Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (10,737)

Search Parameters:
Keywords = composite particles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 8352 KB  
Article
Preparation of Perovskite Cs3Bi2Br9/Biochar Composites and Their Photocatalytic Properties
by Jin Zhang, Yuxin Zhong, Bin Yu, Xinyue Xu and Dan Xu
Catalysts 2026, 16(2), 120; https://doi.org/10.3390/catal16020120 - 26 Jan 2026
Abstract
Halide perovskites have many advantages in environmental remediation. The photocatalytic performance of halide perovskites is often hindered by low specific surface area and rapid photogenerated carrier recombination. The aim of this work is to prepare a green, novel photocatalyst in the form of [...] Read more.
Halide perovskites have many advantages in environmental remediation. The photocatalytic performance of halide perovskites is often hindered by low specific surface area and rapid photogenerated carrier recombination. The aim of this work is to prepare a green, novel photocatalyst in the form of biochar-anchored Cs3Bi2Br9 perovskite composites. The rose-petal-derived biomass carbon (RC) provides adsorption sites and high electrical conductivity, while the perovskite Cs3Bi2Br9 can efficiently capture visible right and degrade pollutants, and the reciprocal effect can enhance the photocatalytic efficiency of the composite. The results of scanning electron microscopy (SEM) showed the Cs3Bi2Br9 particles were loaded on the surface of RC. Compared with bare Cs3Bi2Br9, Cs3Bi2Br9/RC composite has a more perfect structure, higher specific surface area, enhanced ability to absorb visible light, and reduced bandgap value. As visible-light-driven photocatalysts, the prepared Cs3Bi2Br9/RC composites can enhance the removal efficiency of Rhodamine B. The Cs3Bi2Br9/RC–0.2 composite displays the highest degradation efficiencies for RhB (10 mg/L), reaching 98% within 60 min. And the rate constant (k) is 1.9 times that of bare Cs3Bi2Br9. The results of electrochemical impedance spectroscopy (EIS) show that the interaction between RC and Cs3Bi2Br9 speeds up charge carrier separation and transfer. During photocatalytic process, holes (h+) and superoxide radicals (·O2) played major roles. The composites also showed excellent stability. It is meaningful to deal with a large number of withered rose petals to make them high-value products. This work not only provides a guideline for the construction of perovskite composites materials but also shows the promising prospects of biochar composites in deep treatment for contaminated water. Full article
Show Figures

Figure 1

15 pages, 4874 KB  
Article
Hierarchical Porous Nickel Oxide Nanoparticles with High Specific Surface Area by Green Synthesis
by Kamilya Khalugarova, Yulia M. Spivak, Dmitriy A. Kozodaev, Vyacheslav A. Moshnikov, Anna A. Dombrovskaya and Ekaterina K. Khrapova
Micromachines 2026, 17(2), 156; https://doi.org/10.3390/mi17020156 - 26 Jan 2026
Abstract
Porous nickel oxide nanoparticles with a hierarchical structure and high specific surface area were obtained by green synthesis followed by thermal annealing. The influence of the choice of precursor plant extract (Fumaria officinalis L. and Origanum vulgare L.) and the extractants in [...] Read more.
Porous nickel oxide nanoparticles with a hierarchical structure and high specific surface area were obtained by green synthesis followed by thermal annealing. The influence of the choice of precursor plant extract (Fumaria officinalis L. and Origanum vulgare L.) and the extractants in aqueous solutions on the parameters of the synthesized particles was studied. Characterization of the NiO morphology and composition, as well as the specific surface area, was performed using X-ray diffraction (XRD), scanning electron microscopy (SEM), and the BET method of nitrogen thermal desorption. Resulting particles have a spherical shape and a size from 30 to 50 nm. According to the data obtained, it can be seen that when the precursor is changed from Fumaria officinalis L. to Origanum vulgare L., the size of the synthesized particles increases, while the structure becomes more friable. It has been revealed that certain parameters and the nature of the assembly of porous particles lead to an increase in the surface area: the highest value of the SSA of 130.0 m2/g is observed in NiO nanoparticles obtained using Fumaria officinalis L. extract based on isopropyl alcohol. Also, a relatively high SSA value of 73.5 m2/g is observed in nanoparticles obtained using the same extractant for Origanum vulgare L. extract, while the use of an ethyl alcohol-based extractant for Fumaria officinalis L. resulted in the lowest value of 40.2 m2/g. The developed semiconductor particles are promising for use in catalysis, sensors, and as part of supercapacitor electrodes and functional layers in device structures for solar cells. Full article
Show Figures

