Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Keywords = compatibility of traditional Chinese medicine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 5239 KiB  
Article
Unveiling the Mechanism of Compound Ku-Shen Injection in Liver Cancer Treatment through an Ingredient–Target Network Analysis
by Wenkui Zou, Jiazhen Liu, Zexing Wei, Chunhua Peng, Ying Zhao, Yue Ding, Jifan Shi and Juan Zhao
Genes 2024, 15(10), 1278; https://doi.org/10.3390/genes15101278 - 29 Sep 2024
Cited by 1 | Viewed by 2069
Abstract
Background: Compound Ku-Shen Injection (CKI) is a traditional Chinese medicine preparation derived from Ku-Shen and Bai-Tu-Ling, commonly used in the adjunctive treatment of advanced cancers, including liver cancer. However, the underlying mechanisms of CKI’s effectiveness in cancer treatment are not well defined. Methods: [...] Read more.
Background: Compound Ku-Shen Injection (CKI) is a traditional Chinese medicine preparation derived from Ku-Shen and Bai-Tu-Ling, commonly used in the adjunctive treatment of advanced cancers, including liver cancer. However, the underlying mechanisms of CKI’s effectiveness in cancer treatment are not well defined. Methods: This study employs network pharmacology to investigate the traditional Chinese medicine (TCM) compatibility theory underlying CKI’s action in treating liver cancer, with findings substantiated by molecular docking and in vitro experiments. Sixteen active components were identified from CKI, along with 193 potential targets for treating liver cancer. Key therapeutic target proteins, including EGFR and ESR1, were also identified. KEGG enrichment results showed that the neuroactive ligand–receptor interaction, cAMP signaling pathway, and serotonergic synapses make up the key pathway of CKI in the treatment of liver cancer. Molecular docking results confirmed that the key active ingredients effectively bind to the core targets. CCK-8 cytotoxic experiment results show that the CKI key components of oxymatrine and matrine can inhibit the growth of HepG2 liver cancer cell proliferation. A Western blot analysis revealed that oxymatrine suppresses the expression of EGFR, contributing to its therapeutic efficacy against liver cancer. Conclusion: our study elucidated the therapeutic mechanism of CKI in treating liver cancer and unveiled the underlying principles of its TCM compatibility through its mode of action. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

14 pages, 3700 KiB  
Article
The Inhibitory Impact of a Co-Assembly Gel with Natural Carrier-Free Binary Small Molecules, as Used in Traditional Chinese Medicine, on the Viability of SW1990 Cells
by Xueqiang Nie, Sifan Liu, Qiongxue Huang, Haifeng Wu, Qingxia Zheng, Xudong Xu, Bowen Li, Guoxu Ma, Xiaolei Zhou, Shuchen Liu and Weijuan Gao
Gels 2024, 10(9), 569; https://doi.org/10.3390/gels10090569 - 31 Aug 2024
Viewed by 1781
Abstract
Chinese herbs are a huge treasure trove of natural products and an important source of many active molecules. The theory of traditional Chinese medicine compatibility (TCMC) is widely applied in clinical practice, but its mechanism is still ambiguous. This study aims to open [...] Read more.
Chinese herbs are a huge treasure trove of natural products and an important source of many active molecules. The theory of traditional Chinese medicine compatibility (TCMC) is widely applied in clinical practice, but its mechanism is still ambiguous. This study aims to open a new window for this predicament by studying the interaction between the main active ingredients from a drug pair. Carrier-free assembly of natural products improves the shortcomings of traditional nanodelivery systems and opens a new path for the development of new nanomaterials. The drug pair “Pueraria and Hedyotis diffusa” has been commonly used in clinical practice, with a predominant therapeutic effect. This study is devoted to the study of the binary small molecule co-assembly of the main active molecules from the drug pair. In this study, we introduce a carrier-free composite gel, formed by the co-assembly of puerarin (PUE) and deacetylasperulosidic acid (DAA) via non-covalent bonds including π–π packing, intermolecular hydrogen bonding, and C=O π interactions. With a strain point 7-fold higher than that of P gel, the P − D gel exhibited favorable rheological properties. The survival rate of SW1990 cells in the P − D group was only 21.39% when the concentration of administration reached 200 μM. It thus demonstrated activity in inhibiting SW1990 cells’ survival, suggesting potential in combating pancreatic cancer. Furthermore, this research offers a valuable concept for enhancing the mechanical properties and bioactivity of hydrogel materials through the utilization of a multi-component natural small molecule co-assembly approach. More importantly, this provides new ideas and methods for the treatment of pancreatic cancer and the analysis of traditional Chinese medicine compatibility theory. Full article
(This article belongs to the Special Issue Recent Advances in Biopolymer Gels)
Show Figures

