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Abstract: Glycyrrhizae Radix et Rhizoma is regarded as one of the most popular and commonly
used herbal medicines and has been used in traditional Chinese medicine (TCM) prescriptions for
over 2000 years. Pentacyclic triterpene saponins are common secondary metabolites in these plants,
which are synthesized via the isoprenoid pathway to produce a hydrophobic triterpenoid aglycone
containing a hydrophilic sugar chain. This paper systematically summarizes the chemical structures
of triterpene saponins in Glycyrrhizae Radix et Rhizoma and reviews and updates their main biological
activities studies. Furthermore, the solubilization characteristics, influences, and mechanisms
of Glycyrrhizae Radix et Rhizoma are elaborated. Solubilization of the triterpene saponins from
Glycyrrhizae Radix et Rhizoma occurs because they contain the nonpolar sapogenin and water-soluble
sidechain. The possible factors affecting the solubilization of Glycyrrhizae Radix et Rhizoma are mainly
other crude drugs and the pH of the decoction. Triterpene saponins represented by glycyrrhizin from
Glycyrrhizae Radix et Rhizoma characteristically form micelles due to amphiphilicity, which makes
solubilization possible. This overview provides guidance regarding a better understanding of
Glycyrrhizae Radix et Rhizoma and its TCM compatibility, alongside a theoretical basis for the further
development and utilization of Glycyrrhizae Radix et Rhizoma.
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1. Introduction

The Glycyrrhiza genus belongs to the Fabaceae family, comprising approximately 20 species
primarily distributed across Asia, Europe, North America, and South America, with eight distributed
throughout China [1]. Glycyrrhizae Radix et Rhizoma, also named glycyrrhiza or “Gan-Cao” in
China and licorice or liquorice in Europe, is the dry root and rhizome of three official Glycyrrhiza
species, namely, Glycyrrhiza uralensis Fisch, Glycyrrhiza glabra L., and Glycyrrhiza inflata Batal [2,3]. It is
extensively used in traditional Chinese medicine (TCM) to treat hepatitis, influenza, cough, and gastric
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ulcers [4,5]. Glycyrrhiza is also of significant economic value, and its extract has been used in cosmetics,
food ingredients, tobacco flavors, and functional foods [5–9].

In recent decades, extensive research has been conducted regarding the bioactive constituents,
biosynthesis, pharmacological mechanisms, and clinical applications, in glycyrrhiza, among other
aspects [5,10–13]. The major bioactive secondary metabolites of glycyrrhiza include triterpene
saponins, various types of flavonoids, coumarins, polysaccharides, and other phenolics [10,14].
Unfortunately, no systematic review has been conducted as yet regarding the chemical structure, origin,
and corresponding references of triterpenoid saponins. Even the number of triterpenoid saponins in
some references is not up-to-date. Another aspect of concern is that the solubilization characteristics
of glycyrrhiza also received increasing attention in recent years due to the possibility of triterpene
saponins from glycyrrhiza increasing the solubility of coexisting bioactive constituents in herbal
extracts [15]. Few reviews currently exist regarding this subject.

In this review, SciFinder, PubMed, Web of Science, China Journal Net, and relevant English
and Chinese literature were used as information sources by the inclusion of the primary search
terms “Glycyrrhizae Radix”, “glycyrrhiza”, “Gan-Cao", “liquorice”, “licorice”, “triterpene saponins”,
“constituent”, “glycyrrhizin”, “glycyrrhizic acid”, “activities”, “solubilization”, and their combinations,
mainly from 1984 to 2020. We systematically summarize the chemical structures, origins,
and solubilization characteristics of triterpene saponins in glycyrrhiza and mainly focus on their
chemical structures and characterization as natural surfactants. In addition, their biological activities
are also reviewed and updated.

2. Triterpene Saponins and Their Bioactivities

2.1. Triterpene Saponins

The investigations of the chemical constituents of glycyrrhiza led to the isolation of 77 triterpene
saponins. Triterpenoid saponins are major components of glycyrrhiza, containing one or more sugar
moieties attached to oleanane-type pentacyclic triterpenoid aglycones. All of the triterpenoid saponins
(Figures 1–3) in glycyrrhiza are summarized in Table 1. There were 50 oleanane-type pentacyclic
triterpene saponins obtained from G. uralensis (Figure 1), 38 from G. glabra (Figure 2), and only 13 from
G. inflate (Figure 3).

Table 1. Information on triterpene saponins in glycyrrhiza.

