1981. The project operated from 1982 to 1986, producing a maximum of 7 MWe, with a
total number of 1818 heliostats (72,650 m2 area). In 1995 it was redesigned and converted
to Solar Two (10 MWe, storage technology based on molten salts, heated to 565 ◦C at the
solar receiver) and remained operational until 1999 [1]. Currently, SolarPaces, an interna-
tional program of the International Energy Agency (IEA) that supports the collaborative
development, testing, and marketing of concentrating solar power plants, lists 31 projects
in the Power Tower category [2]. The power plants vary in size between 1–133 MW and
the prevailing cycle is the steam Rankine cycle, which limits the cycle’s efficiency to about
40% (the plant’s efficiency is significantly lower, mainly due to the losses associated with
the central receiver). The thermal storage, necessary to stabilize the cycle from the vari-
ability of solar irradiance, is of the order of 12 h, usually based on molten salt technology.
Levelized Cost of Electricity (LCOE) values as low as USD 0.08/kWh were projected for
recent projects of this type under construction, although actual LCOE for the major ex-
isting Crescent Dunes CSP project (Rankine cycle, superheated steam entering turbine at
540 ◦C@115 bar) [3]) is reported to be USD 0.18/kWh [2]. For comparison, LCOE values
of USD 0.048/kWh were reported for photovoltaic installations in 2021 [4]. In order to
be competitive with other renewable power plant technologies, further development is
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continuously carried out, including the application of highly efficient power cycles, further
performance optimization of solar components, increasing deployment and reducing size
and manufacturing costs, based on modular technology. Moreover, significant effort is
necessary to design and implement solar receivers able to perform at high temperatures (up
to 700 ◦C instead of about 550 ◦C in the current configurations) and allow the integration
of thermal energy storage to these temperature levels. Due to the above reasons, power
tower systems are expected to receive increased attention with respect to the attainable
high temperatures [5]. In this context, the supercritical carbon dioxide (sCO2) Brayton
cycle is a promising candidate cycle for a central solar receiver system due to the following
advantages [6]:

• Lower capital cost, owing to the small size of the compressors, turbines and heat
exchangers;

• High-efficiency levels are attainable at high turbine entry temperatures;
• CO2 can be directly heated in the solar tower receiver;
• CO2 remains in the supercritical gaseous phase during the whole cycle;
• CO2 is non-toxic and non-flammable [7].

The supercritical CO2 power cycle was first proposed by Feher [8] with over 55%
thermal efficiency under ideal conditions, proposed to support a compact electric power
generation system installed on a trailer. In 2004, Dostál [9] intensively investigated the sCO2
Brayton cycle as a candidate for application in nuclear power plants of the next generation.
Kulhánek and Dostál [10] and Moisseytsev et al. [11] presented studies of alternative sCO2
Brayton cycle configurations. They found the cycle with partial cooling and recompression
to attain the highest efficiency. Sarkar [12] carried out energy and exergy analysis of sCO2
recompression Brayton cycles in a nuclear reactor. He investigated the effect of various
cycle parameters on exergy efficiency and pointed to the high irreversibilities of the heat
exchangers compared to those of the compressor and the turbine. Du et al. [13] studied
an isothermal compressor model to further reduce compression work. In another work,
Du et al. [14] studied the design and off-design control strategies of the supercritical CO2
recompression cycle for a small-scale lead-cooled fast nuclear reactor. Garg et al. [15]
comparatively studied simple supercritical, transcritical and subcritical carbon dioxide
Brayton cycles for CSP applications. Thermal efficiency, specific work and exergy destruc-
tion were employed as performance indicators. The thermal efficiency increased linearly
with low side pressure in the sub- and trans-critical cycles. It reached a maximum 85 bar
(supercritical cycle). This cycle was shown to be capable of producing power with a thermal
efficiency exceeding 30%, even at lower source temperatures (820 K) with higher turbine
inlet pressures (~300 bar). The reasons for efficiency reduction compared to the ideal cycle
were demonstrated in an irreversibility analysis of the compressor, regenerator, turbine and
gas cooler. Sarkar and Bhattacharyya [16] optimized the thermal performance of a sCO2
recompression Brayton cycle with reheat for operating and design conditions pertaining to
nuclear power plants.

CO2 was also proposed as a working fluid for trans-critical cycles integrated with
solar systems [17]. Additionally, it was combined with Organic Rankine Cycle (ORC) in
waste heat exploitation [18]. Turchi et al. [19] performed simulations of the sCO2 Brayton
cycle for solar central receiver applications with a dry cooling condenser. They showed
that the sCO2 Brayton cycle is superior to the conventional steam Rankine cycle on thermal
efficiency grounds. Recompression, partial cooling and main compression intercooling
variants exceeded 50% efficiency above 650 ◦C turbine entry conditions. Singh et al. [20]
studied a sCO2 Brayton cycle combined with a parabolic trough CSP system. An active
control system was necessary to maintain supercritical conditions. Iverson et al. [21]
presented the sCO2 Brayton cycle test facility at Sandia National Laboratory. The pilot
plant produced 250 kWe and has proven to be able to operate in the transient conditions
met with a CSP plant.