Figure 1

14 pages, 4396 KiB  
Article
Deep Eutectic Solvents-Based Ultrasonic-Assisted Dispersive Liquid–Liquid Microextraction for the Determination of Organophosphorus Pesticides in Honeysuckle Dew Samples
by Kangmiao Guo, Xiaokun Wu, Fan Zhang, Ying Cao, Zenglei Tan, Shuwen Xiao and Lijie Wu
Molecules 2024, 29(14), 3423; https://doi.org/10.3390/molecules29143423 - 21 Jul 2024
Cited by 6 | Viewed by 2045
Abstract
A deep eutectic solvent (DES) with the ability to change from hydrophilic to hydrophobic was designed and synthesized and applied to the determination of organophosphorus (OPP) pesticides in honeysuckle dew samples. Choline chloride, phenol, and tetrahydrofuran (THF) were used as the hydrogen bond [...] Read more.
A deep eutectic solvent (DES) with the ability to change from hydrophilic to hydrophobic was designed and synthesized and applied to the determination of organophosphorus (OPP) pesticides in honeysuckle dew samples. Choline chloride, phenol, and tetrahydrofuran (THF) were used as the hydrogen bond acceptor, hydrogen bond donor, and demulsifier, respectively. Eight OPP pesticides were extracted by DES coupled with ultrasonic-assisted extraction (UA) and then chromatographed by GC-MS. DES used as an extract solvent has the advantages of high extraction efficiency, low cost, and environmental protection. Furthermore, DES is compatible with GC-MS. The single factor experiment design and Box–Behnken design (BBD) were applied to the optimization of experimental factors, including the type and composition of extraction solvent, type of demulsifier solvent, the volume of DES and THF, pH of sample solution, and ultrasonic time. Under the optimum experimental conditions, the high degree of linearity from 0.1 to 20.0 ng mL−1 (R2 ≥ 0.9989), the limits of detection from 0.014 to 0.051 ng mL−1 (S/N = 3), and the recoveries of analytes from 81.4 to 104.4% with relative standard deviation below 8.6%. In addition, the adsorption mechanism of OPPs on DES was explored by adsorption kinetic studies. These results have demonstrated that the present method has offered an effective, accurate, and sensitive methodology for OPP pesticides in honeysuckle dew samples, and this method provides a reference for the detection of pesticide residues in traditional Chinese medicine. Full article
(This article belongs to the Special Issue Chromatography and Extraction Techniques for Chemical Applications)
Show Figures

Graphical abstract

19 pages, 5060 KiB  
Article
Efficacy and Molecular Mechanism of Quercetin on Constipation Induced by Berberine via Regulating Gut Microbiota
by Mengyao Cui, Ying Li, Tingting Zheng, Huan Chen, Jinrui Wang, Yifan Feng, Hanyi Ye, Zhengqi Dong and Geng Li
Int. J. Mol. Sci. 2024, 25(11), 6228; https://doi.org/10.3390/ijms25116228 - 5 Jun 2024
Cited by 4 | Viewed by 3749
Abstract
Berberine (BBR) is used to treat cancer, inflammatory conditions, and so on. But the side effects of BBR causing constipation should not be ignored. In clinical application, the combination of Amomum villosum Lour. (AVL) and BBR can relieve it. However, the effective ingredients [...] Read more.
Berberine (BBR) is used to treat cancer, inflammatory conditions, and so on. But the side effects of BBR causing constipation should not be ignored. In clinical application, the combination of Amomum villosum Lour. (AVL) and BBR can relieve it. However, the effective ingredients and molecular mechanism of AVL in relieving constipation are not clear. A small intestine propulsion experiment was conducted in constipated mice to screen active ingredients of AVL. We further confirmed the molecular mechanism of action of the active ingredient on BBR-induced constipation. Quercetin (QR) was found to be the effective ingredient of AVL in terms of relieving constipation. QR can efficiently regulate the microbiota in mice suffering from constipation. Moreover, QR significantly raised the levels of substance P and motilin while lowering those of 5-hydroxytryptamine and vasoactive intestinal peptide; furthermore, it also increased the protein expression levels of calmodulin, myosin light-chain kinase, and myosin light chain. The use of QR in combination with BBR has an adverse effect-reducing efficacy. The study provides new ideas and possibilities for the treatment of constipation induced by BBR. Full article
Show Figures

