Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,026)

Search Parameters:
Keywords = complete genome analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2067 KiB  
Article
Selection Signature Analysis of Whole-Genome Sequences to Identify Genome Differences Between Selected and Unselected Holstein Cattle
by Jiarui Cai, Liu Yang, Yahui Gao, George E. Liu, Yang Da and Li Ma
Animals 2025, 15(15), 2247; https://doi.org/10.3390/ani15152247 (registering DOI) - 31 Jul 2025
Abstract
A unique line of Holstein cattle has been maintained without selection in Minnesota since 1964. After many generations, unselected cattle produce less milk, but have better reproductive performance and health traits when compared with contemporary cows. Comparisons between this line of unselected Holstein [...] Read more.
A unique line of Holstein cattle has been maintained without selection in Minnesota since 1964. After many generations, unselected cattle produce less milk, but have better reproductive performance and health traits when compared with contemporary cows. Comparisons between this line of unselected Holstein and those under selection provide useful insights that connect selection and complex traits in cattle. Utilizing these unique resources and sequence data, we sought to identify genome changes due to selection. We sequenced 30 unselected and 54 selected Holstein cattle and compared their sequence variants to identify selection signatures. After many years, the two populations showed completely different patterns in their genome-level population structures and linkage disequilibrium. By integrating signals from five different detection methods, we detected consensus selection signatures from at least four methods covering 14,533 SNPs and 155 protein-coding genes. An integrated analysis of selection signatures with gene annotation, pathways, and the cattle QTL database demonstrated that the genomic regions under selection are related to milk productivity, health, and reproductive efficiency. The polygenic nature of these complex traits is evident from hundreds of selection signatures and candidate genes, suggesting that long-term artificial selection has acted on the whole genome rather than a few major genes. In summary, our study identified candidate selection signatures underlying phenotypic differences between unselected and selected Holstein cows and revealed insights into the genetic basis of complex traits in cattle. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

13 pages, 4134 KiB  
Communication
An Improved Agrobacterium-Mediated Transformation Method for an Important Fresh Fruit: Kiwifruit (Actinidia deliciosa)
by Chun-Lan Piao, Mengdou Ding, Yongbin Gao, Tao Song, Ying Zhu and Min-Long Cui
Plants 2025, 14(15), 2353; https://doi.org/10.3390/plants14152353 (registering DOI) - 31 Jul 2025
Abstract
Genetic transformation is an essential tool for investigating gene function and editing genomes. Kiwifruit, recognized as a significant global fresh fruit crop, holds considerable economic and nutritional importance. However, current genetic transformation techniques for kiwifruit are impeded by low efficiency, lengthy culture durations [...] Read more.
Genetic transformation is an essential tool for investigating gene function and editing genomes. Kiwifruit, recognized as a significant global fresh fruit crop, holds considerable economic and nutritional importance. However, current genetic transformation techniques for kiwifruit are impeded by low efficiency, lengthy culture durations (a minimum of six months), and substantial labor requirements. In this research, we established an efficient system for shoot regeneration and the stable genetic transformation of the ‘Hayward’ cultivar, utilizing leaf explants in conjunction with two strains of Agrobacterium that harbor the expression vector pBI121-35S::GFP, which contains the green fluorescent protein (GFP) gene as a visible marker within the T-DNA region. Our results show that 93.3% of leaf explants responded positively to the regeneration medium, producing multiple independent adventitious shoots around the explants within a six-week period. Furthermore, over 71% of kanamycin-resistant plantlets exhibited robust GFP expression, and the entire transformation process was completed within four months of culture. Southern blot analysis confirmed the stable integration of GFP into the genome, while RT-PCR and fluorescence microscopy validated the sustained expression of GFP in mature plants. This efficient protocol for regeneration and transformation provides a solid foundation for micropropagation and the enhancement of desirable traits in kiwifruit through overexpression and gene silencing techniques. Full article
(This article belongs to the Special Issue Plant Transformation and Genome Editing)
Show Figures