Figure 1

16 pages, 1728 KB  
Article
Co-Spray-Dried Macitentan–Tadalafil with Leucine Microparticles for Inhalable Delivery in Pulmonary Arterial Hypertension
by Chang-Soo Han, Jin-Hyuk Jeong, Hyeon Woo Moon, Yechan Song and Chun-Woong Park
Pharmaceutics 2026, 18(2), 155; https://doi.org/10.3390/pharmaceutics18020155 - 25 Jan 2026
Abstract
Background/Objectives: This study developed a macitentan (MAC)–tadalafil (TAD) dry powder inhalation preparation using suspension-based spray drying to enhance pulmonary delivery and reduce systemic exposure to oral combination therapy in patients with pulmonary arterial hypertension (PAH). Methods: MAC–TAD composite powders were prepared [...] Read more.
Background/Objectives: This study developed a macitentan (MAC)–tadalafil (TAD) dry powder inhalation preparation using suspension-based spray drying to enhance pulmonary delivery and reduce systemic exposure to oral combination therapy in patients with pulmonary arterial hypertension (PAH). Methods: MAC–TAD composite powders were prepared by physically mixing or spray-drying aqueous ethanol suspensions at various MAC:TAD ratios. The lead M2-T8 was co-spray-dried with 5, 25, or 50% (w/w) L-leucine. Results: Spray-dried formulations exhibited narrower and more uniform particle size distributions (Dv50 2–6 µm; Dv90~10 µm) and higher emitted dose values than the physical mixtures. In the M2-T8 spray-dried formulation, TAD exhibited an elevated fine particle dose (FPD) (3073.45 ± 1312.30 μg), demonstrating improved aerosolization relative to the physical mixture, even outperforming the TAD-higher M1-T9 formulation (2896.83 ± 531.38 μg), suggesting that favorable interparticle adhesive interactions were developed during co-drying. The incorporation of 25% L-leucine produced the greatest improvement in dispersibility, increasing the FPD by ~31% for MAC and 17% for TAD, whereas excessive L-leucine (50%) reduced the aerosol performance. Powder X-ray diffraction and differential scanning calorimetry confirmed the retention of the MAC and TAD crystallinities, with L-leucine remaining either amorphous or partially crystalline. Conclusions: Suspension-based spray drying yielded MAC–TAD composite formulations with improved uniformity and aerosol performance. The optimized 2:8 formulation containing 25% L-leucine demonstrated the most efficient pulmonary deposition, supporting its potential as an inhaled combination therapy for the treatment of PAH. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

15 pages, 3850 KB  
Article
The Influence of Electron Beam Treatment on the Structure and Properties of the Surface Layer of the Composite Material AlMg3-5SiC
by Shunqi Mei, Roman Mikheev, Pavel Bykov, Igor Kalashnikov, Lubov Kobeleva, Andrey Sliva and Egor Terentyev
Lubricants 2026, 14(2), 50; https://doi.org/10.3390/lubricants14020050 - 25 Jan 2026
Abstract
The influence of electron beam treatment parameters (electron gun speed, electron beam current, scanning frequency, and sweep type) on the structure and properties of the surface layer of the composite material AlMg3-5SiC has been investigated. Composite specimens of AlMg3 alloy reinforced with [...] Read more.
The influence of electron beam treatment parameters (electron gun speed, electron beam current, scanning frequency, and sweep type) on the structure and properties of the surface layer of the composite material AlMg3-5SiC has been investigated. Composite specimens of AlMg3 alloy reinforced with 5 wt.% silicon carbide particles were manufactured via the stir casting process. Experimentally, processing modes with heat input from 120 to 240 J/mm yield a modified layer thickness from 74 to 1705 µm. Heat input should not exceed 150 J/mm to ensure a smooth and defect-free surface layer. The macro- and microstructure were examined using optical microscopy. Brinell hardness was measured. Friction and wear tests were performed under dry sliding friction conditions using the “bushing on plate” scheme. This evaluated the tribological properties of the composite material in its original cast state and after modifying treatment. Due to the matrix alloy structure refinement by 5–10 times, the surface layer’s hardness increases by 11% after treatment. The modified specimens have superior tribological properties to the initial ones. Wear rate reduces by 17.5%, the average friction coefficient reduces by 32%, and the root mean squared error of the friction coefficient, which measures friction process stability, reduces by 50% at a specific load of 2.5 MPa. Therefore, the electron beam treatment process is a useful method for producing high-quality and uniform wear-resistant aluminum matrix composite surface layers. Full article
Show Figures