Besarati and Goswami [22] proposed a cycle improvement by adding a bottoming
Organic Rankine Cycle. They predicted a 3–7% efficiency increase. The best thermal
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performance was obtained with the recompression cycle. Chacartegui et al. [23] compared
the simple and recompression sCO2 Brayton cycles and combined them with a bottoming
cycle. They found that the standalone recompression cycle and the simple Brayton with a
bottoming cycle achieved the highest thermal efficiency of 42–43% at 1000 K turbine entry
temperature. These values refer to the heat supplied to the main and auxiliary heaters.
The total efficiency, referring to the solar energy entering the solar receiver’s cavity, is
significantly lower due to the receiver’s losses. More generally, the exergetic efficiency
referring to the sun’s thermal radiation does not increase monotonically as the receivers’
temperature increases to high levels in order to gain more exergy. Dating back to 1981,
Bejan et al. [24] theoretically studied the amount of exergy delivered by solar collector
systems. The heat transfer irreversibilities occurring between the sun and the collector,
the collector and the ambient air, and inside the collector, were separately addressed in
this analysis. Only 25% of the exergy input was found to be eventually delivered to the
power cycle.

Padilla et al. [25] presented energy and exergy analysis of four sCO2 Brayton cycle
configurations: simple cycle, recompression cycle, partial cooling with recompression
and recompression with main compression intercooling. Dry cooling was used for the
supercritical Brayton cycles and a solar receiver, replacing the heater and reheater for
conventional Brayton cycles, was used to provide heat input to the cycles. The exergetic
performance was evaluated for Alice Springs, AU. High heat exchanger effectiveness
values of 0.95 were assumed for the recuperators, main heater, reheater and precooler.
Optimum thermodynamic operating conditions were evaluated at the design point. Exergy
analysis is essential in spotting the main system’s irreversibilities and optimizing operating
conditions to reduce energy and environmental impacts of the energy systems [26,27].
Design improvements in the recuperators receive significant research attention, due to
their effects on cycle efficiency [28]. Jin et al. [29] applied multi-objective genetic algorithm
optimization on the zig-zag channel parameters in printed circuit heat exchangers for
sCO2 cycle applications. Wang et al. [30] presented a theoretical and numerical analysis
of conjugate heat transfer in a printed circuit heat exchanger for sCO2 applications. Liu
et al. [31] performed experiments on the convection heat transfer and pressure drop of sCO2
in a mini vertical upward flow tube. Ji et al. [32] designed and manufactured a trapezoidal
PCHE prototype and experimentally assessed its thermal–hydraulic performance as a
regenerator in an sCO2 test loop. The overall heat transfer coefficient reached a maximum
of 2.53 kW/(m2·K). Bai et al. [33] performed a thermodynamic analysis of a Brayton cycle
for a CSP system with a mixture of CO2–SF6 as the working fluid to improve performance
at high heat rejection temperatures with dry cooling. The above presentation points to
the fact that the solar central tower power plants will continue to be improved and new
installations will be constructed, aiming at further reduction of capital costs towards further
reduction of LCOE at levels not achievable by photovoltaics. The introduction of the sCO2
recompression Brayton cycles in these new installations, instead of the Rankine cycle, is very
probable due to the prospects of a significant efficiency improvement, process equipment
size and capital cost reduction. Recompression cycle versions, together with reheat, appear
able to reach the SunShot target of 50% cycle efficiency, even with dry cooling. For these
reasons, DOE has selected this cycle as the leading candidate for achieving the overall
SunShot target [3].

In this context, it is necessary to study the feasible cycle efficiency levels based on the
actually attainable effectiveness of the high- and low-temperature recuperators, which carry
out significant heat exchange duties that are not only comparable with the main heater
but—in the case of the high-temperature recuperator—almost twice the main heater’s duty.
This is the purpose of the current study, which attempts to define the actually attainable
limits in cycle thermal and exergetic efficiency, along with power plant efficiency. As re-
vealed by the energy and exergy analysis of a realizable version of a recompression Brayton
cycle with sCO2 in the current work, the exergy loss associated with the recuperators
practically sets the limits of the attainable efficiency of the cycle and the power plant. The
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recompression version of the cycle is selected in terms of the high efficiency and simple,
lower capital cost layout with a single turbine.

