Influence of Precursor Nature on the Properties of Hydroxyapatite–Zirconia Nanocomposites
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Powder Synthesis
2.3. Fabrication of Nanocomposite Ceramic Materials
2.4. Characterization Techniques
3. Results and Discussion
3.1. Characterization of Precursor Powders Used for the Fabrication of Nanocomposite Ceramic Materials
- For all three dried precipitates, weight losses are recorded in the temperature range of 30–1000 °C, amounting to 6.28% for the HAp-A precipitates and 9.01% for the HAp-B precipitates, while the Z3Y precipitates exhibit a weight loss of 23.41%, accompanied by various thermal effects visible on the DTA curves;
- For the phosphate precipitates, the endothermic effect observed at approximately 50 °C indicates water evaporation processes; at around 423–487 °C, the decomposition of Ca(OH)2 occurs, while at 743–761 °C, the decomposition of CaCO3 formed due to accidental carbonation by atmospheric CO2 takes place;
- The Z3Y sample exhibits two endothermic effects at 88 °C and 157 °C and one exothermic effect at 443 °C on the DTA curve, all accompanied by mass loss; the two endothermic effects are attributed to the loss of physically adsorbed water, while the exothermic effect accompanied by mass loss is attributed to the combustion of residual organic components.
- –
- –
- –
- Zirconium oxide stabilized with 3 mol% yttrium oxide and thermally treated at 600 °C for 2 h exhibits particle sizes below 10 nm and a predominantly spherical morphology (Figure 8).
3.2. Synthesis and Characterization of HAp–ZrO2 Nanocomposite Ceramic Materials
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Musharavati, F.; Jaber, F.; Nasor, M.; Sarraf, M.; Zal Nezhad, E.; Uzun, K.; Ma, Y.; Bae, S.; Singh, R.; Chowdhury, M.E.H. Micromechanical Properties of Hydroxyapatite Nanocomposites Reinforced with CNTs and ZrO2. Ceram. Int. 2023, 49, 7466–7475. [Google Scholar] [CrossRef]
- Kumar, R.; Mandal, S.K.; Kumar, D.; Kumar, S. Enhancing the Thermal Property and Biocompatibility of Hydroxyapatite Nanocomposites Reinforced with Reduced Graphene Oxide for Biomedical Applications. Ceram. Int. 2025, 51, 45044–45060. [Google Scholar] [CrossRef]
- Gergely, G.; Cinar Sahin, F.; Göller, G.; Yücel, O.; Balázsi, C. Microstructural and Mechanical Investigation of Hydroxyapatite–Zirconia Nanocomposites Prepared by Spark Plasma Sintering. J. Eur. Ceram. Soc. 2013, 33, 2313–2319. [Google Scholar] [CrossRef]
- Ielo, I.; Calabrese, G.; De Luca, G.; Conoci, S. Recent Advances in Hydroxyapatite-Based Biocomposites for Bone Tissue Regeneration in Orthopedics. Int. J. Mol. Sci. 2022, 23, 9721. [Google Scholar] [CrossRef]
- Gupta, D.M.; Gosala, R.; Ramadoss, R. Enhanced Surface Properties and Wettability of Zirconia–Hydroxyapatite–Poly(acrylic Acid) Nanocomposites for Dental Applications. J. Oral Biol. Craniofacial Res. 2025, 15, 1097–1102. [Google Scholar] [CrossRef]
- Qiao, J.; Wu, G.; Jiang, S.; Yong, Z.; Ma, F.; Jiao, J. Synthesis, Surface Chemical Characterization, and Enhanced Osteoblast Response of Strontium-Substituted Hydroxyapatite Nanoparticles for Alveolar Bone Regeneration. J. Nanostruct. Chem. 2025, 15, 152512. [Google Scholar] [CrossRef]
- Kataoka, T.; Liu, Z.; Yamada, I.; Galindo, T.G.P.; Tagaya, M. Surface Functionalization of Hydroxyapatite Nanoparticles for Biomedical Applications. J. Mater. Chem. B 2024, 12, 6805–6826. [Google Scholar] [CrossRef]