Figure 1

29 pages, 11156 KB  
Article
Mesoscopic Heterogeneous Modeling Method for Polyurethane-Solidified Ballast Bed Based on Virtual Ray Casting Algorithm
by Yang Xu, Zhaochuan Sheng, Jingyu Zhang, Hongyang Han, Xing Ling, Xu Zhang and Luchao Qie
Materials 2026, 19(3), 474; https://doi.org/10.3390/ma19030474 - 24 Jan 2026
Viewed by 45
Abstract
This study introduces a mesoscale modeling methodology for polyurethane-solidified ballast beds (PSBBs) that eliminates reliance on X-ray computed tomography (XCT) and addresses constraints in specimen size, capital cost, and post-processing complexity. The approach couples the Discrete Element Method (DEM) with the Finite Element [...] Read more.
This study introduces a mesoscale modeling methodology for polyurethane-solidified ballast beds (PSBBs) that eliminates reliance on X-ray computed tomography (XCT) and addresses constraints in specimen size, capital cost, and post-processing complexity. The approach couples the Discrete Element Method (DEM) with the Finite Element Method (FEM). A high-fidelity discrete-element geometry is reconstructed from three-dimensional laser scans of ballast particles. The virtual-ray casting algorithm is then employed to identify the spatial distribution of ballast and polyurethane and map this information onto the finite-element mesh, enabling heterogeneous material reconstruction at the mesoscale. The accuracy of the model and mesh convergence are validated through comparisons with laboratory uniaxial compression tests, determining the optimal mesh size to be 0.4 times the minimum particle size (0.4 Dmin). Based on this, a parametric study on the effect of sleeper width on ballast bed mechanical responses is conducted, revealing that when the sleeper width is no less than 0.73 times the ballast bed width (0.73 Wb) an optimal balance between stress diffusion and displacement control is achieved. This method demonstrates excellent cross-material applicability and can be extended to mesoscale modeling and performance evaluation of other multiphase particle–binder composite systems. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Graphical abstract

21 pages, 20103 KB  
Article
The Role of FeCoNiCrAl Particle Pretreatment in Interface Bonding and Properties of Cu/FeCoNiCrAl Composites
by Rui Zhu, Shaohao Zong, Xinyan Li, Jiacheng Feng and Wenbiao Gong
Materials 2026, 19(3), 472; https://doi.org/10.3390/ma19030472 - 24 Jan 2026
Viewed by 63
Abstract
When fabricating high-entropy alloy particle-reinforced metal matrix composites via friction stir processing, the relatively low heat input led to insufficient interfacial diffusion between the particles and matrix, thereby compromising the composite properties. To address this issue, this study introduced an electroless copper plating [...] Read more.
When fabricating high-entropy alloy particle-reinforced metal matrix composites via friction stir processing, the relatively low heat input led to insufficient interfacial diffusion between the particles and matrix, thereby compromising the composite properties. To address this issue, this study introduced an electroless copper plating step followed by heat treatment to produce Cu-coated HEA particles with an interfacial diffusion layer. These modified particles were then incorporated into a copper matrix via friction stir processing to form composites with an intentionally designed interfacial diffusion layer. The results indicate that the diffusion layer structure contributed to excellent interfacial bonding. The resulting composite exhibited a simultaneous enhancement in both strength and ductility. The tensile strength and elongation reached 372.5 MPa and 34.2%, respectively, representing increases of 20.4% and 54% compared to pure copper. The wear rate of the composite reduced by 33.7% relative to pure copper. Quantitative analysis indicated that the contribution of fine-grain strengthening, Orowan strengthening, dislocation strengthening, and load transfer strengthening to the overall strength was 41.2 MPa, 0.3 MPa, 12.7 MPa, and 15.7 MPa, respectively. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