No. Compound Origin References

1
glycyrrhizin (glycyrrhizic acid,

uralsaponin A or
18β-glycyrrhizic acid)

a,b,c [16–20]

2 uralsaponin B a,b [16,21]
3 licorice-saponin A3 a,c [20,22]
4 licorice-saponin B2 a,b [22,23]
5 licorice-saponin C2 a,b [22,23]
6 licorice-saponin D3 a [22]
7 licorice-saponin E2 a,c [20,22]
8 licorice-saponin F3 a [24]
9 licorice-saponin G2 a,b,c [20,23,24]

10 licorice-saponin H2 a,b [23,24]
11 licorice-saponin J2 a,b [23,24]
12 licorice-saponin K2 a,b [21,24]
13 licorice-saponin L3 a [25]
14 18α-glycyrrhizic acid a,b [17]
15 apioglycyrrhizin b,c [23,26]
16 araboglycyrrhizin a,b,c [23,26,27]
17 22β-acetoxylglycyrrhizin a,c [20,28]
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Table 1. Cont.

No. Compound Origin References

18
3β-O-[β-d-glucuronopyranosyl-
(1→2)-β-d-glucuronopyranosyl]

-glycyrretol
a [28]

19
3β-O-[β-d-glucuronopyranosyl-
(1→2)-β-d-glucuronopyranosyl]-

olean-9,12-diene-30-oic acid
a [28]

20 uralsaponin C a [29]
21 uralsaponin D a,c [20,29]
22 uralsaponin E a [29]
23 uralsaponin F a [29]

24
3-O-[β-d-glucuronopyranosyl-
(1→2)-β-d-galactopyranosyl]

glycyrrhetic acid
a [30]

25 licorice-saponin M3
(uralsaponin T) a,b [27,31]

26 licorice-saponin N4 a,b [31,32]
27 licorice-saponin O4 b [31]
28 uralsaponin M a [27]
29 uralsaponin N a [27]
30 uralsaponin O a [27]
31 uralsaponin P a [27]
32 uralsaponin Q a [27]
33 uralsaponin R a [27]
34 uralsaponin S a [27]
35 uralsaponin U a [27]
36 uralsaponin V a,b [21,27]
37 uralsaponin W a [27]
38 uralsaponin X a [27]
39 uralsaponin Y a [27]
40 22β-acetoxyl-glycyrrhaldehyde a,c [20,33]

41 3-O-β-d-glucuronopyranosyl-
glycyrrhetinic acid a,b [21,27]

42
3-O-[β-d-(6-methyl)glucuro-nopyranosyl
(1→2)-d-glucurono-pyranosyl]-

24-hydroxyglabrolide
a [34]

43 licorice-saponin P2 c [20]
44 licorice-saponin Q2 c [20]
45 macedonoside A b,c [20,21]
46 24-hydroxy-licorice-saponin E2 c [20]
47 macedonoside E a [35]
48 22β-acetyl-uralsaponin C a [35]
49 licorice saponin M1 b [21]
50 licorice saponin M2 b [21]
51 licorice saponin M3 b [21]
52 licorice saponin M4 b [21]
53 30-hydroxyglycyrrhizin b [23]
54 glycyrrhizin-20-methanoate b [23]
55 24-hydroxyglucoglycyrrhizin b [23]
56 rhaoglycyrrhizin b [23]
57 11-deoxorhaoglycyrrhizin b [23]
58 rhaoglucoglycyrrhizin b [23]
59 rhaogalactoglycyrrhizin b [23]
60 11-deoxo-20α-glycyrrhizin b [23]
61 20α-galacturonoylglycyrrhizin b [23]
62 20α-rhaoglycyrrhizin b [23]
63 glyuralsaponin A a [32]
64 glyuralsaponin B a [32]
65 glyuralsaponin C a [32]
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Table 1. Cont.

No. Compound Origin References

66 glyuralsaponin D a [32]
67 glyuralsaponin E a [32]
68 glyuralsaponin F a [32]
69 glyuralsaponin G a [32]
70 glyuralsaponin H a [32]
71 glabasaponin A b [36]
72 glabasaponin B b [36]
73 glabasaponin C b [36]
74 glabasaponin D b [36]
75 glabasaponin E b [36]
76 glabasaponin F b [36]
77 glabasaponin G b [36]