2. Materials and Methods

Due to the abrupt variation of the properties of CO2 near the critical point [7], the
simple sCO2 Brayton cycle is limited by temperature pinch-point problems in the HTR
due to the difference in the heat capacity rate between the hot and cold side [16]. Previous
studies indicated that high-efficiency levels are attainable with the recompression Brayton
cycle, which will be examined in the present study, with the solar receiver providing heat
input. The basic layout diagram of the cycle examined is presented in Figure 1. CO2
at temperatures ranging from 500 to 800 ◦C and high pressure (of the order of 20 MPa,
state 5) is expanded through the turbine (T). The exit stream of the turbine (state 6) enters
first the High-Temperature Recuperator (HTR), which recovers energy to preheat the
stream entering the solar receiver (state 4). Next, the exit stream passes through the Low-
Temperature Recuperator (LTR). In this way, energy is further recovered to preheat the
stream exiting the main compressor (state 2). The stream leaving the LTR (state 8) is split
into two streams (split ratio 0.6); the first stream (60% of the total mass flowrate) enters
the main compressor (MC) and the second stream (40%) enters the recompressor (RC),
which is a secondary compressor operating at the exit conditions of the low-temperature
recuperator [16]. The induced split flow reduces the total cold fluid’s capacitance to avoid
pinch-point problems in the LTR.
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Figure 1. Layout of an sCO2 recompression Brayton cycle with partial cooling combined with a solar
central receiver CSP power plant.

The stream leaving the main compressor (state 2) is preheated in the LTR as explained
above and then mixed with the stream leaving the recompressor. The mixed stream (state
3) recovers energy through the HTR and enters the solar receiver. The HTR’s duty is about
twice the main heater’s duty. Part of the work produced by the turbines is to drive the two
compressors. In order to decrease the main compressor’s work, the part of the fluid stream
leaving the LTR (state 8) must be pre-cooled to a temperature very close to the critical point
of CO2 (state 1) before entering the compressor. The above processes and the magnitude
of the respective heat and power quantities and irreversibilities are better understood in
the typical temperature–entropy diagram of Figure 2, which is calculated for the case with
873 K turbine entry temperature.
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In the framework of the energy analysis and performance optimization, mass and
energy balances are carried out in the four heat exchangers, the two compressors and the
turbine. Due to the rapid property variation of CO2 near critical conditions, it is necessary
to study in detail the recuperators’ performance [34]. The HTR and the LTR are Printed
Circuit Heat Exchangers (PCHE). They are modeled by means of a segmental computation
methodology presented in [35], which employs a 3D conjugate heat transfer computation
of the performance of a small two-channel module of the PCHE type. Thus, the heat
exchanger effectiveness is computed for a given design of the channels’ geometry and
overall heat exchanger’s configuration. That is, the heat exchanger’s effectiveness is not
based on an assumption, as is the usual practice [22].

εHTR =
h4 − h3

h6 − h3
(1)

The enthalpy at state 8 is based on the minimum reachable temperature of the hot
stream leaving the LTR (state 2) [36]. Another important parameter used to model sCO2
cycles associated with the LTR’s operation is the above-mentioned split ratio (SR), which is
determined by an energy balance on the LTR and found very close to 0.6 for typical sCO2
recompression cycle configurations:

SR =
h3 − h2

h7 − h8
(2)

The thermal efficiency of the cycle is calculated as:

ηth =

.
Wnet,T −

.
Wnet, MC −

.
Wnet, RC

.
Qheater

(3)

The energy, mass and exergy balance equations along with the segmental computation
method for the recuperators are written in Python 3.10 [37]. The properties database REF-
PROP 9.1 [38] is employed for the thermodynamic properties of carbon dioxide (CO2) under
supercritical conditions based on the model developed by Span and Wagner [39]. Out of the
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usually adopted assumptions in the cycle computation [19,22], only the following—very
reasonable ones—are kept in the current study:

• All components of the cycle are assumed adiabatic;
• The cycle operates under steady-state conditions.

The cycle computation is performed by means of an iterative procedure, summarized
in the flowchart of Figure 3 and further explained in the Appendix A.
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The energy model produces similar results to those of Dostál [9] and Turchi et al. [19]
whenever uniform heat exchanger effectiveness values of 0.95, turbine efficiency 0.93,
compressors’ efficiency 0.89, turbine inlet temperature 800 ◦C and minimum pinch-point
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temperature of 5 ◦C are adopted. However, uniform heat exchanger effectiveness at such
high levels is an oversimplification, especially for the HTR and LTR, as will be discussed in
the next section.