14 pages, 15801 KB  
Article
Influence of Precursor Nature on the Properties of Hydroxyapatite–Zirconia Nanocomposites
by Andreia Cucuruz, Cristina-Daniela Ghitulică, Daniela Romonti and Georgeta Voicu
Materials 2026, 19(3), 467; https://doi.org/10.3390/ma19030467 - 24 Jan 2026
Viewed by 48
Abstract
This study explores the influence of precursor nature on the structural and mechanical characteristics of hydroxyapatite–yttria partially stabilized zirconia (HAp–YSZ) nanocomposites designed for biomedical applications. Precursor powders for obtaining these ceramic composites were synthesized via wet coprecipitation, using different calcium phosphate precursors: dibasic [...] Read more.
This study explores the influence of precursor nature on the structural and mechanical characteristics of hydroxyapatite–yttria partially stabilized zirconia (HAp–YSZ) nanocomposites designed for biomedical applications. Precursor powders for obtaining these ceramic composites were synthesized via wet coprecipitation, using different calcium phosphate precursors: dibasic and monobasic ammonium phosphates for hydroxyapatite, and zirconyl chloride with yttrium acetate for YSZ. The dried precipitated powders were thermally treated at 600 °C and 800 °C and characterized by X-ray diffraction (XRD), thermal analysis (DTA–TG), transmission electron microscopy (TEM), and BET surface area measurements. The nanocomposites containing 70–90 wt.% HAp and 10–30 wt.% YSZ were sintered between 1000 °C and 1400 °C. Microstructural and physical properties were evaluated using scanning electron microscopy (SEM), open porosity, and compressive strength testing. Results revealed that precursor type and calcination temperature strongly affected crystallinity, particle size, and phase composition, influencing both porosity and mechanical strength of the final materials. An optimal sintering temperature of approximately 1200 °C was identified, balancing densification and phase stability. The findings demonstrate that controlling precursor chemistry and heat treatment enables fine-tuning of nanocomposite structure and performance, supporting their potential as bioactive, mechanically enhanced ceramics for orthopedic implant applications. Full article
Show Figures

Graphical abstract

11 pages, 1883 KB  
Article
In Situ Self-Assembled Particle-Enhanced Foam System for Profile Control and Enhanced Oil Recovery in Offshore Heterogeneous Reservoirs
by Mengsheng Jiang, Shanfa Tang and Yu Xia
Processes 2026, 14(3), 411; https://doi.org/10.3390/pr14030411 - 24 Jan 2026
Viewed by 55
Abstract
Severe reservoir heterogeneity in offshore oilfields often leads to dominant flow channels, high water cut, and low sweep efficiency during long-term water flooding. In this study, an in situ self-assembled composite foam system combining soft polymer particles with a low-interfacial-tension foaming agent was [...] Read more.
Severe reservoir heterogeneity in offshore oilfields often leads to dominant flow channels, high water cut, and low sweep efficiency during long-term water flooding. In this study, an in situ self-assembled composite foam system combining soft polymer particles with a low-interfacial-tension foaming agent was developed for profile control and enhanced oil recovery (EOR) in offshore heterogeneous reservoirs. The self-assembly characteristics and physicochemical properties of different particle systems were evaluated to optimize the composite foam structure. Static and dynamic experiments were conducted to assess foam stability, plugging performance, injectivity behavior, and oil displacement efficiency. Results show that the optimized composite foam undergoes in situ self-assembly under reservoir conditions, forming a stable particle–foam structure that enhances selective plugging and mobility control. Core flooding experiments demonstrate that the system increases oil recovery by up to 27.2% across a wide permeability range. Field application further confirms its effectiveness in regulating interlayer water absorption, stabilizing injection pressure, and reducing water cut. These results indicate that the proposed in situ self-assembled composite foam is a promising technique for integrated profile control and enhanced oil recovery in offshore heterogeneous reservoirs. Full article
(This article belongs to the Special Issue Applications of Intelligent Models in the Petroleum Industry)
Show Figures