a, G. uralensis Fisch.; b, G. glabra L.; c, G. inflate Bat.
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From the point of view of chemical structure, the aglycons of most oleanane-type pentacyclic
triterpene saponins in glycyrrhiza possess an α,β-unsaturated ketone unit located at C-11, C-12,
and C-13. Notably, some glabrolides (7, 21, 22, 30, 39, 42, and 46) were found in G. uralensis or/and
G. inflate, which possess a 22 (30)-lactone ring alongside an α,β-unsaturated ketone unit. The sugar
moiety of oleanane-type pentacyclic triterpene saponins in glycyrrhiza contains six basic sugar residues,
including glucuronic acid residue (GluA), rhamnose residue (Rha), glucose residue (Glu), galacturonic
acid residue (GalA), xylose residue (Xyl), and galactose residue (Gal). Moreover, apioglycyrrhizin
(15) contains an apiofuranose residue and araboglycyrrhizin (16) contains an arabinose residue (Ara).
Furthermore, all triterpene saponins in glycyrrhiza are linked to sugar groups at C-3; the glycoside
bound to C-3 of the aglycon possesses the β-configuration. Among them, the C-21 linked to glycoside
is the β-configuration (73–76), while the hydroxyl group at C-21 has both the α-configuration and
β-configuration.

Glycyrrhizin (GL, 1) (also named glycyrrhizic acid, uralsaponin A, and 18β-glycyrrhizic acid) is one
of the most representative saponins of glycyrrhiza, isolated from the roots of both G. uralensis Fisch. [16],
G. glabra L. [19], and G. inflata Batal. [20]. Zapesochnaya et al. [37] demonstrated the differences between
the NMR spectra of the 18α-epimer of GL and the 18β-epimer. Normally, 18β-glycyrrhizic acid is the
principal chemical composition, while 18α-glycyrrhizic acid is rare [38]. Licorice-saponin Q2 (44) was
previously isolated from the roots of G. inflata. Analysis of its Nuclear Overhauser Effect Spectroscopy
(NOESY) spectrum showed that H-18 correlated with H-19α and H-29(CH3), indicating that H-18
of 44 was α-oriented. In addition, similar triterpene saponins, such as licorice-saponin G2 (9) and
araboglycyrrhizin (16), were also observed in G. uralensis, G. glabra, and G. inflate. Eleven triterpene
saponins (2, 4, 5, 10–12, 14, 25, 26, 36, and 41) were also found both in G. uralensis and G. glabra,
including uralsaponin B (2) [16,21], licorice-saponin B2 (4) [22,23], licorice-saponin C2 (5) [22,23],
licorice-saponin H2 (10) [23,24], licorice-saponin J2 (11) [23,24], licorice-saponin K2 (12) [21,24],
18α-glycyrrhizic acid (14) [17], licorice-saponin M3 or uralsaponin T (25) [27,31], licorice-saponin N4
(26) [31,32], uralsaponin V (36) [21,27], and 3-O-β-d-glucuronopyranosylglycyrrhetinic acid (41) [21,27].
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Licorice-saponin M3, and uralsaponin T were previously reported as new oleanane-type triterpene
saponins, but they are the same compounds.

2.2. Biological Activities

Modern pharmacological studies revealed that glycyrrhiza shows a variety of pharmacological
effects against inflammation, oxidative stress, immunoregulation, viral infection, and cancer [3].
These bioactivities are attributed to the chemical constituents of glycyrrhiza. In this section, the main
pharmacological activities of saponin monomers, including hepatoprotective, anti-inflammatory,
antimicrobial, antiviral, and antitumor activities, are summarized (Table 2). GL (1) is the most
commonly reported monomer with extensive activities.

2.2.1. Hepatoprotective Activities

There are many reports about possible mechanisms in vitro and vivo by which saponins from
glycyrrhiza are hepatoprotective. GL (1) was proven to relieve liver disease and prevent drug-induced
liver injury through multitargeting therapeutic mechanisms, including antisteatosis, antioxidative
stress, anti-inflammation, immunoregulation, antifibrosis, anticancer, and drug–drug interactions [3].
Nakamura et al. [39] reported that GL (1) prevented soluble enzyme release from primary cultured rat
hepatocytes induced by CCl4. Sato et al. [40] found that GL (1) could modify the expression of hepatitis
B virus (HBV)-related antigens on the hepatocytes and suppress sialylation of hepatitis B surface antigen
(HBsAg) in PLC/PRF/5 cells. Tsuruoka et al. [41] showed that GL (1, 10.5 mg/kg) suppressed increases
in aspartate aminotransaminase (AST) and alanine aminotransaminase (ALT), inhibited inducible
nitric oxide synthase (iNOS) mRNA expression, and reduced protein and cell infiltration and the
degeneration of hepatocytes in the liver of concanavalin A (Con A)-treated BALB/c mice. Lee et al. [42]
reported that GL (1) alleviated carbon tetrachloride (CCl4)-induced liver injury in ICR mice, probably by
inducing heme oxygenase-1 and downregulating proinflammatory mediators. Lin et al. [43] found
that a three-day pretreatment with GL (1) exhibited a protective effect on retrorsine-induced liver
damage in Sprague Dawley rats. GL (1) is able to provide partial protection of the liver against
ischemia-reperfusion damage in Wistar rats [44]. Orazizadeh et al. [45] showed that GL (1) effectively
protects against NTiO2-induced hepatotoxicity in Wistar rats.