3. Recuperators’ Performance Computations

The energy model of the solar tower CSP system with sCO2 recompression Brayton
cycle needs more detailed heat exchanger computation procedures in order to give realistic
results. The CFD-aided heat exchanger calculation methodology mentioned above was
successfully employed for the two recuperators, HTR and LTR, which are based on the
printed circuit heat exchanger (PCHE) technology [35]. The CFD computation is applied to
a small basic module of the heat exchanger’s channels of about 50 mm in length (Figure 4),
which incorporates the basic geometry of the high-pressure (HP) and low-pressure (LP)
heat exchanger channels, based on the specific design choices with regard to channel
dimensions and layout, wall roughness and zig-zag angles. The boundary conditions for
the basic module involve the inlet gas temperatures for the hot and cold channels, the exit
gas pressures for the hot and cold channels as well as the respective mass flow rates.
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Figure 4. CFD computation of an HTR channel module: Heat Flux from the low pressure (hot stream)
side of sCO2 to the channel’s wall.

The solid model of the module is imported to ANSYS CFX [40], where a 3D, steady-
state computation is set up. CO2 thermophysical properties are based on the NIST REF-
PROP Database [41]. The standard k-epsilon turbulence model was found to adequately
match the thermal behavior of the heat exchanger module, without a significant effect
on pressure drop prediction accuracy [42]. Periodic boundary conditions are applied to
the top, bottom, left and right sides of the stainless steel module. The mass flow rate per
individual channel is rationally selected based on CFD computations to understand the
trends of the heat exchanger effectiveness and pressure drop.

The CFD computation produces the product U·A (heat transfer coefficient times heat
transfer area). Average heat transfer coefficients of the order of 2000 W/m2K are attainable
with this technology within the permissible pressure drop of about 1%. The second part of
the calculation exploits the average value of U·A from the CFD computation in a segmental,
1D computation of the performance of the full channel length, based on the energy balance
equation for each module and the basic heat transfer kinetic equation:

.
Q = U·A ·∆θlog (4)

The results of the detailed, CFD-aided computation prove that attainable values of
heat exchangers’ effectiveness are of the order of 0.86 for the HTR and 0.91 for the LTR.
The specific methodology was employed in this study for the accurate determination of
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all the recuperators’ effectiveness. The significance of the cycle’s efficiency, especially of
the HTR, which has twice the duty of the main heater, will be demonstrated in the exergy
computations of the next section.

The segmental computation for the HTR produces as output the evolution of the
CO2 temperatures in the low-pressure (hot stream) and high-pressure (cold stream) of
the recuperator. This is presented in Figure 5 for a PCHE channel of 1.0 m total channel
length that can fit the recuperator’s duty in a sCO2 recompression Brayton cycle with 823
K turbine entry temperature, by a selection of the necessary number of channels. The
recuperator’s effectiveness may be increased if one reduces the temperature approach of
the two streams. However, the required recuperator’s length increases significantly and
produces a high-pressure drop penalty. The heat exchanger’s operation mode is complex,
as may be assessed by Figure 6, which presents the evolution of heat flux from the hot
to the cold fluid in the heat exchanger’s segments and the respective variation of cp (hot
and cold side). The heat flux transferred gradually increases as we move from the low-
temperature to the high-temperature part of the heat exchanger, due to the increasing
temperature difference between the hot and cold side, as one moves from left to right of
the heat exchanger.
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This trend is related to the evolution of the cp ratio between hot and cold streams as
one moves from the left to the right side (Figure 7), which gives an idea of the complexities
induced by CO2 thermal properties, especially for the LTR, which operates at the low-
temperature part of this diagram.
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The next task is the computation of the LTR, where the mass flow rates differ because
of the flow split at point 8. Only 60% of the mass flow rate is fed to the high-pressure side
of the LTR. The average heat transfer coefficient, U, is computed to values of the order
of 2000–2200 W/m2K by dividing the average heat flux by LMTD. Experimental results
from the work of other researchers for the specific heat exchanger type find U in the range
of 1100–2500 W/m2K [32]. The results for the Low-Temperature Recuperator (LTR) are
presented in the diagram of Figure 8. The actual recuperator’s effectiveness is computed
based on the selected heat exchanger’s length (ε = 0.91).
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The LTR’s operation is more complex, as seen by the evolution of heat flux transferred
from the hot to the cold fluid, as well as the respective variation of cp for the hot and
cold side (Figure 9). It can be observed in this Figure that, due to the peculiarities of cp
variation between the two streams, the heat transferred from the hot side to the cold side is
maximized towards the middle of the heat exchanger length.
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Overall, the heat exchanger’s effectiveness values attainable for the LTR are higher than
with respect to the HTR. This is explained by the nearly constant temperature difference
between the hot and cold streams observed in Figure 8, in contrast to the behavior of the
HTR (Figure 5), where the pinch point at the low-temperature side does not allow for
further reduction of the temperature approach between the two streams. The computations
are completed with the pressure drop for the full channel, which is indicative of the pressure
drop for the total heat exchanger if the headers’ and collectors’ losses are neglected at first
approximation. The allowable pressure drop in this type of recuperator is 1% of the inlet
pressure. Although lower pressure drops are desirable to reduce operating costs and
improve cycle efficiency, a too-small pressure drop increases size and capital cost.