Figure 1

18 pages, 5643 KB  
Article
Chemical Characteristics and Source Identification of PM2.5 in Industrial Complexes, Korea
by Hyeok Jang, Shin-Young Park, Ji-Eun Moon, Young-Hyun Kim, Joong-Bo Kwon, Jae-Won Choi and Cheol-Min Lee
Toxics 2026, 14(2), 111; https://doi.org/10.3390/toxics14020111 - 23 Jan 2026
Viewed by 138
Abstract
The composition of air pollutants in industrial complexes differs from that of general urban areas, often containing more hazardous substances that pose significant health risks to both workers and residents nearby. In this study, PM2.5 and its 29 chemical components (eight ions, [...] Read more.
The composition of air pollutants in industrial complexes differs from that of general urban areas, often containing more hazardous substances that pose significant health risks to both workers and residents nearby. In this study, PM2.5 and its 29 chemical components (eight ions, two carbon species, and 19 trace elements) were measured and analyzed at five monitoring sites adjacent to the Yeosu and Gwangyang industrial complexes from August 2020 to December 2024. Chemical characterization and source identification were conducted. The average PM2.5 concentration was 18.63 ± 9.71 μg/m3, with notably higher levels observed during winter and spring. A low correlation (R = 0.56) between elemental carbon (EC) and organic carbon (OC) suggests a dominance of secondary aerosols. The charge balance analysis of [NH4+] with [SO42−], [NO3], and [Cl] showed slopes below the 1:1 line, indicating that NH4+ is capable of neutralizing these anions. Positive matrix factorization (PMF) identified eight contributing sources—biomass burning (10.4%), sea salt (11.8%), suspended particles (7.1%), industrial sources (4.6%), Asian dust (5.2%), steel industry (21.8%), secondary nitrate (16.4%), and secondary sulfate (22.7%). These findings provide valuable insights for the development of targeted mitigation strategies and the establishment of effective emission control policies in industrial regions. Full article
(This article belongs to the Section Air Pollution and Health)
26 pages, 9362 KB  
Article
Sedimentological and Ecological Controls on Heavy Metal Distributions in a Mediterranean Shallow Coastal Lake (Lake Ganzirri, Italy)
by Roberta Somma, Mohammadali Ghanadzadeh Yazdi, Majed Abyat, Raymart Keiser Manguerra, Salvatore Zaccaro, Antonella Cinzia Marra and Salvatore Giacobbe
Quaternary 2026, 9(1), 9; https://doi.org/10.3390/quat9010009 (registering DOI) - 23 Jan 2026
Viewed by 51
Abstract
Coastal lakes are highly vulnerable transitional systems in which sedimentological processes and benthic ecological conditions jointly control contaminant accumulation and preservation, particularly in densely urbanized settings. A robust understanding of the physical and ecological characteristics of bottom sediments is therefore essential for the [...] Read more.
Coastal lakes are highly vulnerable transitional systems in which sedimentological processes and benthic ecological conditions jointly control contaminant accumulation and preservation, particularly in densely urbanized settings. A robust understanding of the physical and ecological characteristics of bottom sediments is therefore essential for the correct interpretation of contaminant distributions, including those of potentially toxic metals. In this study, an integrated sedimentological–ecological approach was applied to Lake Ganzirri, a Mediterranean shallow coastal lake located in northeastern Sicily (Italy), where recent investigations have identified localized heavy metal anomalies in surface sediments. Sediment texture, petrographic and mineralogical composition, malacofaunal assemblages, and lake-floor morpho-bathymetry were systematically analysed using grain-size statistics, faunistic determinations, GIS-based spatial mapping, and bivariate and multivariate statistical methods. The modern lake bottom is dominated by bioclastic quartzo-lithic sands with low fine-grained fractions and variable but locally high contents of calcareous skeletal remains, mainly derived from molluscs. Sediments are texturally heterogeneous, consisting predominantly of coarse-grained sands with lenses of very coarse sand, along with gravel and subordinate medium-grained sands. Both sedimentological features and malacofaunal death assemblages indicate deposition under open-lagoon conditions characterized by brackish waters and relatively high hydrodynamic energy. Spatial comparison between sedimentological–ecological parameters and previously published heavy metal distributions reveals no significant correlations with metal hotspots. The generally low metal concentrations, mostly below regulatory threshold values, are interpreted as being favoured by the high permeability and mobility of coarse sediments and by energetic hydrodynamic conditions limiting fine-particle accumulation. Overall, the integration of sedimentological and ecological data provides a robust framework for interpreting contaminant patterns and offers valuable insights for the environmental assessment and management of vulnerable coastal lake systems, as well as for the understanding of modern lagoonal sedimentary processes. Full article
Show Figures