In addition, some other triterpenoid saponins in glycyrrhiza also exhibited hepatoprotective
activities. Glyuralsaponin B (64) and glyuralsaponin H (70) exhibited moderate antioxidant
activities against Fe2+/cysteine-induced liver microsomal lipid peroxidation at a concentration of
0.1 µM (curcumin as positive control) [32]. It was reported that GL (1), licorice-saponin G2 (9),
22β-acetoxylglycyrrhizin (17), licorice-saponin Q2 (44), and macedonoside A (45) showed significant
hepatoprotective activities by lowering ALT and AST levels in primary rat hepatocytes injured by
D-galactosamine (D-GalN) in a concentration range of 30–120 µM. Besides, GL (1), licorice-saponin G2
(9), 22β-acetoxylglycyrrhizin (17), uralsaponin D (21), licorice-saponin Q2 (44), and macedonoside A
(45) were found to potently inhibit the activity of phospholipase A2 (PLA2) with IC50 values of 9.3 µM,
16.9 µM, 27.1 µM, 32.2 µM, 3.6 µM, and 6.9 µM, respectively, which might be involved in the regulation
of the hepatoprotective activities observed. [20].

2.2.2. Anti-Inflammatory Activities

In a study, Li et al. [46] suggested that the anti-inflammatory mechanism of total saponins of
glycyrrhiza may be related to a reduction in the release of inflammation factors in macrophages and
inhibition of the key enzymes in the arachidonic acid (AA) metabolism pathway of prostaglandin
E2 (PGE2) synthesis, as observed through an inflammatory model of mouse macrophage RAW264.7
cells induced by lipopolysaccharide (LPS). Wang et al. [47] investigated the anti-inflammatory effect
of GL (1) on LPS-stimulated mouse endometrial epithelial cells (MEEC), demonstrating that GL
(1) inhibited LPS-induced inflammatory response by inhibiting TLR4 signaling pathway in MEEC.



Molecules 2020, 25, 3904 9 of 19

Akamatsu et al. [48] found that GL (1) inhibited reactive oxygen species (ROS) generation by neutrophils,
which were potent inflammatory mediators in the in vitro study.

In addition, GL (1) may inhibit high-mobility group protein B1 (HMGB1) expression and
subsequent production of inflammatory cytokines to prevent cerebral vasospasm (CVS) following
subarachnoid hemorrhage (SAH) in Sprague-Dawley rats [49]. Pang et al. [50] demonstrated that
inhibiting HMGB1 with GL (1) alleviated brain injury after diffuse axonal injury (DAI) via its
anti-inflammatory effects in SD rats.

2.2.3. Antimicrobial and Antiviral Activities

Saponins of G. glabra L. have broad-spectrum antimicrobial activities and can be used as natural
antimicrobial agents [51]. GL (1) is an effective antiviral component against hepatitis C virus (HCV),
human immunodeficiency virus (HIV), coxsackie virus B3 (CVB3), duck hepatitis virus (DHV),
enterovirus 71 (EV71), coxsackievirus A16 (CVA16), herpes simplex virus (HSV), and H5N1 by
weakening viral activity and enhancing host cell activity [52]. GL (1) is also shown to inhibit varicella
zoster virus (VZV) and the severe acute respiratory syndrome coronavirus (SARS-CoV) replication
in vitro [53,54]. In another study, Wolkerstorfer et al. [55] found that GL (1) inhibited influenza A virus
(IAV) uptake into the cell. In detail, Sun et al. [56] summarized the antiviral effects of GL (1) in their
research regarding progress and mechanism in recent years.