Figure 1

17 pages, 4718 KiB  
Article
Integrating Chinese Herbs and Western Medicine for New Wound Dressings Through Handheld Electrospinning
by Jianfeng Zhou, Liangzhe Wang, Wenjian Gong, Bo Wang, Deng-Guang Yu and Yuanjie Zhu
Biomedicines 2023, 11(8), 2146; https://doi.org/10.3390/biomedicines11082146 - 30 Jul 2023
Cited by 29 | Viewed by 4004 | Correction
Abstract
In this nanotechnology era, nanostructures play a crucial role in the investigation of novel functional nanomaterials. Complex nanostructures and their corresponding fabrication techniques provide powerful tools for the development of high-performance functional materials. In this study, advanced micro-nanomanufacturing technologies and composite micro-nanostructures were [...] Read more.
In this nanotechnology era, nanostructures play a crucial role in the investigation of novel functional nanomaterials. Complex nanostructures and their corresponding fabrication techniques provide powerful tools for the development of high-performance functional materials. In this study, advanced micro-nanomanufacturing technologies and composite micro-nanostructures were applied to the development of a new type of pharmaceutical formulation, aiming to achieve rapid hemostasis, pain relief, and antimicrobial properties. Briefly, an approach combining a electrohydrodynamic atomization (EHDA) technique and reversed-phase solvent was employed to fabricate a novel beaded nanofiber structure (BNS), consisting of micrometer-sized particles distributed on a nanoscale fiber matrix. Firstly, Zein-loaded Yunnan Baiyao (YB) particles were prepared using the solution electrospraying process. Subsequently, these particles were suspended in a co-solvent solution containing ciprofloxacin (CIP) and hydrophilic polymer polyvinylpyrrolidone (PVP) and electrospun into hybrid structural microfibers using a handheld electrospinning device, forming the EHDA product E3. The fiber-beaded composite morphology of E3 was confirmed through scanning electron microscopy (SEM) images. Fourier-transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) analysis revealed the amorphous state of CIP in the BNS membrane due to the good compatibility between CIP and PVP. The rapid dissolution experiment revealed that E3 exhibits fast disintegration properties and promotes the dissolution of CIP. Moreover, in vitro drug release study demonstrated the complete release of CIP within 1 min. Antibacterial assays showed a significant reduction in the number of adhered bacteria on the BNS, indicating excellent antibacterial performance. Compared with the traditional YB powders consisting of Chinese herbs, the BNS showed a series of advantages for potential wound dressing. These advantages include an improved antibacterial effect, a sustained release of active ingredients from YB, and a convenient wound covering application, which were resulted from the integration of Chinese herbs and Western medicine. This study provides valuable insights for the development of novel multiscale functional micro-/nano-composite materials and pioneers the developments of new types of medicines from the combination of herbal medicines and Western medicines. Full article
(This article belongs to the Special Issue Novel Drug Delivery Systems: Design, Evaluation and Application)
Show Figures

Figure 1

17 pages, 8067 KiB  
Article
Potential Inhibitors of Monkeypox Virus Revealed by Molecular Modeling Approach to Viral DNA Topoisomerase I
by Xiaopeng Hu, Sanqi An, Jiemei Chu, Bingyu Liang, Yanyan Liao, Junjun Jiang, Yao Lin, Li Ye and Hao Liang
Molecules 2023, 28(3), 1444; https://doi.org/10.3390/molecules28031444 - 2 Feb 2023
Cited by 15 | Viewed by 3844
Abstract
The monkeypox outbreak has become a global public health emergency. The lack of valid and safe medicine is a crucial obstacle hindering the extermination of orthopoxvirus infections. The identification of potential inhibitors from natural products, including Traditional Chinese Medicine (TCM), by molecular modeling [...] Read more.
The monkeypox outbreak has become a global public health emergency. The lack of valid and safe medicine is a crucial obstacle hindering the extermination of orthopoxvirus infections. The identification of potential inhibitors from natural products, including Traditional Chinese Medicine (TCM), by molecular modeling could expand the arsenal of antiviral chemotherapeutic agents. Monkeypox DNA topoisomerase I (TOP1) is a highly conserved viral DNA repair enzyme with a small size and low homology to human proteins. The protein model of viral DNA TOP1 was obtained by homology modeling. The reliability of the TOP1 model was validated by analyzing its Ramachandran plot and by determining the compatibility of the 3D model with its sequence using the Verify 3D and PROCHECK services. In order to identify potential inhibitors of TOP1, an integrated library of 4103 natural products was screened via Glide docking. Surface Plasmon Resonance (SPR) was further implemented to assay the complex binding affinity. Molecular dynamics simulations (100 ns) were combined with molecular mechanics Poisson–Boltzmann surface area (MM/PBSA) computations to reveal the binding mechanisms of the complex. As a result, three natural compounds were highlighted as potential inhibitors via docking-based virtual screening. Rosmarinic acid, myricitrin, quercitrin, and ofloxacin can bind TOP1 with KD values of 2.16 μM, 3.54 μM, 4.77 μM, and 5.46 μM, respectively, indicating a good inhibitory effect against MPXV. The MM/PBSA calculations revealed that rosmarinic acid had the lowest binding free energy at −16.18 kcal/mol. Myricitrin had a binding free energy of −13.87 kcal/mol, quercitrin had a binding free energy of −9.40 kcal/mol, and ofloxacin had a binding free energy of −9.64 kcal/mol. The outputs (RMSD/RMSF/Rg/SASA) also indicated that the systems were well-behaved towards the complex. The selected compounds formed several key hydrogen bonds with TOP1 residues (TYR274, LYS167, GLY132, LYS133, etc.) via the binding mode analysis. TYR274 was predicted to be a pivotal residue for compound interactions in the binding pocket of TOP1. The results of the enrichment analyses illustrated the potential pharmacological networks of rosmarinic acid. The molecular modeling approach may be acceptable for the identification and design of novel poxvirus inhibitors; however, further studies are warranted to evaluate their therapeutic potential. Full article
Show Figures