4. Results of Energy Calculations

The accurate computation of heat transfer effectiveness values for the HTR and
the LTR enables the realistic computation of the full cycle, based on the procedure de-
scribed in the previous section. To this end, an additional computation is necessary, which
takes into account the solar receiver’s losses due to self-emission and convection losses to
the environment.

The central receiver’s thermal efficiency may be calculated as follows [43]:

ηth = α −
εσFviewT4

R + hconv (TR − Tair )

ηfield IdN C
(5)

where α is the average receiver’s shortwave absorptivity; ε is the average shortwave
emissivity of the receiver; TR is its surface temperature; Fview is the view factor from
the receiver to its surroundings; hconv is the convection coefficient (W/m2K); ηfield is the
efficiency of the heliostats’ field; IdN is the direct normal solar irradiance (W/m2); and C is
the heliostats’ concentration ratio. To simplify the calculation of the receiver’s heat losses,
the surface temperature of the solar receiver’s cavity is roughly approximated as:

TR = Tin,turbine + ∆TR (6)
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where ∆TR is the solar receiver’s temperature approach, assumed at the order of 150 ◦C [44,45].
The parameter values employed in calculating the thermal efficiency of the central receiver
are summarized in Table 1.

Table 1. Input parameters for calculating the central receiver’s efficiency [43].

Parameter Value

Short wave absorptivity of receiver, α 0.95
Short wave emissivity of receiver, ε 0.85

Radiative view factor to surroundings, Fview 1
Direct normal irradiance, IdN 980 W/m2

Convection coefficient, hconv 10 W/m2 K
Average efficiency of heliostat field, ηfield 0.6

Concentration ratio (heliostat), C 900
Solar receiver temperature approach, TR 150 ◦C

The effect of turbine entry temperature on the thermal efficiency of the central re-
ceiver is presented in Figure 10, along with the effect of the solar receiver temperature
approach. The maximum temperature at turbine entry is limited by solar receiver tech-
nology since metallic tubular receivers do not currently withstand more than 800 ◦C exit
temperatures [46].
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If in the continuing process of improvements in central receiver technology, the tem-
perature approach could be reduced from the currently attained values of 150 ◦C to 100 ◦C,
the thermal efficiency of the central receiver is shown to significantly improve, especially at
higher receiver temperatures, which is expected to have favorable effects on the attainable
cycle’s efficiency [46]. The location of the solar tower power plant is assumed to be in the
Eastern part of Crete, Greece, in a location with high insolation levels, where a previous
experiment had been conducted in a small-size pilot plant [1].

The inlet temperature of the compressor is calculated as:

Tin, compressor = Tamb + ITD (7)

where ITD is the initial temperature difference, assumed to be 12 ◦C. Therefore the reference
compressor inlet temperature for the computations is set to 32 ◦C. This is point 1 of the
cycle (Figure 2) and it must be kept close to the critical temperature of CO2 (31.1 ◦C) by
the action of the pre-cooler. Since the CO2 density at these thermodynamic states is very



Energies 2022, 15, 7773 12 of 20

high to the order of 600 kg/m3, the compressor’s work is minimized and the required high
efficiency for the recompression sCO2 Brayton cycles is attainable. If the compressor’s inlet
temperature goes a few degrees higher, there is a rapid reduction of the working medium’s
density which deteriorates the cycle’s efficiency.

Cycle computations were performed by varying the turbine entry temperature (TET)
from 773 K to 1023 K at intervals of 50 K. The results are summarized in Figure 11, where the
evolution of 1st Law efficiency as a function of the turbine entry temperature is presented.
As long as the efficiency of the central receiver is not included, the cycle’s efficiency with
regard to the heat supplied to the main heater is monotonically increasing from 41.3% @773
K to 47.3% @ 1023 K TET. This indicates that the DOE Sunshot target of 50% cycle efficiency
is very difficult to attain with the current receiver technology and attainable temperatures
at the turbine’s entry [3]. These values are significantly lower than the ones computed in
the bibliography based on optimistically high recuperators’ effectiveness values of 0.95 [25].
Indicative values resulting from computations with ideal recuperators’ effectiveness values
are also presented in the same Figure for comparison (shown to reach 59% @1023 K TET).
In addition to the internal cycle’s efficiency results, the calculation of the evolution of the
central receiver’s thermal efficiency, based on Equation (5) and the assumptions of Table 1,
is shown in the same Figure to reduce monotonically from 87% @ 773 K to 76% @ 1023
K TET. The resulting overall thermal efficiency of the solar tower power plant is seen
to present a maximum value of 37.2–37.3% at turbine entry temperatures of 873–923 K,
respectively. The turbine entry temperatures for maximum overall efficiency agree with the
calculations of other researchers [25]. However, as expected, the overall efficiency levels
predicted with the actually realizable recuperators’ effectiveness values are lower. The
reasons will be apparent from the exergy analysis in the next section.
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realistic values.