At present, the world is facing the Corona Virus Disease 2019 (COVID-19) pandemic, caused by
severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). GL (1) has been used to control
COVID-19 infections, which may reduce the severity of an infection with COVID-19 at the two stages
of the COVID-19-induced disease process: 1. to block the number of entry points and 2. to provide an
angiotensin converting enzyme 2 (ACE2)-independent anti-inflammatory mechanism. [57]. In vitro
assays of 22β-acetoxyglycyrrhizin (17), uralsaponin T (25), uralsaponin M (28), and uralsaponin S (34)
exhibited good inhibitory activities against influenza virus A/WSN/33 (H1N1) in Madin–Darby canine
kidney (MDCK) cells (using Oseltamivir phosphate as a positive control drug) [27]. In addition, GA (1),
licorice-saponin A3 (3), licorice-saponin G2 (9), 22β-acetoxylglycyrrhizin (17), and licorice-saponin
M3 (25) were shown to possess moderate influenza neuraminidase (NA)-inhibitory activity by the
commercial NA inhibitory screening kit, although the measured activity was lower than that of
Oseltamivir [31].

2.2.4. Cytotoxic and Antitumor Activities

Deng et al. [58] showed that GL (1) profoundly reduced expression of thromboxane synthase
(TxAS), as well as proliferating cell nuclear antigen (PCNA), and rescued liver and kidney damage in
tumor-bearing mice, the effect of which is possibly through suppression of the TxA2 pathway. It was
shown that GL (1) has protective effects against Aflatoxin B1 (AFB1)-induced cytotoxicity in human
hepatoma cell line (HepG2) [59]. In addition, dipotassium glycyrrhizinate (DPG), a dipotassium salt of
GL, presented antitumoral effects on glioblastoma (GBM) cell lines through decreased proliferation and
increased apoptosis. The DPG antitumoral effect is related to NF-κB suppression, where IRAK2- and
TRAF6-mediating miR16 and miR146a, respectively, might be potential therapeutic targets of DPG [60].

In the cytotoxic assay, GL (1), licorice-saponin G2 (9) and uralsaponin D (21), showed no cytotoxic
activity on tested cancer cell lines, whereas their corresponding aglycones exhibited potently cytotoxic
activities against human cervical cancer HeLa cells and human breast adenocarcinoma MCF-7 cells [29].
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Table 2. Summary of the biological activities conducted with triterpene saponins in glycyrrhiza 1.

No. Compound
Activity

References
Property Method Major Findings

1

glycyrrhizin
(glycyrrhizic acid,
uralsaponin A or

18β-glycyrrhizic acid)

Hepatoprotective activities

In vitro—primary rat hepatocytes injured by
d-galactosamine (d-GalN)

Lower alanine aminotransaminase (ALT) and aspartate aminotransaminase
(AST) levels [20]

PLA2 inhibitory potency IC50 = 9.3 µM [20]

In vitro—primary cultured rat hepatocytes
induced by CCl4

Prevent soluble enzyme release [39]

In vitro—PLC/PRF/5 cells Modify the expression of hepatitis B virus (HBV)-related antigens on the
hepatocytes and suppress sialylation of HBsAg [40]

In vivo—BALB/c mice
Suppress increases in AST and ALT, inhibit inducible nitric oxide synthase
(iNOS) mRNA expression, and reduce protein and cell infiltration and the

degeneration of hepatocytes
[41]

In vivo—ICR mice Alleviate CCl4-induced liver injury [42]

In vivo—Sprague Dawley rats Exhibit protective effect on retrorsine-induced liver damage [43]

In vivo—Wistar rats Provide partial protection of the liver against ischemia-reperfusion damage [44]

In vivo—Wistar rats Protect against NTiO2-induced hepatotoxicity [45]

Anti-inflammatory activities

In vitro—lipopolysaccharide
(LPS)-stimulated mouse endometrial

epithelial cells (MEEC)

Inhibit LPS-induced inflammatory response by inhibiting TLR4
signaling pathway [47]

In vitro—neutrophil Inhibit reactive oxygen species (ROS) generation by neutrophils [48]

In vivo—Sprague Dawley rats
Inhibit HMGB1 expression and subsequent production of inflammatory
cytokines to prevent cerebral vasospasm (CVS) following subarachnoid

hemorrhage (SAH)
[49]

In vivo—SD rats Alleviate brain injury after diffuse axonal injury (DAI) via its
anti-inflammatory effects [50]

Antimicrobial and antiviral activities

In vitro Inhibit varicella zoster virus (VZV) [53]

In vitro Inhibit severe acute respiratory syndrome coronavirus (SARS-CoV) replication [54]

In vitro Inhibited influenza A virus (IAV) uptake into the cell [55]

In vitro
Reduce the severity of an infection with COVID-19 at the two stages of the
COVID-19 induced disease process, 1. To block the number of entry points

and 2. provide an ACE2 independent anti-inflammatory mechanism.
[57]