Figure 1

18 pages, 11501 KiB  
Article
Comparative Chloroplast Genomics, Phylogenomics, and Divergence Times of Sassafras (Lauraceae)
by Zhiyuan Li, Yunyan Zhang, David Y. P. Tng, Qixun Chen, Yahong Wang, Yongjing Tian, Jingbo Zhou and Zhongsheng Wang
Int. J. Mol. Sci. 2025, 26(15), 7357; https://doi.org/10.3390/ijms26157357 - 30 Jul 2025
Viewed by 110
Abstract
In the traditional classification system of the Lauraceae family based on morphology and anatomy, the phylogenetic position of the genus Sassafras has long been controversial. Chloroplast (cp) evolution of Sassafras has not yet been illuminated. In this study, we first sequenced and assembled [...] Read more.
In the traditional classification system of the Lauraceae family based on morphology and anatomy, the phylogenetic position of the genus Sassafras has long been controversial. Chloroplast (cp) evolution of Sassafras has not yet been illuminated. In this study, we first sequenced and assembled the complete cp genomes of Sassafras, and conducted the comparative cp genomics, phylogenomics, and divergence time estimation of this ecological and economic important genus. The whole length of cp genomes of the 10 Sassafras ranged from 151,970 bp to 154,011 bp with typical quadripartite structure, conserved gene arrangements and contents. Variations in length of cp were observed in the inverted repeat regions (IRs) and a relatively high usage frequency of codons ending with T/A was detected. Four hypervariable intergenic regions (ccsA-ndhD, trnH-psbA, rps15-ycf1, and petA-psbJ) and 672 cp microsatellites were identified for Sassafras. Phylogenetic analysis based on 106 cp genomes from 30 genera within the Lauraceae family demonstrated that Sassafras constituted a monophyletic clade and grouped a sister branch with the Cinnamomum sect. Camphora within the tribe Cinnamomeae. Divergence time between S. albidum and its East Asian siblings was estimated at the Middle Miocene (16.98 Mya), S. tzumu diverged from S. randaiense at the Pleistocene epoch (3.63 Mya). Combined with fossil evidence, our results further revealed the crucial role of the Bering Land Bridge and glacial refugia in the speciation and differentiation of Sassafras. Overall, our study clarified the evolution pattern of Sassafras cp genomes and elucidated the phylogenetic position and divergence time framework of Sassafras. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

10 pages, 1920 KiB  
Case Report
Junctional Epidermolysis Bullosa Caused by a Hemiallelic Nonsense Mutation in LAMA3 Revealed by 18q11.2 Microdeletion
by Matteo Iacoviello, Marilidia Piglionica, Ornella Tabaku, Antonella Garganese, Aurora De Marco, Fabio Cardinale, Domenico Bonamonte and Nicoletta Resta
Int. J. Mol. Sci. 2025, 26(15), 7343; https://doi.org/10.3390/ijms26157343 - 29 Jul 2025
Viewed by 158
Abstract
Inherited epidermolysis bullosa (EB) is a heterogeneous clinical entity that includes over 30 phenotypically and/or genotypically distinct inherited disorders, characterized by mechanical skin fragility and bullae formation. Junctional EB (JEB) is an autosomal recessive disease characterized by an intermediated cleavage level within the [...] Read more.
Inherited epidermolysis bullosa (EB) is a heterogeneous clinical entity that includes over 30 phenotypically and/or genotypically distinct inherited disorders, characterized by mechanical skin fragility and bullae formation. Junctional EB (JEB) is an autosomal recessive disease characterized by an intermediated cleavage level within the skin layers, commonly at the “lamina lucida”. Laryngo-onycho-cutaneous syndrome (LOC) is an extremely rare variant of JEB, characterized by granulation tissue formation in specific body sites (skin, larynx, and nails). Although most cases of JEB are caused by pathogenic variants occurring in the genes encoding for classical components of the lamina lucida, such as laminin 332 (LAMA3, LAMB3, LAMC2), integrin α6β4 (ITGA6, ITGB4), and collagen XVII (COL17A1), other variants have also been described. We report the case of a 4-month-old male infant who presented with recurrent bullous and erosive lesions from the first month of life. At the first dermatological evaluation, the patient was agitated and exhibited hoarse breathing, a clinical sign suggestive of laryngeal involvement. Multiple polygonal skin erosions were observed on the cheeks, along with similar isolated, roundish lesions on the scalp and legs. Notably, nail dystrophy and near-complete anonychia were evident on the left first and fifth toes. Due to the coexistence of skin erosions and nail dystrophy in such a young infant, a congenital bullous disorder was suspected, prompting molecular analysis of all potentially involved genes. In the patient’s DNA, clinical exome sequencing (CES) identified a pathogenic variant, apparently in homozygosity, in the exon 1 of the LAMA3 gene (18q11.2; NM_000227.6): c.47G > A;p.Trp16*. The presence of this variant was confirmed, in heterozygosity, in the genomic DNA of the patient’s mother, while it was absent in the father’s DNA. Subsequently, trio-based SNP array analysis was performed, revealing a paternally derived pathogenic microdeletion encompassing the LAMA3 locus (18q11.2). To our knowledge, this is the first reported case of JEB with a LOC-like phenotype caused by a maternally inherited monoallelic nonsense mutation in LAMA3, unmasked by an almost complete deletion of the paternal allele. The combined use of exome sequencing and SNP array is proving essential for elucidating autosomal recessive diseases with a discordant segregation. This is pivotal for providing accurate genetic counseling to parents regarding future pregnancies. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