Figure 1

18 pages, 2223 KiB  
Article
Metabolomic Analysis of Stephania tetrandraAstragalus membranaceus Herbal Pair-Improving Nephrotic Syndrome Identifies Activation of IL-13/STAT6 Signaling Pathway
by Baiyang Xu, Mengxue Yao, Zilu Liu, Shanshan Zhang, Bin Wang, Yanquan Han, Jiarong Gao, Deling Wu and Xiaoli Wang
Pharmaceuticals 2023, 16(1), 88; https://doi.org/10.3390/ph16010088 - 8 Jan 2023
Cited by 7 | Viewed by 3151
Abstract
The Stephania tetrandraAstragalus membranaceus herbal pair (FH) is a classic herbal pair widely used in the treatment of nephrotic syndrome (NS). The effects of Stephania tetrandra (FJ) and Astragalus membranaceus (HQ) on NS have been reported, but the mechanism of their [...] Read more.
The Stephania tetrandraAstragalus membranaceus herbal pair (FH) is a classic herbal pair widely used in the treatment of nephrotic syndrome (NS). The effects of Stephania tetrandra (FJ) and Astragalus membranaceus (HQ) on NS have been reported, but the mechanism of their combination on the improvement of NS are still unclear. The NS model was established by injecting adriamycin into the tail vein. FH intervention reduced the levels of serum triglyceride, total cholesterol, interleukin-6 (IL-6), blood urea nitrogen (BUN), urinary protein, and the gene expression levels of aquaporin 2 (AQP2) and arginine vasopressin (AVP) in NS rats. In addition, FH improved kidney injury in NS rats by inhibiting the expression of interleukin 13 (IL-13), phospho-signal transducers, and activators of transcription 6 (p-STAT6), Bax, cleaved-caspase3, while promoting the expression of Bcl-2. By comprehensive comparison of multiple indexes, the effects of FH on lipid metabolism, glomerular filtration rate, and inflammation were superior to that of FJ and HQ. Metabonomic studies showed that, compared with FJ and HQ, FH intervention significantly regulated tricarboxylic acid (TCA) cycle, cysteine and methionine metabolism, and alanine, aspartic acid and glutamic acid metabolism. Pearson correlation analysis showed that succinic acid and L-aspartic acid were negatively correlated with urinary protein, cystatin C (Cys C) and BUN (p < 0.05). In summary, FH could reduce renal injury and improve NS through inhibiting the IL-13/STAT6 signal pathway, regulating endogenous metabolic pathways, such as TCA cycle, and inhibiting the expression of AQP2 and AVP genes. This study provides a comprehensive strategy to reveal the mechanism of FH on the treatment of NS, and also provides a reasonable way to clarify the compatibility of traditional Chinese medicine. Full article
(This article belongs to the Special Issue Novel Applications of Metabolomics in Drug Discovery)
Show Figures