The commercial NA inhibitory screening kit Possess moderate influenza NA inhibitory activity [31]

Cytotoxic and antitumor activities
In vivo—tumor-bearing mice Reduce expression of TxAS, as well as proliferating cell nuclear antigen

(PCNA), and rescue liver and kidney damage [58]

In vitro—HepG2 Display protective effects against Aflatoxin B1 (AFB1)-induced cytotoxicity [59]

Other activities -
1. Possess immunomodulatory, neuroprotective effects, and antioxidant
activities; 2. Bronchitis, peptic ulcers, skin diseases, and oral diseases; 3.

Allergic rhinitis
[56,61–66]
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Table 2. Cont.

No. Compound Activity
References

Property Method Major Findings

3 licorice-saponin A3 Antimicrobial and antiviral activities The commercial NA inhibitory screening kit Possess moderate influenza NA inhibitory activity [31]

9 licorice-saponin G2
Hepatoprotective activities

In vitro—primary rat hepatocytes injured by
d-GalN Lower ALT and AST levels [20]

PLA2 inhibitory potency IC50 = 16.9 µM [20]

Antimicrobial and antiviral activities The commercial NA inhibitory screening kit Possess moderate influenza NA inhibitory activity [31]

17 22β-acetoxylglycyrrhizin

Hepatoprotective activities
In vitro—primary rat hepatocytes injured by

d-GalN Lower ALT and AST levels [20]

PLA2 inhibitory potency IC50 = 27.1 µM [20]

Antimicrobial and antiviral activities

In vitro—Madin–Darby canine kidney
(MDCK) cells Inhibit influenza virus A/WSN/33 (H1N1) [27]

The commercial NA inhibitory screening kit Possess moderate influenza NA inhibitory activity [31]

21 uralsaponin D Hepatoprotective activities PLA2 inhibitory potency IC50 = 32.2 µM [20]

25
licorice-saponin

M3(uralsaponin T) Antimicrobial and antiviral activities
In vitro—MDCK cells Inhibit influenza virus A/WSN/33 (H1N1) [27]

The commercial NA inhibitory screening kit Possess moderate influenza NA inhibitory activity [31]

28–39 uralsaponins M–Y Antimicrobial and antiviral activities In vitro—MDCK cells Uralsaponin M (28) and uralsaponin S (34) exhibited inhibitory activities
against influenza virus A/WSN/33 (H1N1) [27]

44–45
licorice-saponin Q2 (44)

macedonoside A (45)
Hepatoprotective activities

In vitro—primary rat hepatocytes injured
by d-GalN Lower ALT and AST levels [20]

PLA2 inhibitory potency IC50 = 3.6 µM (44) and 6.9 µM (45) [20]

63–70 glyuralsaponins A–H Hepatoprotective activities MDA colorimetric assay
Glyuralsaponin B (64) and glyuralsaponin H (70) exhibited moderate

antioxidant activities against Fe2+/cysteine-induced liver microsomal lipid
peroxidation

[32]

1, Columns 1 and 2 is the same in Table 1. It should be noted that the empty rows with triterpene saponins are grouped together or not listed in Table 2.
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2.2.5. Other Activities

Saponin monomers of glycyrrhiza were shown to have various other physiological and
pharmacological activities. GL (1) also possesses immunomodulatory, and neuroprotective effects [61]
and antioxidant activities [62,63]. Furthermore GL (1) can be used in the clinical treatment of bronchitis,
peptic ulcers, skin diseases, and oral diseases [56,64,65].

In addition, GA (1) may have a therapeutic effect on allergic rhinitis, partly by modulation of the
Th1/Th2 balance through suppression of OX40 and by increasing the activity of regulatory T cells [66].

3. Solubilization Characteristics

In nature, saponins are distributed in 90 plant families from 500 genera [67]. Some of them
have the potential to be used as natural surfactants because they contain the nonpolar sapogenin
and water-soluble sidechain [68]. Glycyrrhiza is the most frequently used TCM in TCM formulae,
with the function of harmonizing all kinds of TCMs. Research on the chemistry, pharmacological effects,
clinical applications et al. of glycyrrhiza has been very extensive in recent decades. Besides, the saponins
from glycyrrhiza have also significant solubilizing effects [69]. Interestingly, the solubilization
characteristics of glycyrrhiza and saponins from glycyrrhiza were studied extensively over recent
years. This part of review will deal with the solubilization characteristics, influences, and mechanisms
regarding glycyrrhiza and triterpene saponins from glycyrrhiza (Table 3).

