Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = common bunt

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 9000 KiB  
Article
A Neural Network with Multiscale Convolution and Feature Attention Based on an Electronic Nose for Rapid Detection of Common Bunt Disease in Wheat Plants
by Zhizhou Ren, Kun Liang, Yihe Liu, Xiaoxiao Wu, Chi Zhang, Xiuming Mei and Yi Zhang
Agriculture 2025, 15(4), 415; https://doi.org/10.3390/agriculture15040415 - 16 Feb 2025
Cited by 1 | Viewed by 680
Abstract
Common bunt disease in wheat is a serious threat to crops and food security. Rapid assessments of its severity are essential for effective management. The electronic nose (e-nose) system is used to capture volatile organic compounds (VOCs), particularly trimethylamine (TMA), which serves as [...] Read more.
Common bunt disease in wheat is a serious threat to crops and food security. Rapid assessments of its severity are essential for effective management. The electronic nose (e-nose) system is used to capture volatile organic compounds (VOCs), particularly trimethylamine (TMA), which serves as a key marker of common bunt disease in wheat. In this paper, the GFNN (gas feature neural network) model is proposed for detecting VOCs from the e-nose system, providing a lightweight and efficient approach for assessing disease severity. Multiscale convolution is employed to extract both global and local features from gas data, and three attention mechanisms are used to focus on important features. GFNN achieves 98.76% accuracy, 98.79% precision, 98.77% recall, and an F1-score of 98.75%, with only 0.04 million parameters and 0.42 million floating-point operations per second (FLOPS). Compared to traditional and current deep learning models, GFNN demonstrates superior performance, particularly in small-sample-size scenarios. It significantly improves the deep learning performance of the model in extracting key gas features. This study offers a practical, rapid, and cost-effective method for monitoring and managing common bunt disease in wheat, enhancing crop protection and food security. Full article
(This article belongs to the Special Issue Agricultural Products Processing and Quality Detection)
Show Figures

Figure 1

19 pages, 841 KiB  
Article
The Biocontrol of Plant Pathogenic Fungi by Selected Lactic Acid Bacteria: From Laboratory to Field Study
by Romuald Gwiazdowski, Krzysztof Kubiak, Krzysztof Juś, Katarzyna Marchwińska and Daniela Gwiazdowska
Agriculture 2024, 14(1), 61; https://doi.org/10.3390/agriculture14010061 - 28 Dec 2023
Cited by 7 | Viewed by 3729
Abstract
Plant diseases caused by pathogenic fungi generate large losses in crops and pose a threat to human and animal health. Since the European Green Deal put a strong emphasis on the need to reduce the use of chemical plant protection, interest in biological [...] Read more.
Plant diseases caused by pathogenic fungi generate large losses in crops and pose a threat to human and animal health. Since the European Green Deal put a strong emphasis on the need to reduce the use of chemical plant protection, interest in biological control has been growing. The present study aimed to investigate the efficacy of lactic acid bacteria (LAB) isolated from silages in the control of pathogenic fungi through in vitro, mini-plot, and field experiments. The tested LAB showed antifungal activity in vitro towards strains from the Fusarium, Alternaria, Rhizoctonia, Colletotrichum, and Sclerotinia genera; however, only five strains reached an activity ≥ 400 AU/mL towards all pathogenic fungi. The selected strains demonstrated high efficacy in reducing disease symptoms in plants in the mini-plot and field experiments. In the mini-plot experiment, stem smut of rye and wheat common bunt were reduced in the range 34.5–94.7% and 24.8–99.6%, respectively. In the field experiments, the efficacy of LAB in the control of rye and wheat disease differed and reached over 90% in some trials. The effectiveness of LAB in the control of seedling blight did not exceed 70%. A significant increase in yield (from 42.86 to 195.65%) was observed mainly in wheat cultivation. The increase in rye yield was observed only in chosen trials. No phytotoxicity was observed. The results indicate the potential possibilities of using LAB as a biocontrol agent. Full article
(This article belongs to the Special Issue Identification and Management of Fungal Plant Pathogens)
Show Figures