- Xing, Z.; Pang, Y.; Li, E.; Zhang, J.Y.; Xu, D. Preparation and Characterisation of Zirconia/Hydroxyapatite Bioactive Composites as Potential Dental Implants. J. Mater. Sci. Mater. Eng. 2024, 19, 43. [Google Scholar] [CrossRef]
- Ajay Kumar, V.; Rama Murty Raju, P.; Ramanaiah, N.; Rajesh, S. Effect of ZrO2 Content on The Mechanical Properties and Microstructure of HAp/ZrO2 Nanocomposites. Ceram. Int. 2018, 44, 10345–10351. [Google Scholar] [CrossRef]
- Es-saddik, M.; Laasri, S.; Taha, M.; Laghzizil, A.; Guidara, A.; Chaari, K.; Bouaziz, J.; Hajjaji, A.; Nunzi, J.M. Effect of the Surface Chemistry on the Stability and Mechanical Properties of the Zirconia–Hydroxyapatite Bioceramic. Surf. Interface 2021, 23, 100980. [Google Scholar] [CrossRef]
- Kantana, W.; Jarupoom, P.; Pengpat, K.; Eitssayeam, S.; Tunkasiri, T.; Rujijanagul, G. Properties of Hydroxyapatite/Zirconium Oxide Nanocomposites. Ceram. Int. 2013, 39, S379–S382. [Google Scholar] [CrossRef]
- Nikhil, A.; Neha, M.; Kaushik, P. Biodegradable Implant Application: Electrodeposition of HA/TiO2/ZrO2 Coating Onto Zn-Composite Substrates. J. Mech. Behav. Biomed. Mater. 2023, 146, 106073. [Google Scholar] [CrossRef]
- Branco, A.C.; Colaço, R.; Figueiredo-Pina, C.G.; Serro, A.P. Recent Advances on 3D-Printed Zirconia-Based Dental Materials: A Review. Materials 2023, 16, 1860. [Google Scholar] [CrossRef]
- Abushanab, W.S.; Moustafa, E.B.; Youness, R.A. Mechanical Behavior and Tribological Properties of Hydroxyapatite/Hardystonite/Zirconia Hybrid Nanocomposites for Orthopedic Applications. Appl. Phys. A 2023, 129, 394. [Google Scholar] [CrossRef]
- Sivaperumal, V.R.; Mani, R.; Polisetti, V.; Aruchamy, K.; Oh, T. Synthesis of Hydroxyapatite (HAp)–Zirconia Nanocomposite Powder and Evaluation of Its Biocompatibility: An In Vitro Study. Appl. Sci. 2022, 12, 11056. [Google Scholar] [CrossRef]
- Liu, W.; Cheong, N.; He, Z.; Zhang, T. Application of Hydroxyapatite Composites in Bone Tissue Engineering: A Review. J Funct. Biomater. 2025, 16, 127. [Google Scholar] [CrossRef]
- Ayed, B.F.; Bonaziz, J. Sintering of Tricalcium Phosphate–Fluorapatite Composites with Zirconia. J. Eur. Ceram. Soc. 2008, 28, 1995–2002. [Google Scholar] [CrossRef]
- Koutsopoulos, S. Synthesis and characterization of hydroxyapatite crystals: A review study on the analytical methods. J. Biomed. Mater. Res. 2002, 62, 600. [Google Scholar] [CrossRef]
- Rodríguez-Lugo, V.; Karthik, T.V.K.; Mendoza-Anaya, D.; Rubio-Rosas, E.; Villaseñor Cerón, L.S.; Reyes-Valderrama, M.I.; Salinas-Rodríguez, E. Wet chemical synthesis of nanocrystalline hydroxyapatite flakes: Effect of pH and sintering temperature on structural and morphological properties. R. Soc. Open Sci. 2018, 5, 180962. [Google Scholar] [CrossRef]
- Méndez-Lozano, N.; Apátiga-Castro, M.; Soto, M.K.; Manzano-Ramírez, A.; Zamora-Antuñano, M.; Gonzalez-Gutierrez, C. Effect of temperature on crystallite size of hydroxyapatite powders obtained by wet precipitation process. J. Saudi Chem. Soc. 2022, 26, 101513. [Google Scholar] [CrossRef]
- ISO10545-3:2018; Ceramic Tiles–Part 3. Determination of Water Absorption, Apparent Porosity, Apparent Relative Density and Bulk Density. International Organization for Standardization (ISO): Geneva, Switzerland, 2018.