3.1. Solubilization Characteristics of Glycyrrhiza

Shi et al. [70] reported that glycyrrhiza has solubilization effects in TCM formulae, including sijunzi
decoction, huangqi dazao decoction, and baishao gancao decoction, further explaining that the
solubilizing components in glycyrrhiza are triterpene saponins. Meng et al. [71] studied and analyzed
the decoctions of ephedra and glycyrrhiza, demonstrating that, compared to that of a single decoction,
the contents of GL (1), ephedrine (including pseudoephedrine), and methephedrine (including
methylpseudoephedrine) in the combined decoction of ephedra and glycyrrhiza were increased by
13.50%, 14.52%, and 64.0%, respectively. Nie et al. [72] demonstrated that after administration of
a combined decoction of epimedium and glycyrrhiza, the contents of some chemical constituents,
such as icariin in epimedium, were increased. Han et al. [73] reported that when extracted with
30% ethanol (v:v) with a 1:1 ratio of glycyrrhiza to curcuma longa, the extractive rate of curcumin
doubled. At the same time, other studies also found that glycyrrhiza increased the contents of active
ingredients in codonopsis, poria, atractylodes [74], Baphicacanthus cusia [75], Paeoniae Radix Alba [76],
Isatidis Radix [77], and Scutellaria baicalensis [78].

Glycyrrhiza plays a significant role in solubilizing insoluble components, improving the
bioavailability of active components and enhancing efficacy, reducing toxicity, and improving
taste [79,80]. It should be noted that not all glycyrrhiza compounds in TCM formulae have surface
activity, because solubilization is also affected by some crude drugs, such as Schisandra chinensis [70].
As for the mechanism of solubilization, most researchers demonstrated that the saponins of glycyrrhiza
significantly reduced surface tension to play a solubilizing role, and further agreed that GL (1) is the
main surfactant in glycyrrhiza [73–75,78,81,82].
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Table 3. Summary on solubilization of glycyrrhiza and GL (1).

No. Name TCM Formulae/TCM/
Component Characteristics Major Findings References

1

glycyrrhiza

sijunzi decoction,
huangqi dazao

decoction, baishao
gancao decoction

Glycyrrhiza has
solubilization effects in

three traditional
Chinese medicine
(TCM) formulae

The solubilizing
components in
glycyrrhiza are

triterpene saponins

[70]

2 ephedra

The contents of GL (1),
ephedrine, and

methephedrine et al.
all increase

- [71]

3 epimedium Icariin in epimedium
increases - [72]

4 curcuma longa The extractive rate of
curcumin double

GL (1) is the main
surfactant [73]

5

codonopsis, poria,
atractylodes,

Baphicacanthus cusia,
Paeoniae Radix Alba,
Isatidis Radix, and

Scutellaria baicalensis

Glycyrrhiza can
increase the contents of

active ingredients in
these TCM

GL (1) is the main
surfactant [74–78]

6 Schisandra chinensis No solubilization
effects

One of the possible
factors affecting the

solubilization is some
other crude drugs

[70]

7

GL (1)

saikosaponin-a
The contents of
saikosaponin-a

increase

Solubilizing effect is
due to GL (1) [83]

8 Ben Lamge granules
The solubility of Ben

Lamge granules
increases

1. The surface tension
of GL (1) decreases;
2. GL (1) exists in

micelles in aqueous
solution.

[82]

9 baicalin The dissolution rate of
baicalin increases - [84]

10 pueraria The solubility of
pueraria increases

Another possible factor
affecting the

solubilization is the pH
value of the solution

[85]

11 pachymic acid Increase the solubility
of pachymic acid

Improve the
bioavailability of

pachymic acid
[69]

12 Puerarin-glycyrrhizic
acid dispersible tablets

Improve the
dissolution of puerarin

GL (1) possesses
solubilization effect [86]