As a next step in the presentation of energy computation results, Figure 12 compares
the specific work of the compressors and turbine, along with the specific duties (per kg of
CO2 working medium) of all heat exchangers, as a function of the turbine entry temperature.
As expected, the main compressor’s specific work is kept constant, since the conditions at
the main compressor’s entry (state 1) are kept constant for all cycle versions examined. The
specific work of the recompressor is slightly increasing with turbine entry temperature and
is 58–82% higher than the respective main compressor’s work due to the significantly lower
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CO2 density at the recompression operation temperature levels. On the other hand, the
work output of the turbine is monotonically increasing from 116 to 159 kJ/kg as one moves
from 773 to 1023 TET. The LTR’s duty stays about 20–30% higher than the pre-cooler’s duty,
which increases from 98 to 132 KJ/kg moving from 773 to 1023 TET. On the other hand,
the main heater’s duty stays 80% higher than the pre-cooler’s duty. Most important, the
HTR’s duty is seen to take very high values, monotonically increasing with the turbine
entry temperature, from 270 to 425 kJ/kg. The HTR’s duty stays 55–80% higher than the
main heater’s duty.
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The above observations explain the prevailing role of the HTR’s effectiveness on the
exergy losses of the cycle, which set the attainable limits of exergetic efficiency of this cycle,
as will be explained in the next section where the proposed model is extended to an exergy
analysis for the recompression sCO2 Brayton cycle integrated with a solar receiver.

5. Exergy Analysis Procedure

The exergy balance corresponding to the control volume around each component of
the cycle is calculated in the generalized form [36]:

dEcv

dt
= ∑j

.
E .

Qj
−

.
Wcv + ∑i

.
miei − ∑0

.
m0e0 −

.
Edes −

.
Eloss (8)

where the heat interactions of the control volume are associated with the respective
exergy interactions:

E .
Qj

=

(
1 − Tu

Tj

)
.

Qj (9)

On the other hand, the mass flows into and out of the control volume are associated
with the respective specific exergy at the inlet and outlet, which is a thermodynamic state
variable defined in terms of state variables enthalpy and entropy and the environment
datum point (hu , Tu , su) as follows:

e = h − hu − Tu(s − su) (10)
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In this paper, the steady-state operation of the system is examined, thus dEcv
dt = 0.

Moreover, the recompression sCO2 Brayton cycle is integrated with a central solar receiver.
Thus the exergy input includes, in principle, the exergy of the incoming solar radiation to
the solar receiver:

.
Einput =

.
Qheater

ηth ηfield
ψ (11)

where ηth is the efficiency of the solar receiver and ηfield is the heliostat field efficiency [43],
which includes the cosine losses, the reflectance losses and spillage and ψ is the dimension-
less maximum useful work that could be gained by the solar radiation. This is approximated
by Petela’s formula [47]:

ψ = 1 − 4
3

T0

Ts
+

1
3

(
T0

Ts

)4
(12)

where Ts is the blackbody temperature of the Sun (5800 K).
However, a large percentage of the exergy input coming from the sun calculated by

the above formula cannot be recovered (e.g., the efficiency of the heliostat field is close to
its theoretical limit), which leads to very small values for the exergetic efficiency of the
cycle if referred to this exergy input. In this study, we prefer to refer to the exergy input
to the working medium at the surface of the solar tower receiver’s heat exchanger (main
heater) by means of the following equation:

E .
q45

=

(
1 − Tu

TR

)
.
q45 (13)

where TR is the surface temperature of the solar receiver’s cavity and
.
q45 = h5 − h4 is the

specific heat input to the cycle per kg of CO2 working medium. This heat input is lower
than the thermal radiation entering the receiver’s cavity, as expressed by the receiver’s
thermal efficiency. The input parameters and the standard environmental state (Tu; Pu)
used for the exergy analysis are presented in Table 2.

Table 2. Input parameters used in the exergy analysis of the sCO2 recompression Brayton cycle.

Parameter Value

Ambient temperature, T0 20 ◦C
Compressor efficiency 0.89

Turbine efficiency 0.93
Turbine inlet temperature 500–800 ◦C

Initial temperature difference 10 ◦C
Pre-cooler effectiveness 0.95

High cycle pressure 20 MPa
Reference temperature, Tu 20 ◦C

Reference pressure, Pu 101.3 kPa

The overall exergetic efficiency, ηexergetic, is calculated as:

ηexergetic =

.
Wnet,T −

.
Wnet,MC −

.
Wnet,RC

.
Einput

(14)

Equation (14) can be alternatively expressed in terms of the exergy losses
( .

Elosses

)
and exergy destruction

( .
Ed

)
as follows:

ηexergetic = 1 −
∑
( .