Figure 1

18 pages, 2945 KiB  
Article
The Synergistic Mechanism of Total Saponins and Flavonoids in Notoginseng–Safflower against Myocardial Infarction Using a Comprehensive Metabolomics Strategy
by Meng Fang, Yuqing Meng, Zhiyong Du, Mengqiu Guo, Yong Jiang, Pengfei Tu, Kun Hua, Yingyuan Lu and Xiaoyu Guo
Molecules 2022, 27(24), 8860; https://doi.org/10.3390/molecules27248860 - 13 Dec 2022
Cited by 9 | Viewed by 2386
Abstract
Notoginseng and safflower are commonly used traditional Chinese medicines for benefiting qi and activating blood circulation. A previous study by our group showed that the compatibility of the effective components of total saponins of notoginseng (NS) and total flavonoids of safflower (SF), named [...] Read more.
Notoginseng and safflower are commonly used traditional Chinese medicines for benefiting qi and activating blood circulation. A previous study by our group showed that the compatibility of the effective components of total saponins of notoginseng (NS) and total flavonoids of safflower (SF), named NS–SF, had a preventive effect on isoproterenol (ISO)-induced myocardial infarction (MI) in rats. However, the therapeutic effect on MI and the synergistic mechanism of NS–SF are still unclear. Therefore, integrated metabolomics, combined with immunohistochemistry and other pharmacological methods, was used to systematically research the therapeutic effect of NS–SF on MI rats and the synergistic mechanism of NS and SF. Compared to NS and SF, the results demonstrated that NS–SF exhibited a significantly better role in ameliorating myocardial damage, apoptosis, easing oxidative stress and anti-inflammation. NS–SF showed a more significant regulatory effect on metabolites involved in sphingolipid metabolism, glycine, serine, and threonine metabolism, primary bile acid biosynthesis, aminoacyl-tRNA biosynthesis, and tricarboxylic acid cycle, such as sphingosine, lysophosphatidylcholine (18:0), lysophosphatidylethanolamine (22:5/0:0), chenodeoxycholic acid, L-valine, glycine, and succinate, than NS or SF alone, indicating that NS and SF produced a synergistic effect on the treatment of MI. This study will provide a theoretical basis for the clinical development of NS–SF. Full article
(This article belongs to the Special Issue Mass Spectrometry in Pharmaceutical Analysis)
Show Figures

Graphical abstract

24 pages, 1783 KiB  
Review
Study on Supramolecules in Traditional Chinese Medicine Decoction
by Yuan Gao, Yingying Dong, Qin Guo, Huanhuan Wang, Mei Feng, Zhengshen Yan and Dong Bai
Molecules 2022, 27(10), 3268; https://doi.org/10.3390/molecules27103268 - 19 May 2022
Cited by 47 | Viewed by 6882
Abstract
With the application of the concept of supramolecular chemistry to various fields, a large number of supramolecules have been discovered. The chemical components of traditional Chinese medicine have various sources and unique structures. During the high-temperature boiling process, various active components form supramolecules [...] Read more.
With the application of the concept of supramolecular chemistry to various fields, a large number of supramolecules have been discovered. The chemical components of traditional Chinese medicine have various sources and unique structures. During the high-temperature boiling process, various active components form supramolecules due to complex interactions. The supramolecular structure in a traditional Chinese medicine decoction can not only be used as a drug carrier to promote the absorption and distribution of medicinal components but may also have biological activities superior to those of single active ingredients or their physical mixtures. By summarizing the relevant research results over recent years, this paper introduces the research progress regarding supramolecules in various decoctions, laying a foundation for further research into supramolecules in traditional Chinese medicine decoctions, and provides a new perspective for revealing the compatibility mechanisms of traditional Chinese medicine, guiding clinical medications, and developing new nanometers materials. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

18 pages, 60642 KiB  
Article
The Great Capacity on Promoting Melanogenesis of Three Compatible Components in Vernonia anthelmintica (L.) Willd.
by Yifan Lai, Qingyuan Feng, Rui Zhang, Jing Shang and Hui Zhong
Int. J. Mol. Sci. 2021, 22(8), 4073; https://doi.org/10.3390/ijms22084073 - 15 Apr 2021
Cited by 20 | Viewed by 3261
Abstract
To investigate a possible methodology of exploiting herbal medicine and design polytherapy for the treatment of skin depigmentation disorder, we have made use of Vernonia anthelmintica (L.) Willd., a traditional Chinese herbal medicine that has been proven to be effective in treating [...] Read more.
To investigate a possible methodology of exploiting herbal medicine and design polytherapy for the treatment of skin depigmentation disorder, we have made use of Vernonia anthelmintica (L.) Willd., a traditional Chinese herbal medicine that has been proven to be effective in treating vitiligo. Here, we report that the extract of Vernonia anthelmintica (L.) Willd. effectively enhances melanogenesis responses in B16F10. In its compound library, we found three ingredients (butin, caffeic acid and luteolin) also have the activity of promoting melanogenesis in vivo and in vitro. They can reduce the accumulation of ROS induced by hydrogen peroxide and inflammatory response induced by sublethal concentrations of copper sulfate in wild type and green fluorescent protein (GFP)-labeled leukocytes zebrafish larvae. The overall objective of the present study aims to identify which compatibility proportions of the medicines may be more effective in promoting pigmentation. We utilized the D-optimal response surface methodology to optimize the ratio among three molecules. Combining three indicators of promoting melanogenesis, anti-inflammatory and antioxidant capacities, we get the best effect of butin, caffeic acid and luteolin at the ratio (butin:caffeic acid:luteolin = 7.38:28.30:64.32) on zebrafish. Moreover, the effect of melanin content recovery in the best combination is stronger than that of the monomer, which suggests that the three compounds have a synergistic effect on inducing melanogenesis. After simply verifying the result, we performed in situ hybridization on whole-mount zebrafish embryos to further explore the effects of multi-drugs combination on the proliferation and differentiation of melanocytes and the expression of genes (tyr, mitfa, dct, kit) related to melanin synthesis. In conclusion, the above three compatible compounds can significantly enhance melanogenesis and improve depigmentation in vivo. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