22 pages, 2147 KiB  
Article
Streamlining Bacillus Strain Selection Against Listeria monocytogenes Using a Fluorescence-Based Infection Assay Integrated into a Multi-Tiered Validation Pipeline
by Blanca Lorente-Torres, Pablo Castañera, Helena Á. Ferrero, Sergio Fernández-Martínez, Suleiman Adejoh Ocholi, Jesús Llano-Verdeja, Farzaneh Javadimarand, Yaiza Carnicero-Mayo, Amanda Herrero-González, Alba Puente-Sanz, Irene Sainz Machín, Isabel Karola Voigt, Silvia Guerrero Villanueva, Álvaro López García, Eva Martín Gómez, James C. Ogbonna, José M. Gonzalo-Orden, Jesús F. Aparicio, Luis M. Mateos, Álvaro Mourenza and Michal Letekadd Show full author list remove Hide full author list
Antibiotics 2025, 14(8), 765; https://doi.org/10.3390/antibiotics14080765 - 29 Jul 2025
Viewed by 155
Abstract
Background/Objectives: Listeria monocytogenes is a foodborne pathogen of major public health concern due to its ability to invade host cells and cause severe illness. This study aimed to develop and validate a multi-tiered screening pipeline to identify Bacillus strains with probiotic potential [...] Read more.
Background/Objectives: Listeria monocytogenes is a foodborne pathogen of major public health concern due to its ability to invade host cells and cause severe illness. This study aimed to develop and validate a multi-tiered screening pipeline to identify Bacillus strains with probiotic potential against L. monocytogenes. Methods: A total of 26 Bacillus isolates were screened for antimicrobial activity, gastrointestinal resilience, and host cell adhesion. A fluorescence-based infection assay using mCherry-expressing HCT 116 cells was used to assess cytoprotection against L. monocytogenes NCTC 7973. Eight strains significantly improved host cell viability and were validated by quantification of intracellular CFU. Two top candidates were tested in a murine model of listeriosis. The genome of the lead strain was sequenced to evaluate safety and biosynthetic potential. Results: B. subtilis CECT 8266 completely inhibited intracellular replication of L. monocytogenes in HCT 116 cells, reducing bacterial recovery to undetectable levels. In vivo, it decreased splenic bacterial burden by approximately 6-fold. Genomic analysis revealed eight bacteriocin biosynthetic clusters and silent antibiotic resistance genes within predicted genomic islands, as determined by CARD and Alien Hunter analysis. The strain also demonstrated bile and acid tolerance, as well as strong adhesion to epithelial cells. Conclusions: The proposed pipeline enables efficient identification of probiotic Bacillus strains with intracellular protective activity. B. subtilis CECT 8266 is a promising candidate for translational applications in food safety or health due to its efficacy, resilience, and safety profile. Full article
Show Figures

Figure 1

22 pages, 3465 KiB  
Article
Chromosome-Level Genome Announcement of the Monokaryotic Pleurotus ostreatus Strain PC80
by Jie Wu, Wenhua Sun, Jingkang Zheng, Jinling Liu, Xuedi Liang, Qin Liu and Weili Kong
J. Fungi 2025, 11(8), 563; https://doi.org/10.3390/jof11080563 - 29 Jul 2025
Viewed by 189
Abstract
Pleurotus ostreatus is a widely cultivated edible fungus in China, renowned for its rich nutritional composition and diverse medicinal compounds. However, the quality of the currently published P. ostreatus genomes remained suboptimal, which limited in-depth research on its evolution, growth, and development. In [...] Read more.
Pleurotus ostreatus is a widely cultivated edible fungus in China, renowned for its rich nutritional composition and diverse medicinal compounds. However, the quality of the currently published P. ostreatus genomes remained suboptimal, which limited in-depth research on its evolution, growth, and development. In this study, we conducted a chromosome-level genome assembly of the monokaryotic basidiospore strain PC80. The assembled genome spanned 40.6 Mb and consisted of 15 scaffolds. Ten of these scaffolds contained complete telomere-to-telomere structures. The scaffold N50 value was 3.6 Mb. Genome annotation revealed 634 carbohydrate-active enzyme (CAZyme) family genes. Through collinearity analysis, we further confirmed that the PC80 genome exhibited higher completeness and greater accuracy compared to the currently published genomes of P. ostreatus. At the matA locus of PC80, three hd1 genes and one hd2 gene were identified. At the matB locus, seven pheromone receptor genes and two pheromone precursor genes were detected. Further phylogenetic analysis indicated that three of these pheromone receptor genes are likely to have mating-specific functions. This complete genome assembly could provide a foundation for future genomic and genetic studies, facilitate the identification of key genes related to growth and developmental regulation, and promote technological innovations in P. ostreatus breeding and efficient utilization. Full article
Show Figures