Elosses +
.
Ed

)
.
Einput

(15)
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In this case, the exergy losses are associated with irreversibilities due to heat transfer
with finite temperature differences in the heat exchangers, while the exergy destruction
is associated with internal irreversibilities in the turbomachines and friction losses in
the piping.

For the main heater (solar receiver), the exergy losses can be calculated by subtracting
the exergy difference across the heater (e5-e4) from the exergy of the heat input to the main
heater E .

q45
.

For the pre-cooler, the exergy difference (e8-e1) across it is considered to be exergy loss
as a whole, since the small increase in exergy of the cooling air (or water) is not considered
exploitable. As regards the recuperators, HTR and LTR, their exergy losses are calculated
by subtracting the exergy increase across the cold stream from the exergy decrease across
the recuperator’s hot stream. Finally, the exergy loss across the compressors and the turbine
is calculated by subtracting the exergy increase in the compressors from the work supplied
to the compressors and subtracting the work output of the turbine from the exergy decrease
across the turbine, respectively.

6. Exergetic Performance Results and Discussion

In order to better understand the exergetic performance of each component of the
cycle, we start with a comparison of the T–s diagrams computed for the two limiting cases
examined, with the lowest (773 K) and the highest (1023 K) turbine entry temperatures
(Figure 13). It can be observed that as the main heater receives heat at higher temperatures,
the heat exchanger duties for the HTR and the LTR are increased accordingly, in order to
bridge the increasing enthalpy distance between the compressor and the turbine.
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Figure 13. Comparison between the cycles with lowest and highest turbine entry temperatures
examined in this study.

The rapid increase in the HTR and the LTR duty is detailed in Table 3. As a next step,
the exergy losses are calculated for each component and also presented in Table 3, along
with the turbomachines’ specific work, the heat exchangers’ duties and the 1st and 2nd
Law efficiencies as a function of the turbine entry temperature.

Moreover, the evolution of exergy losses for all the components of the power plant is
presented in Figure 14 along with the evolution of the resulting exergetic efficiency as a
function of the turbine entry temperature. It should be noted again that the exergy losses
of the central receiver and heliostat field are not included in this analysis since they are
significantly larger than the rest and complicate the process of cycle optimization.
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Table 3. Comparison of main cycle and component figures, along with thermal and exergetic efficiency
as function of Turbine entry temperature.

T Entry Turbine 773 823 873 923 973 1023
Turbomachines work (kJ/kg)
Main Compressor 17.0 17.0 17.0 17.0 17.0 17.0
Recompressor 27.2 27.4 28.7 28.9 29.9 30.4
Turbine 116.4 125.2 133.8 142.3 150.7 159.1
Heat exchangers’ Duty (kJ/kg)
Main Heater 174.5 186.8 197.9 210.5 222.7 235.8
HTR 269.6 305.2 329.2 362.0 390.5 424.5
LTR 114.2 122.5 138.7 149.1 162.6 172.5
Pre-cooler 97.5 102.9 110.9 117.5 125.2 132.0
Solar thermal radiation input 200.2 218.4 236.7 258.5 282.2 310.0
Exergy losses (kJ/kg)
Main Compressor 4.9 4.9 4.9 4.9 4.9 4.9
Recompressor 5.0 4.4 4.3 3.7 3.4 2.9
Turbine 4.2 4.2 4.1 4.1 4.0 4.0
Main Heater 18.0 17.5 17.0 16.6 16.2 15.9
HTR 6.2 8.1 9.6 11.3 12.6 14.2
LTR 0.8 2.5 5.3 7.8 10.9 13.7
Pre-cooler 3.8 4.3 5.0 5.7 6.7 7.5
Important system’s performance indices
Thermal efficiency (cycle) 0.414 0.433 0.445 0.458 0.466 0.474
Exergetic efficiency (cycle) 0.606 0.619 0.624 0.630 0.631 0.632
Thermal efficiency (Power Plant) 0.361 0.370 0.372 0.373 0.368 0.360
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Looking into the components’ exergy losses, the major exergy losses of the system
are caused by the main heater and HTR, followed by the LTR. As shown in Figure 14,
while the main heater’s exergy losses have a tendency to gradually decrease with TET,
the HTR’s exergy losses have the opposite tendency and increase with the turbine entry
temperature. Moreover, the LTR’s exergy losses, which, as expected, are low at low TET and
are seen to increase more steeply and approach those of the LTR at the highest temperatures.
On the other hand, the exergy losses of the pre-cooler are seen to steadily increase with
turbine entry temperature and reach more than 50% of the HTR’s and LTR’s losses at
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1023 K TET. As regards the turbomachines, the highest exergy loss takes place in the main
compressor, followed by the main turbine, while the recompressors losses start as high as
the compressor’s, but reduce at high TET. The cycle’s exergy efficiency tends to increase
slightly as a function of turbine entry temperature to stabilize to 63% as the TET approaches
1023 K. Thus, by increasing the turbine entry temperature beyond 900 K, the gains in the
exergy entering the main heater seem to be canceled by the increasing central receiver’s
losses to the environment. What is important to note is that all cycle versions with turbine
inlet temperatures in the range of 773–1023 K demonstrate an exergy efficiency higher
than 60%, which agrees with the similar behavior of the energy efficiency trends presented
above. Exergy efficiency values computed for similar cycle variants by Padilla et al. [25]
are significantly lower since they include the exergy loss of incoming solar radiation, as
reported above. On the other hand, the above-reported exergy losses of the recuperators
are higher in our case due to the lower effectiveness values computed by our methodology.