19 pages, 1035 KiB  
Review
Review of Constituents and Biological Activities of Triterpene Saponins from Glycyrrhizae Radix et Rhizoma and Its Solubilization Characteristics
by Feifei Li, Bin Liu, Tong Li, Qianwen Wu, Zhiyong Xu, Yuhao Gu, Wen Li, Penglong Wang, Tao Ma and Haimin Lei
Molecules 2020, 25(17), 3904; https://doi.org/10.3390/molecules25173904 - 27 Aug 2020
Cited by 65 | Viewed by 6582
Abstract
Glycyrrhizae Radix et Rhizoma is regarded as one of the most popular and commonly used herbal medicines and has been used in traditional Chinese medicine (TCM) prescriptions for over 2000 years. Pentacyclic triterpene saponins are common secondary metabolites in these plants, which are [...] Read more.
Glycyrrhizae Radix et Rhizoma is regarded as one of the most popular and commonly used herbal medicines and has been used in traditional Chinese medicine (TCM) prescriptions for over 2000 years. Pentacyclic triterpene saponins are common secondary metabolites in these plants, which are synthesized via the isoprenoid pathway to produce a hydrophobic triterpenoid aglycone containing a hydrophilic sugar chain. This paper systematically summarizes the chemical structures of triterpene saponins in Glycyrrhizae Radix et Rhizoma and reviews and updates their main biological activities studies. Furthermore, the solubilization characteristics, influences, and mechanisms of Glycyrrhizae Radix et Rhizoma are elaborated. Solubilization of the triterpene saponins from Glycyrrhizae Radix et Rhizoma occurs because they contain the nonpolar sapogenin and water-soluble sidechain. The possible factors affecting the solubilization of Glycyrrhizae Radix et Rhizoma are mainly other crude drugs and the pH of the decoction. Triterpene saponins represented by glycyrrhizin from Glycyrrhizae Radix et Rhizoma characteristically form micelles due to amphiphilicity, which makes solubilization possible. This overview provides guidance regarding a better understanding of GlycyrrhizaeRadix et Rhizoma and its TCM compatibility, alongside a theoretical basis for the further development and utilization of Glycyrrhizae Radix et Rhizoma. Full article
(This article belongs to the Section Photochemistry)
Show Figures

Figure 1

14 pages, 5383 KiB  
Article
EbARC1, an E3 Ubiquitin Ligase Gene in Erigeron breviscapus, Confers Self-Incompatibility in Transgenic Arabidopsis thaliana
by Mo Chen, Wei Fan, Bing Hao, Wei Zhang, Mi Yan, Yan Zhao, Yanli Liang, Guanze Liu, Yingchun Lu, Guanghui Zhang, Zheng Zhao, Yanru Hu and Shengchao Yang
Int. J. Mol. Sci. 2020, 21(4), 1458; https://doi.org/10.3390/ijms21041458 - 20 Feb 2020
Cited by 6 | Viewed by 3666
Abstract
Erigeron breviscapus (Vant.) Hand.-Mazz. is a famous traditional Chinese medicine that has positive effects on the treatment of cardiovascular and cerebrovascular diseases. With the increase of market demand (RMB 500 million per year) and the sharp decrease of wild resources, it is an [...] Read more.
Erigeron breviscapus (Vant.) Hand.-Mazz. is a famous traditional Chinese medicine that has positive effects on the treatment of cardiovascular and cerebrovascular diseases. With the increase of market demand (RMB 500 million per year) and the sharp decrease of wild resources, it is an urgent task to cultivate high-quality and high-yield varieties of E. breviscapus. However, it is difficult to obtain homozygous lines in breeding due to the self-incompatibility (SI) of E. breviscapus. Here, we first proved that E. breviscapus has sporophyte SI (SSI) characteristics. Characterization of the ARC1 gene in E. breviscapus showed that EbARC1 is a constitutive expression gene located in the nucleus. Overexpression of EbARC1 in Arabidopsis thaliana L. (Col-0) could cause transformation of transgenic lines from self-compatibility (SC) into SI. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays indicated that EbARC1 and EbExo70A1 interact with each other in the nucleus, and the EbARC1-ubox domain and EbExo70A1-N are the key interaction regions, suggesting that EbARC1 may ubiquitinate EbExo70A to regulate SI response. This study of the SSI mechanism in E. breviscapus has laid the foundation for further understanding SSI in Asteraceae and breeding E. breviscapus varieties. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