Figure 1

13 pages, 1650 KiB  
Article
A Fast TaqMan® Real-Time PCR Assay for the Detection of Mitochondrial DNA Haplotypes in a Wolf Population
by Rita Lorenzini, Lorenzo Attili, Martina De Crescenzo and Antonella Pizzarelli
Genes 2025, 16(8), 897; https://doi.org/10.3390/genes16080897 - 28 Jul 2025
Viewed by 140
Abstract
Background/Objectives: The gene pool of the Apennine wolf is affected by admixture with domestic variants due to anthropogenic hybridisation with dogs. Genetic monitoring at the population level involves assessing the extent of admixture in single individuals, ranging from pure wolves to recent [...] Read more.
Background/Objectives: The gene pool of the Apennine wolf is affected by admixture with domestic variants due to anthropogenic hybridisation with dogs. Genetic monitoring at the population level involves assessing the extent of admixture in single individuals, ranging from pure wolves to recent hybrids or wolf backcrosses, through the analysis of nuclear and mitochondrial DNA (mtDNA) markers. Although individually non-diagnostic, mtDNA is nevertheless essential for completing the final diagnosis of genetic admixture. Typically, the identification of wolf mtDNA haplotypes is carried out via sequencing of coding genes and non-coding DNA stretches. Our objective was to develop a fast real-time PCR assay to detect the mtDNA haplotypes that occur exclusively in the Apennine wolf population, as a valuable alternative to the demanding sequence-based typing. Methods: We validated a qualitative duplex real-time PCR that exploits the combined presence of diagnostic point mutations in two mtDNA segments, the NDH-4 gene and the control region, and is performed in a single-tube step through TaqMan-MGB chemistry. The aim was to detect mtDNA multi-fragment haplotypes that are exclusive to the Apennine wolf, bypassing sequencing. Results: Basic validation of 149 field samples, consisting of pure Apennine wolves, dogs, wolf × dog hybrids, and Dinaric wolves, showed that the assay is highly specific and sensitive, with genomic DNA amounts as low as 10−5 ng still producing positive results. It also proved high repeatability and reproducibility, thereby enabling reliable high-throughput testing. Conclusions: The results indicate that the assay presented here provides a valuable alternative method to the time- and cost-consuming sequencing procedure to reliably diagnose the maternal lineage of the still-threatened Apennine wolf, and it covers a wide range of applications, from scientific research to conservation, diagnostics, and forensics. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

11 pages, 2386 KiB  
Article
Genome-Wide In Silico Analysis Expanding the Potential Allergen Repertoire of Mango (Mangifera indica L.)
by Amit Singh, Aayan Zarif, Annelise N Huynh, Zhibo Yang and Nagib Ahsan
Appl. Sci. 2025, 15(15), 8375; https://doi.org/10.3390/app15158375 - 28 Jul 2025
Viewed by 193
Abstract
The potential of a protein to cause an allergic reaction is often assessed using a variety of computational techniques. Leveraging advances in high-throughput protein sequence data coupled with in silico or computational methods can be used to systematically analyze large proteomes for allergenic [...] Read more.
The potential of a protein to cause an allergic reaction is often assessed using a variety of computational techniques. Leveraging advances in high-throughput protein sequence data coupled with in silico or computational methods can be used to systematically analyze large proteomes for allergenic potential. Despite mango’s widespread consumption and growing clinical reports of hypersensitivity, the full extent of their allergenicity is yet unknown. In this study, for the first time, we conducted a genome-wide in silico analysis by analyzing a total of 54,010 protein sequences to identify the complete spectrum of potential mango allergens. These proteins were analyzed using various bioinformatics tools to predict their allergenic potential based on sequence similarity, structural features, and known allergen databases. In addition to the known mango allergens, including Man i 1, Man i 2, and Man i 3, our findings demonstrated that several isoforms of cysteine protease, non-specific lipid-transfer protein (LTP), legumin B-like, 11S globulin, vicilin, thaumatin-like protein, and ervatamin-B family proteins exhibited strong allergenic potential, with >80% 3D epitope identity, >70% linear 80 aa window identity, and matching with >80 known allergens. Thus, a genome-wide in silico study provided a comprehensive profile of the possible mango allergome, which could help identify the low-allergen-containing mango cultivars and aid in the development of accurate assays for variety-specific allergic reactions. Full article
(This article belongs to the Special Issue New Diagnostic and Therapeutic Approaches in Food Allergy)
Show Figures