Figure 1

19 pages, 17087 KB  
Article
Microstructural and Wear Characterisation of Aluminium 7075-Based Metal Matrix Composites Reinforced with High-Entropy Alloy Particles and Manufactured via Friction Stir Processing
by Leire Garcia-Sesma, Javier Vivas, Iban Quintana and Egoitz Aldanondo
Metals 2026, 16(2), 132; https://doi.org/10.3390/met16020132 - 23 Jan 2026
Viewed by 45
Abstract
This study investigates the microstructural evolution and wear behaviour of aluminium 7075-based metal matrix composites (MMCs) reinforced with high-entropy alloy (HEA) particles and fabricated via friction stir processing (FSP). A detailed characterisation of the grain refinement in the 7075 matrix was conducted, revealing [...] Read more.
This study investigates the microstructural evolution and wear behaviour of aluminium 7075-based metal matrix composites (MMCs) reinforced with high-entropy alloy (HEA) particles and fabricated via friction stir processing (FSP). A detailed characterisation of the grain refinement in the 7075 matrix was conducted, revealing significant dynamic recrystallization and grain size reduction induced by the severe plastic deformation inherent to FSP. The interaction between the matrix and HEA particles was analysed, showing strong interfacial bonding, which was further influenced by post-processing heat treatments. These microstructural modifications were correlated with the wear performance of the composites, demonstrating enhanced resistance due to the synergistic effect of precipitates and particle reinforcement. The findings highlight the potential of FSP as a viable route for tailoring surface properties in advanced MMCs for demanding tribological applications. Full article
(This article belongs to the Special Issue Surface Treatments and Coating of Metallic Materials (2nd Edition))
Show Figures

Figure 1

16 pages, 2538 KB  
Article
Natural Oleosomes from Nuts and Seeds: Structural Function and Potential for Pharmaceutical Applications
by Marlon C. Mallillin, Maryam Salami, Omar A. Villalobos, Shengnan Zhao, Sara R. El-Mahrouk, Kirtypal Singh, Michael J. Serpe, Arno G. Siraki, Ayman O. S. El-Kadi, Nadia Bou-Chacra, Raimar Loebenberg and Neal M. Davies
Pharmaceutics 2026, 18(2), 144; https://doi.org/10.3390/pharmaceutics18020144 - 23 Jan 2026
Viewed by 104
Abstract
Background/Objectives: Oleosomes, plant-derived lipid nanostructures comprising a triacylglycerol core surrounded by a phospholipid monolayer and interfacial proteins, provide sustainable alternatives to synthetic lipid vesicles. This study compares solvent-free aqueous extractions of oleosomes from five nuts (almond, macadamia, walnut, hazelnut, pine) and five [...] Read more.
Background/Objectives: Oleosomes, plant-derived lipid nanostructures comprising a triacylglycerol core surrounded by a phospholipid monolayer and interfacial proteins, provide sustainable alternatives to synthetic lipid vesicles. This study compares solvent-free aqueous extractions of oleosomes from five nuts (almond, macadamia, walnut, hazelnut, pine) and five seeds (flaxseed, sunflower, hemp, sesame, canola/rapeseed) to understand how botanical origin influences composition and physicochemical behavior. Methods: Oleosomes were isolated using solvent-free aqueous extraction. Extraction yield, lipid content, protein content, particle size, polydispersity, and zeta potential were determined using standard analytical assays and dynamic light scattering techniques. SDS–PAGE was performed to evaluate interfacial protein profiles and oleosin abundance. Results: Extraction yields ranged from 8.4% (flaxseed) to 59.5% (walnut). Oleosome diameters spanned 424 nm to 3.9 µm, and all oleosome dispersions exhibited negative zeta potentials (–26 to –57 mV). SDS–PAGE revealed abundant 15–25 kDa oleosins in seed oleosomes but relatively sparse proteins in nut oleosomes. Seed oleosomes were smaller and exhibited stronger electrostatic stabilization, while nut oleosomes formed larger droplets stabilized primarily through steric interactions due to lower oleosin content. Conclusions: Variation in oleosin abundance and interfacial composition leads to distinct stabilization mechanisms in nut and seed oleosomes. These findings establish a predictive basis for tailoring oleosome size, stability, and functionality, and highlight their potential as natural nanocarriers for food, cosmetic, and pharmaceutical formulations. Full article
(This article belongs to the Section Biopharmaceutics)
Show Figures