- Deng, S.; Wang, Y.; Zhuang, G.; Zhong, X.; Wei, Z.; Yao, Z.; Wang, J.-G. Micromechanical Simulation of the Pore Size Effect on the Structural Stability of Brittle Porous Materials with Bicontinuous Morphology. Phys. Chem. Chem. Phys. 2019, 21, 12895–12904. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Zhu, E.; Liu, L. Analysis of the Effect of Pore Structure on the Mechanical Properties of Concrete Based on the Meso Numerical Model. Appl. Sci. 2022, 12, 5428. [Google Scholar] [CrossRef]
- Torres-Sanchez, C.; Al Mushref, F.R.A.; Norrito, M.; Yendall, K.; Liu, Y.; Conway, P.P. The Effect of Pore Size and Porosity on Mechanical Properties and Biological Response of Porous Titanium Scaffolds. Mater. Sci. Eng. C 2017, 1, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Lima, M.G.; Günther, T.; Trang Võ, T.; Jussiani, E.I.; Enke, D.; Peuker, U.A.; Wehrspohn, R.B.; Martins de Souza e Silva, J. Evaluation of the Influence of Pore Structural Parameters on the Mechanical Properties of Foam Glasses Via In-Situ Micro-CT Mechanical Testing. Acta Mater. 2025, 299, 121478. [Google Scholar] [CrossRef]
- Holmes, R.E. Synthesis and characterization of calcia partially stabilized zirconia-hydroxyapatite powders prepared by co-precipitation method. Ceram. Int. 2001, 27, 615–620. [Google Scholar] [CrossRef]
- Aktuğ, S.L.; Durdu, S.; Yalçın, E.; Çavuşoğlu, K.; Usta, M. Bioactivity and biocompatibility of hydroxyapatite-based bioceramic coatings on zirconium by plasma electrolytic oxidation. Mater. Sci. Eng. C 2017, 71, 1020. [Google Scholar] [CrossRef]












| Sample | HAp-A 80 °C | HAp-A 600 °C | HAp-A 800 °C | HAp-B 80 °C | HAp-B 600 °C | HAp-B 800 °C | Z3Y 80 °C | Z3Y 600 °C |
|---|---|---|---|---|---|---|---|---|
| SBET (m2/g) | 84.70 | 28.04 | 10.61 | 64.52 | 35.93 | 6.35 | 174.64 | 42.26 |
| D (nm) | 22.4 | 67.7 | 182.5 | 29.5 | 52.8 | 307.7 | 5.6 | 23.3 |
| Composite Code | M1.1 (A600) | M1.2 (A600) | M2.1 (A800) | M2.2 (A800) | M3.1 (B600) | M3.2 (B600) | M4.1 (B800) | M4.2 (B800) |
|---|---|---|---|---|---|---|---|---|
| HAp (%) | 70 | 90 | 70 | 90 | 70 | 90 | 70 | 90 |
| Z3Y (%) | 30 | 10 | 30 | 10 | 30 | 10 | 30 | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Cucuruz, A.; Ghitulică, C.-D.; Romonti, D.; Voicu, G. Influence of Precursor Nature on the Properties of Hydroxyapatite–Zirconia Nanocomposites. Materials 2026, 19, 467. https://doi.org/10.3390/ma19030467
Cucuruz A, Ghitulică C-D, Romonti D, Voicu G. Influence of Precursor Nature on the Properties of Hydroxyapatite–Zirconia Nanocomposites. Materials. 2026; 19(3):467. https://doi.org/10.3390/ma19030467
Chicago/Turabian StyleCucuruz, Andreia, Cristina-Daniela Ghitulică, Daniela Romonti, and Georgeta Voicu. 2026. "Influence of Precursor Nature on the Properties of Hydroxyapatite–Zirconia Nanocomposites" Materials 19, no. 3: 467. https://doi.org/10.3390/ma19030467
APA StyleCucuruz, A., Ghitulică, C.-D., Romonti, D., & Voicu, G. (2026). Influence of Precursor Nature on the Properties of Hydroxyapatite–Zirconia Nanocomposites. Materials, 19(3), 467. https://doi.org/10.3390/ma19030467