Figure 1

24 pages, 13886 KiB  
Article
Complete Genome Analysis and Antimicrobial Mechanism of Burkholderia gladioli ZBSF BH07 Reveal Its Dual Role in the Biocontrol of Grapevine Diseases and Growth Promotion in Grapevines
by Xiangtian Yin, Chundong Wang, Lifang Yuan, Yanfeng Wei, Tinggang Li, Qibao Liu, Xing Han, Xinying Wu, Chaoping Wang and Xilong Jiang
Microorganisms 2025, 13(8), 1756; https://doi.org/10.3390/microorganisms13081756 - 28 Jul 2025
Viewed by 188
Abstract
Burkholderia gladioli is a multifaceted bacterium with both pathogenic and beneficial strains, and nonpathogenic Burkholderia species have shown potential as plant growth-promoting rhizobacteria (PGPRs) and biocontrol agents. However, the molecular mechanisms underlying their beneficial functions remain poorly characterized. This study systematically investigated the [...] Read more.
Burkholderia gladioli is a multifaceted bacterium with both pathogenic and beneficial strains, and nonpathogenic Burkholderia species have shown potential as plant growth-promoting rhizobacteria (PGPRs) and biocontrol agents. However, the molecular mechanisms underlying their beneficial functions remain poorly characterized. This study systematically investigated the antimicrobial mechanisms and plant growth-promoting properties of B. gladioli strain ZBSF BH07, isolated from the grape rhizosphere, by combining genomic and functional analyses, including whole-genome sequencing, gene annotation, phylogenetic and comparative genomics, in vitro antifungal assays, and plant growth promotion evaluations. The results showed that ZBSF BH07 exhibited broad-spectrum antifungal activity, inhibiting 14 grape pathogens with an average inhibition rate of 56.58% and showing dual preventive/curative effects against grape white rot, while also significantly promoting grape seedling growth with increases of 54.9% in plant height, 172.9% in root fresh weight, and 231.34% in root dry weight. Genomic analysis revealed an 8.56-Mb genome (two chromosomes and one plasmid) encoding 7431 genes and 26 secondary metabolite biosynthesis clusters (predominantly nonribosomal peptide synthetases), supporting its capacity for antifungal metabolite secretion, and functional analysis confirmed genes for indole-3-acetic acid (IAA) synthesis, phosphate solubilization, and siderophore production. These results demonstrate that ZBSF BH07 suppresses pathogens via antifungal metabolites and enhances grape growth through phytohormone regulation and nutrient acquisition, providing novel insights into the dual mechanisms of B. gladioli as a biocontrol and growth-promoting agent and laying a scientific foundation for developing sustainable grapevine disease management strategies. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

14 pages, 1450 KiB  
Article
Characterization and Complete Genomic Analysis of a Novel Bacteriophage BUCT775 for Acinetobacter baumannii and Its Elimination Efficiency in the Environment
by Yuxuan Liu, Yunfei Huang, Dongxiang Zhu, Lefei Zhang, Jianwei Zhang, Yigang Tong and Mengzhe Li
Int. J. Mol. Sci. 2025, 26(15), 7279; https://doi.org/10.3390/ijms26157279 - 28 Jul 2025
Viewed by 152
Abstract
Acinetobacter baumannii (A. baumannii) is an opportunistic pathogen responsible for a range of severe infections and nosocomial outbreaks. Phage-based therapy and biocontrol represent effective strategies to combat the prevalence of A. baumannii. This study reports a novel phage, BUCT775, capable [...] Read more.
Acinetobacter baumannii (A. baumannii) is an opportunistic pathogen responsible for a range of severe infections and nosocomial outbreaks. Phage-based therapy and biocontrol represent effective strategies to combat the prevalence of A. baumannii. This study reports a novel phage, BUCT775, capable of specifically lysing A. baumannii, and investigates its physiological properties, genomic characteristics, in vivo therapeutic efficacy, and environmental disinfection performance. Phage BUCT775 is a podovirus that forms clear, well-defined plaques with an average diameter of 2.5 ± 0.52 mm. It exhibits a broad range of temperature stability (4–55 °C) and pH stability (pH 3–12). The optimal multiplicity of infection (MOI) for phage BUCT775 is 0.01. At an MOI of 0.01, it demonstrates a latent period of approximately 10 min and exhibits a high burst size. Genomic sequencing and bioinformatics analysis revealed that phage BUCT775 belongs to the order Caudoviricetes and the family Autographiviridae. Its genome has a G + C content of 39.3% and is not known to contain virulence genes or antibiotic resistance genes. Phage BUCT775 exhibited significant therapeutic effects on A. baumannii-infected G. mellonella larvae, increasing the 120 h survival rate of the larvae by 20%. Additionally, phage BUCT775 efficiently eliminated A. baumannii in the environment, with an average clearance rate exceeding 98% within 3 h. These studies suggest that phage BUCT775 holds significant potential for application in phage therapy and environmental disinfection. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