3.2. Solubilization Characteristics of GL (1)

Sasaki et al. [83] found that the water solubility of saikosaponin-a, the active principle of Bupleurum
root, is increased in the presence of water extract or the saponin fraction of glycyrrhiza and that this
solubilizing effect is due to GL (1). Du [82] demonstrated that glycyrrhiza exhibits solubilization on Ben
Lamge granules, thereby proving that GL (1) possesses solubilization activity. In detail, the solubility
of Ben Lamge granules increases with the addition of GL (1), whereas the surface tension of GL (1)
decreases. Experimental results also indicated that GL (1) exists in micelles in aqueous solution,
where the critical micelle concentration (CMC) is 1.188 mg/mL. Lu et al. [84] showed that GL (1)
exhibits certain solubilization on baicalin, and the dissolution rate of baicalin increases gradually as the
concentration of GL (1) increases. The optimal CMC of GL (1) is 0.22 mg/mL regarding compatibility
between Scutellaria baicalensis and glycyrrhiza, at which time the solubilization of GL (1) is at its highest.
Yang et al. [85] reported that when the ratio of pueraria and glycyrrhiza was 5:3, the dissolution
of puerarin reached its maximum and the CMC of GL (1) was 0.18 mg/mL, which was affected by
the structure of the drug and the pH value of the solution. Cai et al. [69] demonstrated that GL (1)
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increased the solubility of pachymic acid in an aqueous solution, thereby improving the bioavailability
of pachymic acid. Liu et al. [86] demonstrated that puerarin-glycyrrhizic acid dispersible tablets could
improve the dissolution of puerarin in vitro due to the solubilization effect of GL (1).

GL (1) was reported to possess amphiphilic components consisting of one triterpenoid aglycone
molecule and two glycosyl groups. With its inward hydrophobic group (triterpenoid aglycone) and
outward hydrophilic group (two glucuronic acids), GL (1) spherical micelles can form in aqueous
solution to increase the solubility of hydrophobic drugs. Petrova et al. [87] showed that NMR chemical
shifts of the protons of the GL (1) glucuronic moiety were sensitive to solution pH and not sensitive to
GL (1) concentration changes during GL (1) aggregation. At the same time, the protons of the triterpene
moiety were shown to be sensitive to the nearest environment, and micelles formed via hydrophobic
interaction between the triterpene moieties of GL (1).

GL (1) has potential applications as a biosurfactant in various fields [88]. In recent years, GL (1)
was trialed for use as a “vehicle for drug delivery”, showing great potential in this field [89–94].
The solubilization effect of GL (1) is also widely used in the food industry [9,95].

4. Conclusions

This review provides an up-to-date summary concerning the phytochemistry and pharmacology
of glycyrrhiza. Three species of the genus Glycyrrhiza—G. uralensis, G. glabra, and G. inflata—are
considered to have a shared botanical origin of Glycyrrhizae Radix et Rhizoma. By the end of 2020,
77 triterpene saponins were discovered and identified from these plants. Previous phytochemical
investigations revealed that triterpene saponins are one of the major constituents contributing
either directly or indirectly to the biological effects of glycyrrhiza. Over recent decades,
total saponins or saponin monomers from glycyrrhiza were found to possess various biological
activities, such as hepatoprotective, anti-inflammatory, antimicrobial, antiviral, antitumor, antioxidant,
and neuraminidase-inhibitory activities. Currently, these pharmacological studies on glycyrrhiza
are limited to bioassays of only a few saponin monomers. Hence, further studies are needed to
investigate the biological activities of more triterpene saponins via in vitro/vivo models. In addition,
the phytochemistry of glycyrrhiza requires further study, with new compounds or degradation products
possibly showing new pharmacological activities.

Another aim of this review was to summarize the solubilization characteristics, influences,
and mechanisms regarding triterpene saponins from glycyrrhiza. Glycyrrhiza is widely used in TCM
formulae and plays an important role in solubilizing insoluble components, thereby improving
the bioavailability of active components, enhancing efficacy, and reducing toxicity, as well as
demonstrating various pharmacological effects. The solubilization of glycyrrhiza with ephedra,
epimedium, curcuma longa, codonopsis, poria, atractylode, Baphicacanthus cusia, Paeoniae Radix Alba,
Isatidis Radix, and Scutellaria baicalensis was previously explored and the possible factors affecting the
solubilization of glycyrrhiza were discussed, including some crude drugs and the pH of decoctions.
Therefore, not all glycyrrhiza in a TCM formula possess solubilization activity. The solubilization of
GL (1), the main solubilizing component from glycyrrhiza, with multiple active components from
some other TCMs was also explored. In the discussion of solubilization mechanisms, the triterpene
saponins represented by GL (1) from glycyrrhiza were shown to characteristically form micelles due to
their amphiphilicity, thereby showing solubilization ability. The optimal CMC of micelle formation is
different when GL (1) is combined with different TCMs or active ingredients. The pH of the solution
was also shown to be critical to the formation of micelles. This review provides guidance regarding the
better understanding of TCM compatibility and a theoretical basis for the further development and
utilization of glycyrrhiza.
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