Figure 1

17 pages, 3259 KB  
Article
Microplastics in Greylag Goose (Anser anser) Feces from Lake Erçek (Eastern Anatolia, Türkiye): Occurrence, Temporal Variation, and Polymer Characterization
by Emrah Celik
Toxics 2026, 14(2), 108; https://doi.org/10.3390/toxics14020108 - 23 Jan 2026
Viewed by 97
Abstract
Background: Microplastics (MPs; <5 mm) are pervasive contaminants that can compromise freshwater wetland integrity and wildlife health, yet field evidence from inland systems and non-invasive biomonitoring remains limited. To address this gap, we provide a non-invasive, feces-based baseline for a key wintering waterbird [...] Read more.
Background: Microplastics (MPs; <5 mm) are pervasive contaminants that can compromise freshwater wetland integrity and wildlife health, yet field evidence from inland systems and non-invasive biomonitoring remains limited. To address this gap, we provide a non-invasive, feces-based baseline for a key wintering waterbird in an inland soda-lake wetland of Türkiye, supported by polymer confirmation. Methods: We evaluated MP occurrence in fecal deposits of the Greylag Goose (Anser anser), a key wintering waterbird at Lake Erçek (Eastern Anatolia, Türkiye), using non-invasive sampling across five periods (October 2024–February 2025). We collected 400 fecal deposits and pooled them into five time-specific composite samples. Accordingly, temporal comparisons are presented descriptively at the composite (period) level rather than as individual-level statistical inference and quantified suspected MPs by type, shape, size, and color; a representative subset (>300 µm; ~20%) was polymer-confirmed by FT-IR, and particle surfaces were examined by SEM–EDX. Results: In total, 959 suspected MP items were recovered, corresponding to an estimated 1.75–2.85 items per fecal deposit (composite-derived; mean 2.40). MP counts peaked in late autumn–early winter (Time 2–Time 3) and declined toward late winter (Time 5). Fibers predominated (37.22%), followed by fragments (30.55%) and pellets (18.77%); the most frequent size class was 100–300 µm (30.25%), and white/transparent particles were most common (38.52%). FT-IR identified polystyrene, polyethylene, and polyvinyl chloride, while SEM–EDX indicated weathered polymeric surfaces. Conclusions: These findings provide baseline evidence of MP exposure in an inland wetland waterbird and support feces-based monitoring for comparative assessments. Full article
(This article belongs to the Section Emerging Contaminants)
Show Figures

Graphical abstract

25 pages, 4209 KB  
Article
Stability-Oriented Deep Learning for Hyperspectral Soil Organic Matter Estimation
by Yun Deng and Yuxi Shi
Sensors 2026, 26(2), 741; https://doi.org/10.3390/s26020741 - 22 Jan 2026
Viewed by 21
Abstract
Soil organic matter (SOM) is a key indicator for evaluating soil fertility and ecological functions, and hyperspectral technology provides an effective means for its rapid and non-destructive estimation. However, in practical soil systems, the spectral response of SOM is often highly covariant with [...] Read more.
Soil organic matter (SOM) is a key indicator for evaluating soil fertility and ecological functions, and hyperspectral technology provides an effective means for its rapid and non-destructive estimation. However, in practical soil systems, the spectral response of SOM is often highly covariant with mineral composition, moisture conditions, and soil structural characteristics. Under small-sample conditions, hyperspectral SOM modeling results are usually highly sensitive to spectral preprocessing methods, sample perturbations, and model architecture and parameter configurations, leading to fluctuations in predictive performance across independent runs and thereby limiting model stability and practical applicability. To address these issues, this study proposes a multi-strategy collaborative deep learning modeling framework for small-sample conditions (SE-EDCNN-DA-LWGPSO). Under unified data partitioning and evaluation settings, the framework integrates spectral preprocessing, data augmentation based on sensor perturbation simulation, multi-scale dilated convolution feature extraction, an SE channel attention mechanism, and a linearly weighted generalized particle swarm optimization algorithm. Subtropical red soil samples from Guangxi were used as the study object. Samples were partitioned using the SPXY method, and multiple independent repeated experiments were conducted to evaluate the predictive performance and training consistency of the model under fixed validation conditions. The results indicate that the combination of Savitzky–Golay filtering and first-derivative transformation (SG–1DR) exhibits superior overall stability among various preprocessing schemes. In model structure comparison and ablation analysis, as dilated convolution, data augmentation, and channel attention mechanisms were progressively introduced, the fluctuations of prediction errors on the validation set gradually converged, and the performance dispersion among different independent runs was significantly reduced. Under ten independent repeated experiments, the final model achieved R2 = 0.938 ± 0.010, RMSE = 2.256 ± 0.176 g·kg−1, and RPD = 4.050 ± 0.305 on the validation set, demonstrating that the proposed framework has good modeling consistency and numerical stability under small-sample conditions. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