16 pages, 2138 KiB  
Article
Precise Identification of Higher-Order Repeats (HORs) in T2T-CHM13 Assembly of Human Chromosome 21—Novel 52mer HOR and Failures of Hg38 Assembly
by Matko Glunčić, Ines Vlahović, Marija Rosandić and Vladimir Paar
Genes 2025, 16(8), 885; https://doi.org/10.3390/genes16080885 - 27 Jul 2025
Viewed by 210
Abstract
Background: Centromeric alpha satellite DNA is organized into higher-order repeats (HORs), whose precise structure is often difficult to resolve in standard genome assemblies. The recent telomere-to-telomere (T2T) assembly of the human genome enables complete analysis of centromeric regions, including the full structure of [...] Read more.
Background: Centromeric alpha satellite DNA is organized into higher-order repeats (HORs), whose precise structure is often difficult to resolve in standard genome assemblies. The recent telomere-to-telomere (T2T) assembly of the human genome enables complete analysis of centromeric regions, including the full structure of HOR arrays. Methods: We applied the novel high-precision GRMhor algorithm to the complete T2T-CHM13 assembly of human chromosome 21. GRMhor integrates global repeat map (GRM) and monomer distance (MD) diagrams to accurately identify, classify, and visualize HORs and their subfragments. Results: The analysis revealed a novel Cascading 11mer HOR array, in which each canonical HOR copy comprises 11 monomers belonging to 10 different monomer types. Subfragments with periodicities of 4, 7, 9, and 20 were identified within the array. A second, complex 23/25mer HOR array of mixed Willard’s/Cascading type was also detected. In contrast to the hg38 assembly, where a dominant 8mer and 33mer HOR were previously annotated, these structures were absent in the T2T-CHM13 assembly, highlighting the limitations of hg38. Notably, we discovered a novel 52mer HOR—the longest alpha satellite HOR unit reported in the human genome to date. Several subfragment repeats correspond to alphoid subfamilies previously identified using restriction enzyme digestion, but are here resolved with higher structural precision. Conclusions: Our findings demonstrate the power of GRMhor in resolving complex and previously undetected alpha satellite architectures, including the longest canonical HOR unit identified in the human genome. The precise delineation of superHORs, Cascading structures, and HOR subfragments provides unprecedented insight into the fine-scale organization of the centromeric region of chromosome 21. These results highlight both the inadequacy of earlier assemblies, such as hg38, and the critical importance of complete telomere-to-telomere assemblies for accurately characterizing centromeric DNA. Full article
(This article belongs to the Section Cytogenomics)
Show Figures

Figure 1

19 pages, 4407 KiB  
Article
Mitochondrial Genome of Scutiger ningshanensis (Anura, Megophryidae, Scutiger): Insights into the Characteristics of the Mitogenome and the Phylogenetic Relationships of Megophryidae Species
by Siqi Shan, Simin Chen, Chengmin Li, Lingyu Peng, Dongmei Zhao, Yaqing Liao, Peng Liu and Lichun Jiang
Genes 2025, 16(8), 879; https://doi.org/10.3390/genes16080879 - 26 Jul 2025
Viewed by 251
Abstract
Background/Objectives: Scutiger ningshanensis (Fang, 1985) is an endemic Chinese amphibian species within the genus Scutiger (Megophryidae). Despite its ecological significance, its mitochondrial genome architecture and evolutionary relationships remain poorly understood. Given the high structural variability in Megophryidae mitogenomes and unresolved phylogenetic patterns [...] Read more.
Background/Objectives: Scutiger ningshanensis (Fang, 1985) is an endemic Chinese amphibian species within the genus Scutiger (Megophryidae). Despite its ecological significance, its mitochondrial genome architecture and evolutionary relationships remain poorly understood. Given the high structural variability in Megophryidae mitogenomes and unresolved phylogenetic patterns in Scutiger, this study aims to (1) characterize the complete mitogenome of S. ningshanensis, (2) analyze its molecular evolution, and (3) clarify its phylogenetic position and divergence history within Megophryidae. Methods: The complete mitochondrial genome was sequenced and annotated, followed by analyses of nucleotide composition, codon usage bias, and selection pressures (Ka/Ks ratios). Secondary structures of rRNAs and tRNAs were predicted, and phylogenetic relationships were reconstructed using maximum likelihood and Bayesian methods. Divergence times were estimated using molecular clock analysis. Results: The mitogenome of S. ningshanensis is 17,282 bp long, encoding 13 protein-coding genes (PCGs), 22 tRNAs, 2 rRNAs, and a control region, with a notable AT bias (61.05%) with nucleotide compositions of T (32.51%), C (24.64%), G (14.3%), and A (28.54%). All tRNAs exhibited cloverleaf structures except trnS1, which lacked a DHU stem. Phylogenetic analysis confirmed the monophyly of Scutiger, forming a sister clade to Oreolalax and Leptobrachium, and that S. ningshanensis and S. liubanensis are sister species with a close evolutionary relationship. Positive selection was detected in Atp8 (Ka/Ks > 1), suggesting adaptation to plateau environments, while other PCGs underwent purifying selection (Ka/Ks < 1). Divergence time estimation placed the origin of Megophryidae at~47.97 MYA (Eocene), with S. ningshanensis diverging~32.67 MYA (Oligocene). Conclusions: This study provides the first comprehensive mitogenomic characterization of S. ningshanensis, revealing its evolutionary adaptations and phylogenetic placement. The findings enhance our understanding of Megophryidae’s diversification and offer a genomic foundation for future taxonomic and conservation studies. Full article
(This article belongs to the Section Cytogenomics)
Show Figures