Figure 1

11 pages, 1325 KiB  
Article
Genetic Variation in Turkish Bread Wheat (Triticum aestivum L.) Varieties for Resistance to Common Bunt
by Mehmet Tekin
Agronomy 2023, 13(10), 2491; https://doi.org/10.3390/agronomy13102491 - 27 Sep 2023
Viewed by 1383
Abstract
Common bunt, caused by Tilletia laevis and T. caries, is one of the major wheat diseases in Türkiye and in many countries in the world. To control this disease, chemical seed treatment is commonly used; however, it may cause harm to human [...] Read more.
Common bunt, caused by Tilletia laevis and T. caries, is one of the major wheat diseases in Türkiye and in many countries in the world. To control this disease, chemical seed treatment is commonly used; however, it may cause harm to human and environmental health. Therefore, genetic resistance to control common bunt in an environmentally friendly, cost-effective, and sustainable manner is the best choice. This study was conducted to determine the reactions of 102 bread wheat (Triticum aestivum L.) varieties with regard to their resistance to common bunt in field conditions over three consecutive years. Additionally, these varieties were molecularly screened with linked markers to Bt8, Bt9, Bt10, and Bt11. The infection rates ranged from 3.17 to 91.49%, 5.41 to 91.41%, 5.29 to 94.06%, and 6.85 to 90.30% in the growing seasons 2019–2020, 2020–2021, and 2021–2022 and overall, respectively. In molecular screening, Bt8 was detected in 2 of the varieties, Bt10 in 10 of them, and Bt11 in 15 of them. There was no variety carrying only Bt9. However, many gene combinations, such as Bt8 + Bt9, Bt8 + Bt11, Bt9 + Bt10, Bt9 + Bt11, Bt8 + Bt9 + Bt10, and Bt8 + Bt9 + Bt11, were determined. The varieties with a gene combination of Bt8 + Bt9 + Bt11 had the lowest infection rates. As a result, 65.68% of the varieties were very susceptible. Only 3.92% of them had moderately resistant reaction. These varieties could be used in breeding programs conducted for resistance to common bunt. Full article
(This article belongs to the Special Issue Advances in Plant–Fungal Pathogen Interactions)
Show Figures

Figure 1

32 pages, 1497 KiB  
Review
Corydalis saxicola Bunting: A Review of Its Traditional Uses, Phytochemistry, Pharmacology, and Clinical Applications
by Feng Qin, Yao Chen, Fan-Fan Wang, Shao-Qing Tang and Yi-Lin Fang
Int. J. Mol. Sci. 2023, 24(2), 1626; https://doi.org/10.3390/ijms24021626 - 13 Jan 2023
Cited by 16 | Viewed by 3488
Abstract
Corydalis saxicola Bunting (CSB), whose common name in Chinese is Yanhuanglian, is a herb in the family Papaveraceae. When applied in traditional Chinese medicine, it is used to treat various diseases including hepatitis, abdominal pain, and bleeding haemorrhoids. In addition, Corydalis saxicola Bunting [...] Read more.
Corydalis saxicola Bunting (CSB), whose common name in Chinese is Yanhuanglian, is a herb in the family Papaveraceae. When applied in traditional Chinese medicine, it is used to treat various diseases including hepatitis, abdominal pain, and bleeding haemorrhoids. In addition, Corydalis saxicola Bunting injection (CSBI) is widely used against acute and chronic hepatitis. This review aims to provide up-to-date information on the botanical distribution, description, traditional uses, phytochemistry, pharmacology, and clinical applications of CSB. A comprehensive review was implemented on studies about CSB from several scientific databases, such as SciFinder, Elsevier, Springer, ACS Publications, Baidu Scholar, CNKI, and Wanfang Data. Phytochemical studies showed that 81 chemical constituents have been isolated and identified from CSB, most of which are alkaloids. This situation indicates that these alkaloids would be the main bioactive substances and that they have antitumour, liver protective, antiviral, and antibacterial pharmacological activities. CSBI can not only treat hepatitis and liver cancer but can also be used in combination with other drugs. However, the relationships between the traditional uses and modern pharmacological actions, the action mechanisms, quality standards, and the material basis need to be implemented in the future. Moreover, the pharmacokinetics of CSBI in vivo and the toxicology should be further investigated. Full article
Show Figures