23 pages, 5503 KiB  
Article
Chrysophanol, Physcion, Hesperidin and Curcumin Modulate the Gene Expression of Pro-Inflammatory Mediators Induced by LPS in HepG2: In Silico and Molecular Studies
by Nabil Mohamed Selim, Abdullah Abdurrahman Elgazar, Nabil Mohie Abdel-Hamid, Mohammed Rizk Abu El-Magd, Aziz Yasri, Hala Mohamed El Hefnawy and Mansour Sobeh
Antioxidants 2019, 8(9), 371; https://doi.org/10.3390/antiox8090371 - 3 Sep 2019
Cited by 53 | Viewed by 6697
Abstract
Hepatitis is an inflammatory condition that can develop hepatocellular carcinoma. Traditional medicine has always been the pillar of medical practice. However, it became less compatible with the current understanding of the diseases and the possible treatment. Therefore, in silico tools could be utilized [...] Read more.
Hepatitis is an inflammatory condition that can develop hepatocellular carcinoma. Traditional medicine has always been the pillar of medical practice. However, it became less compatible with the current understanding of the diseases and the possible treatment. Therefore, in silico tools could be utilized for building the bridge between the legacy of the past and the current medical approaches allowing access to new therapeutic discoveries. In this work, a Chinese traditional medicine database was screened using structure-based virtual screening to identify molecules that could inhibit p38 alpha mitogen-activated protein kinase (MAPK). Out of the identified compounds, four selected compounds: chrysophanol, physcion, curcumin and hesperidin were isolated from their respective sources and their structures were confirmed by spectroscopic methods. These compounds decreased the gene expression of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and interleukin-1beta (IL-1β) in lipopolysaccharide (LPS) induced inflammation in a hepatocellular carcinoma cell line (HepG2) in a dose-dependent manner. The molecular docking study revealed the specificity of these compounds towards p38 MAPK rather than other MAPKs. In conclusion, the molecular and in silico studies suggest that the isolated compounds could be a potential treatment for hepatitis by resolving inflammation controlled by MAPKs, thus limiting the development of further complications and lower side effects. Full article
Show Figures