Figure 1

23 pages, 6061 KiB  
Article
Genomic Insights into Emerging Multidrug-Resistant Chryseobacterium indologenes Strains: First Report from Thailand
by Orathai Yinsai, Sastra Yuantrakul, Punnaporn Srisithan, Wenting Zhou, Sorawit Chittaprapan, Natthawat Intajak, Thanakorn Kruayoo, Phadungkiat Khamnoi, Siripong Tongjai and Kwanjit Daungsonk
Antibiotics 2025, 14(8), 746; https://doi.org/10.3390/antibiotics14080746 - 24 Jul 2025
Viewed by 327
Abstract
Background: Chryseobacterium indologenes, an environmental bacterium, is increasingly recognized as an emerging nosocomial pathogen, particularly in Asia, and is often characterized by multidrug resistance. Objectives: This study aimed to investigate the genomic features of clinical C. indologenes isolates from Maharaj [...] Read more.
Background: Chryseobacterium indologenes, an environmental bacterium, is increasingly recognized as an emerging nosocomial pathogen, particularly in Asia, and is often characterized by multidrug resistance. Objectives: This study aimed to investigate the genomic features of clinical C. indologenes isolates from Maharaj Nakorn Chiang Mai Hospital, Thailand, to understand their mechanisms of multidrug resistance, virulence factors, and mobile genetic elements (MGEs). Methods: Twelve C. indologenes isolates were identified, and their antibiotic susceptibility profiles were determined. Whole genome sequencing (WGS) was performed using a hybrid approach combining Illumina short-reads and Oxford Nanopore long-reads to generate complete bacterial genomes. The hybrid assembled genomes were subsequently analyzed to detect antimicrobial resistance (AMR) genes, virulence factors, and MGEs. Results: C. indologenes isolates were primarily recovered from urine samples of hospitalized elderly male patients with underlying conditions. These isolates generally exhibited extensive drug resistance, which was subsequently explored and correlated with genomic determinants. With one exception, CMCI13 showed a lower resistance profile (Multidrug resistance, MDR). Genomic analysis revealed isolates with genome sizes of 4.83–5.00 Mb and GC content of 37.15–37.35%. Genomic characterization identified conserved resistance genes (blaIND-2, blaCIA-4, adeF, vanT, and qacG) and various virulence factors. Phylogenetic and pangenome analysis showed 11 isolates clustering closely with Chinese strain 3125, while one isolate (CMCI13) formed a distinct branch. Importantly, each isolate, except CMCI13, harbored a large genomic island (approximately 94–100 kb) carrying significant resistance genes (blaOXA-347, tetX, aadS, and ermF). The absence of this genomic island in CMCI13 correlated with its less resistant phenotype. No plasmids, integrons, or CRISPR-Cas systems were detected in any isolate. Conclusions: This study highlights the alarming emergence of multidrug-resistant C. indologenes in a hospital setting in Thailand. The genomic insights into specific resistance mechanisms, virulence factors, and potential horizontal gene transfer (HGT) events, particularly the association of a large genomic island with the XDR phenotype, underscore the critical need for continuous genomic surveillance to monitor transmission patterns and develop effective treatment strategies for this emerging pathogen. Full article
Show Figures