However, the application of the sCO2 Brayton cycles will require significant improve-
ments in solar central receiver technology and heat storage technology in order to allow for
a steady-state power plant operation. Alternatively, the application of an auxiliary heater
burning natural gas could maintain power output against the hourly and daily variability
of solar irradiance.

7. Conclusions

Energy and exergy analysis of a recompression sCO2 Brayton cycle were carried out for
a solar central receiver CSP power plant at the range of turbine entry temperatures between
873–1023 K. The analysis was based on improved knowledge of the High-Temperature and
Low-Temperature Recuperators’ performance of PCHE technology, based on a previously
developed, CFD-aided computation methodology.

The maximum cycle’s thermal efficiency computed for a 1023 K turbine entry temper-
ature is 47.3%, which falls short of the SunShot target of 50% cycle efficiency set by the US
Department of Energy because of taking into account the realizable values for the PCHE
recuperators’ effectiveness, calculated by the improved methodology.

On the other hand, the total power plant’s energy efficiency, taking into account the
central receiver’s losses, is computed to exceed 36% at turbine entry temperatures of 773 K
with a maximum of 37% at 900 K. These turbine entry temperatures would require the
central receiver’s temperatures to increase to 650 ◦C instead of the currently attained 550 ◦C
in power plants working with the Rankine steam cycle.

The cycle’s exergy efficiency only slightly increases with turbine entry temperature in
the range of 773–1023 K, stabilizing at 63% above 900 K, which defines the attainable limits in
the cycle’s exergetic efficiency based on a rational heat exchanger effectiveness computation.

Apart from the solar receiver and main heater, the High- and Low-temperature recuper-
ators are the components with the highest exergy losses. The results confirm the suitability
of recompression sCO2 Brayton cycles with turbine entry temperatures of 800–900 K for
central solar receiver systems due to their higher thermal and exergetic efficiency compared
to conventional steam Rankine cycles.

Future work will examine further cycle improvements with the introduction of reheat
and expansion to a second turbine, which is expected to improve the cycle’s efficiency
towards the 50% target. To this end, the cycle computation would include significant
improvements in the solar central receiver’s model, the application of heat storage technol-
ogy to allow stable power plant operation, or alternatively, the application of an auxiliary
heater could maintain steady power output against the hourly and daily variability of
solar irradiance.
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Appendix A

The cycle computation procedure summarized in Figure 3 is described in more
detail below:

Starting from a specific printed circuit heat exchanger’s basic module geometry, the
CFD analysis solves the conjugate heat transfer problem and outputs the heat transfer
coefficient, U, and the friction factor for the pressure drop computation. These data are
inserted in a 1D segmental computation for the full heat exchanger’s channel length,
resulting in a realistic value for heat exchanger effectiveness and pressure drop.

The procedure is applied for both recuperators, namely, the HTR and LTR. The high-
pressure (cold stream) and low-pressure side (hot stream) for the HTR and the LTR are
shown in color in the T–s diagrams of Figure A1 for a recompression Brayton cycle with a
turbine entry temperature of 823 K.
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The recuperators’ effectiveness and pressure drop values are employed in the calcula-
tion of the complete cycle by means of an iterative procedure, starting from the main com-
pressor’s inlet (state 1, see Figure 2), which is set to 76 bar and 305 K for all cycle versions.

State 2 is computed based on the assumption of the compressor’s isentropic efficiency.
State 3 is computed by mixing the stream from state 8 based on the recompressor’s

isentropic efficiency and the stream from state 2 based on the LTR’s performance.
State 4 is derived based on the previously computed HTR’s effectiveness.
State 5 is fixed by the selected turbine entry temperature and the high pressure

(19.9 MPa minus the pressure drop in the HTR and main heater).
State 6 is computed based on the assumption of the turbine’s isentropic efficiency.
State 7 is computed based on the HTR’s enthalpy balance.
State 8 is computed based on the LTR’s enthalpy balance.
The iterative process continues back to state 3 s, until a complete convergence is

attained with regard to the entropy at state 3 s (usually within 3–4 iterations).
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