Figure 1

22 pages, 5124 KiB  
Article
Scutellariae Radix and Coptidis Rhizoma Improve Glucose and Lipid Metabolism in T2DM Rats via Regulation of the Metabolic Profiling and MAPK/PI3K/Akt Signaling Pathway
by Xiang Cui, Da-Wei Qian, Shu Jiang, Er-Xin Shang, Zhen-Hua Zhu and Jin-Ao Duan
Int. J. Mol. Sci. 2018, 19(11), 3634; https://doi.org/10.3390/ijms19113634 - 18 Nov 2018
Cited by 197 | Viewed by 12000
Abstract
Aim Scutellariae Radix (SR) and Coptidis Rhizoma (CR) have often been combined to cure type 2 diabetes mellitus (T2DM) in the clinical practice for over thousands of years, but their compatibility mechanism is not clear. Mitogen-activated protein kinase (MAPK) signaling pathway has been [...] Read more.
Aim Scutellariae Radix (SR) and Coptidis Rhizoma (CR) have often been combined to cure type 2 diabetes mellitus (T2DM) in the clinical practice for over thousands of years, but their compatibility mechanism is not clear. Mitogen-activated protein kinase (MAPK) signaling pathway has been suggested to play a critical role during the process of inflammation, insulin resistance, and T2DM. This study was designed to investigate their compatibility effects on T2DM rats and explore the underlying mechanisms by analyzing the metabolic profiling and MAPK/PI3K/Akt signaling pathway. Methods The compatibility effects of SR and CR were evaluated with T2DM rats induced by a high-fat diet (HFD) along with a low dose of streptozocin (STZ). Ultra performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) was performed to discover potential biomarkers. The levels of pro-inflammatory cytokines; biochemical indexes in serum, and the activities of key enzymes related to glycometabolism in liver were assessed by ELISA kits. qPCR was applied to examine mRNA levels of key targets in MAPK and insulin signaling pathways. Protein expressions of p65; p-p65; phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K); phosphorylated-PI3K (p-PI3K); protein kinase B (Akt); phosphorylated Akt (p-Akt) and glucose transporter 2 (Glut2) in liver were investigated by Western blot analysis. Results Remarkably, hyperglycaemia, dyslipidemia, inflammation, and insulin resistance in T2DM were ameliorated after oral administration of SR and CR, particularly their combined extracts. The effects of SR, CR, low dose of combined extracts (LSC) and high dose of combined extracts (HSC) on pro-inflammatory cytokine transcription in T2DM rats showed that the MAPK pathway might account for the phenomenon with down-regulation of MAPK (P38 mitogen-activated protein kinases (P38), extracellular regulated protein kinases (ERK), and c-Jun N-terminal kinase (JNK)) mRNA, and protein reduction in p-P65. While mRNA levels of key targets such as insulin receptor substrate 1 (IRS1), PI3K, Akt2, and Glut2 in the insulin signaling pathway were notably up-modulated, phosphorylations of PI3K, Akt, and expression of Glut2 were markedly enhanced. Moreover, the increased activities of phosphoenolpyruvate carboxykinase (PEPCK), fructose-1,6-bisphosphatase (FBPase), glucose 6-phosphatase (G6Pase), and glycogen phosphorylase (GP) were highly reduced and the decreased activities of glucokinase (GK), phosphofructokinase (PFK), pyruvate kinase (PK), and glycogen synthase (GS) in liver were notably increased after treatment. Further investigation indicated that the metabolic profiles of plasma and urine were clearly improved in T2DM rats. Fourteen potential biomarkers (nine in plasma and five in urine) were identified. After intervention, these biomarkers returned to normal level to some extent. Conclusion The results showed that SR, CR, and combined extract groups were normalized. The effects of combined extracts were more remarkable than single herb treatment. Additionally, this study also showed that the metabonomics method is a promising tool to unravel how traditional Chinese medicines work. Full article
Show Figures

Graphical abstract

12 pages, 1123 KiB  
Article
A Compositive Strategy to Study the Pharmacokinetics of TCMs: Taking Coptidis Rhizoma, and Coptidis Rhizoma-Glycyrrhizae Radix et Rhizoma as Examples
by Qiao Li, Yan Yang, Ting Zhou, Rui Wang, Na Li, Min Zheng, Yuan-Yuan Li, Ji-Quan Zhang, Fei Wu, Bai-Can Yang, Yue-Ming Ma and Bing-Liang Ma
Molecules 2018, 23(8), 2042; https://doi.org/10.3390/molecules23082042 - 15 Aug 2018
Cited by 16 | Viewed by 3867
Abstract
Pharmacokinetic studies are crucial for elucidating the effective constituents and formula compatibility of traditional Chinese medicines (TCMs). However, studies have usually been limited to single dosages and detection of systemic blood concentrations. To obtain comprehensive pharmacokinetic information, here we propose a multi-dosage and [...] Read more.
Pharmacokinetic studies are crucial for elucidating the effective constituents and formula compatibility of traditional Chinese medicines (TCMs). However, studies have usually been limited to single dosages and detection of systemic blood concentrations. To obtain comprehensive pharmacokinetic information, here we propose a multi-dosage and multi-sampling (blood from portal vein or systemic circulation, and liver) strategy to comparatively study the pharmacokinetics of multi-form TCMs, i.e., pure constituents, TCMs, or TCM formula extracts. Based on this strategy, we studied the pharmacokinetics of pure berberine, berberine in Coptidis Rhizoma (CRE), and berberine in Coptidis Rhizoma-Glycyrrhizae Radix et Rhizoma extracts (CR-GRE). After simple calculation and comparison of the obtained area under the curve (AUC) values, the results revealed the drastically different pharmacokinetic properties of pure berberine compared to CRE and CR-GRE. The results contribute to explaining the pharmacological loss of berberine activity after purification and the compatibility of the CR-GR drug pair. The results also innovatively showed that it was intestinal absorption that differentiated the pharmacokinetics of CRE and pure berberine, and CRE and CR-GRE. In conclusion, we propose a composite strategy to comparatively study the pharmacokinetics of TCMs, which could provide sufficient information to obtain a comprehensive view, before follow-up mechanism-of-action studies. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Graphical abstract

Back to TopTop