Figure 1

14 pages, 20502 KiB  
Article
Pathology, Tissue Distribution, and Phylogenetic Characterization of Largemouth Bass Virus Isolated from a Wild Smallmouth Bass (Micropterus dolomieu)
by Christine J. E. Haake, Thomas B. Waltzek, Chrissy D. Eckstrand, Nora Hickey, Joetta Lynn Reno, Rebecca M. Wolking, Preeyanan Sriwanayos, Jan Lovy, Elizabeth Renner, Kyle R. Taylor and Ryan Oliveira
Viruses 2025, 17(8), 1031; https://doi.org/10.3390/v17081031 - 23 Jul 2025
Viewed by 944
Abstract
We performed a diagnostic disease investigation on a wild smallmouth bass (Micropterus dolomieu) with skin ulcers that was collected from Lake Oahe, South Dakota, following reports from anglers of multiple fish with similar lesions. Gross and histologic lesions of ulcerative dermatitis, [...] Read more.
We performed a diagnostic disease investigation on a wild smallmouth bass (Micropterus dolomieu) with skin ulcers that was collected from Lake Oahe, South Dakota, following reports from anglers of multiple fish with similar lesions. Gross and histologic lesions of ulcerative dermatitis, myositis, and lymphocytolysis within the spleen and kidneys were consistent with largemouth bass virus (LMBV) infection. LMBV was detected by conventional PCR in samples of a skin ulcer, and the complete genome sequence of the LMBV (99,184 bp) was determined from a virus isolate obtained from a homogenized skin sample. A maximum likelihood (ML) phylogenetic analysis based on the major capsid protein (MCP) gene alignment supported the LMBV isolate (LMBV-SD-2023) as a member of the species Ranavirus micropterus1, branching within the subclade of LMBV isolates recovered from North American largemouth (Micropterus salmoides) and smallmouth bass. This is the first detection of LMBV in wild smallmouth bass from South Dakota. The ultrastructure of the LMBV isolate exhibited the expected icosahedral shape of virions budding from cellular membranes. Viral nucleic acid in infected cells was visualized via in situ hybridization (ISH) within dermal granulomas, localized predominantly at the margin of epithelioid macrophages and central necrosis. Further sampling is needed to determine the geographic distribution, affected populations, and evolutionary relationship between isolates of LMBV. Full article
(This article belongs to the Special Issue Iridoviruses, 2nd Edition)
Show Figures

Figure 1

22 pages, 11051 KiB  
Article
Exploring the Anti-Alzheimer’s Disease Potential of Aspergillus terreus C23-3 Through Genomic Insights, Metabolomic Analysis, and Molecular Docking
by Zeyuan Ma, Longjian Zhou, Zhiyou Yang, Yayue Liu and Yi Zhang
J. Fungi 2025, 11(8), 546; https://doi.org/10.3390/jof11080546 - 23 Jul 2025
Viewed by 367
Abstract
Alzheimer’s disease (AD) is a prevalent neurodegenerative disorder with a pressing need for novel therapeutics. However, current medications only offer symptomatic relief, without tackling the underlying pathology. To explore the bioactive potential of marine-derived fungi, this study focused on Aspergillus terreus C23-3, a [...] Read more.
Alzheimer’s disease (AD) is a prevalent neurodegenerative disorder with a pressing need for novel therapeutics. However, current medications only offer symptomatic relief, without tackling the underlying pathology. To explore the bioactive potential of marine-derived fungi, this study focused on Aspergillus terreus C23-3, a strain isolated from the coral Pavona cactus in Xuwen County, China, which showed a richer metabolite fingerprint among the three deposited A. terreus strains. AntiSMASH analysis based on complete genome sequencing predicted 68 biosynthetic gene clusters (BGCs) with 7 BGCs synthesizing compounds reported to have anti-AD potential, including benzodiazepines, benzaldehydes, butenolides, and lovastatin. Liquid chromatography coupled with mass spectrometry (LC-MS)-based combinational metabolomic annotation verified most of the compounds predicted by BGCs with the acetylcholinesterase (AChE) inhibitor territrem B characterized from its fermentation extract. Subsequently, molecular docking showed that these compounds, especially aspulvione B1, possessed strong interactions with AD-related targets including AChE, cyclin-dependent kinase 5-p25 complex (CDK5/p25), glycogen synthase kinase-3β (GSK-3β), and monoamine oxidase-B (MAO-B). In conclusion, the genomic–metabolomic analyses and molecular docking indicated that C23-3 is a high-value source strain for anti-AD natural compounds. Full article
(This article belongs to the Special Issue Fungal Metabolomics and Genomics)
Show Figures

Figure 1

Back to TopTop