23 pages, 6461 KB  
Article
Enhanced Qualities of High-Density Lipoproteins (HDLs) with Antioxidant Abilities Are Associated with Lower Susceptibility of Hypertension in Middle-Aged Korean Participants: Impaired HDL Quality and Hypertension Risk
by Kyung-Hyun Cho, Chae-Eun Yang, Sang Hyuk Lee, Yunki Lee and Ashutosh Bahuguna
Int. J. Mol. Sci. 2026, 27(2), 1108; https://doi.org/10.3390/ijms27021108 - 22 Jan 2026
Viewed by 115
Abstract
The quality of high-density lipoproteins (HDLs) is characterized by lipid and protein composition, oxidation and glycation extent, and particle size, while the quantity of HDL-C is just the cholesterol amount in HDL. The inverse association between HDL-C and cardiovascular disease (CVD) and hypertension [...] Read more.
The quality of high-density lipoproteins (HDLs) is characterized by lipid and protein composition, oxidation and glycation extent, and particle size, while the quantity of HDL-C is just the cholesterol amount in HDL. The inverse association between HDL-C and cardiovascular disease (CVD) and hypertension has been well established; however, the U-shaped mortality risk observed from HDL-C underscores that HDL quality and function are equally important. The present cross-sectional study assessed the correlations of serum lipid and glucose profiles, and low-density lipoprotein (LDL) and HDL characteristics, with blood pressure (BP) distribution in ordinary middle-aged Korean participants (n = 50; mean age 47.0 ± 11.7 years; males: n = 25, 49.2.0 ± 11.7 years; females: n = 25, 44.8 ± 11.5 years), with particular focus on HDL quality and its antioxidant capacity. This study observed that serum elevated triglyceride (TG) and glucose levels were directly proportional to elevated systolic BP (SBP) and diastolic BP (DBP), whereas serum total cholesterol (TC), LDL-C, and HDL-C were not correlated with BP. However, HDL-C/TC (%) was negatively associated with SBP (p = 0.036), while TG/HDL-C and glucose/HDL-C ratios were positively associated with both SBP and DBP, suggesting that TG and glucose proportions relative to HDL-C are probable predictors of hypertension. Elevations of TG, oxidation, and glycation in LDL were positively associated with elevations of BP, whereas LDL particle size was negatively correlated with BP. Similarly, elevations of TG and glycation in HDL2 and HDL3 were positively correlated with elevations of BP, while the particle size of HDL2 was negatively correlated with BP. The heightened HDL2-associated paraoxonase (PON) activity and ferric ion reduction ability (FRA) negatively correlated with LDL oxidation and particle size, whereas elevated HDL3-associated PON and FRA activities were inversely related to LDL glycation. An enhanced glycation in HDL2 was negatively correlated with HDL2-associated PON activity and FRA, while an increase in HDL2 particle size was only dependent on the associated PON activity but not on FRA. In conclusion, observational outcomes demonstrated that improved HDL quality and functionality (characterized by large particle size, reduced glycation, and higher FRA and PON activities) were inversely correlated with LDL oxidation, glycation, particle shrinkage, and the risk of hypertension. Full article
(This article belongs to the Special Issue The Role of Diet in Lipid and Lipoprotein Metabolism)
Show Figures

Graphical abstract

Back to TopTop