Figure 1

11 pages, 7294 KiB  
Article
Genetic Variation in Common Bunt Resistance in Synthetic Hexaploid Wheat
by Amira M. I. Mourad, Alexey Morgounov, P. Stephen Baenziger and Samar M. Esmail
Plants 2023, 12(1), 2; https://doi.org/10.3390/plants12010002 - 20 Dec 2022
Cited by 3 | Viewed by 2271
Abstract
Common bunt (caused by Tilletia caries and T. Foetida) is a major wheat disease. It occurs frequently in the USA and Turkey and damages grain yield and quality. Seed treatment with fungicides is an effective method to control this disease. However, using [...] Read more.
Common bunt (caused by Tilletia caries and T. Foetida) is a major wheat disease. It occurs frequently in the USA and Turkey and damages grain yield and quality. Seed treatment with fungicides is an effective method to control this disease. However, using fungicides in organic and low-income fields is forbidden, and planting resistant cultivars are preferred. Due to the highly effective use of fungicides, little effort has been put into breeding resistant genotypes. In addition, the genetic diversity for this trait is low in modern wheat germplasm. Synthetic wheat genotypes were reported as an effective source to increase the diversity in wheat germplasm. Therefore, a set of 25 synthetics that are resistant to the Turkish common bunt race were evaluated against the Nebraska common bunt race. Four genotypes were found to be very resistant to Nebraska’s common bunt race. Using differential lines, four isolines carrying genes, Bt10, Bt11, Bt12, and Btp, were found to provide resistance against both Turkish and Nebraska common bunt races. Genotypes carrying any or all of these four genes could be used as a source of resistance in both countries. No correlation was found between common bunt resistance and some agronomic traits, which suggests that common bunt resistance is an independent trait. Full article
(This article belongs to the Collection Feature Papers in Plant Protection)
Show Figures

Figure 1

20 pages, 3706 KiB  
Article
Identification of Disease Resistance Parents and Genome-Wide Association Mapping of Resistance in Spring Wheat
by Muhammad Iqbal, Kassa Semagn, Diego Jarquin, Harpinder Randhawa, Brent D. McCallum, Reka Howard, Reem Aboukhaddour, Izabela Ciechanowska, Klaus Strenzke, José Crossa, J. Jesus Céron-Rojas, Amidou N’Diaye, Curtis Pozniak and Dean Spaner
Plants 2022, 11(21), 2905; https://doi.org/10.3390/plants11212905 - 28 Oct 2022
Cited by 7 | Viewed by 2754
Abstract
The likelihood of success in developing modern cultivars depend on multiple factors, including the identification of suitable parents to initiate new crosses, and characterizations of genomic regions associated with target traits. The objectives of the present study were to (a) determine the best [...] Read more.
The likelihood of success in developing modern cultivars depend on multiple factors, including the identification of suitable parents to initiate new crosses, and characterizations of genomic regions associated with target traits. The objectives of the present study were to (a) determine the best economic weights of four major wheat diseases (leaf spot, common bunt, leaf rust, and stripe rust) and grain yield for multi-trait restrictive linear phenotypic selection index (RLPSI), (b) select the top 10% cultivars and lines (hereafter referred as genotypes) with better resistance to combinations of the four diseases and acceptable grain yield as potential parents, and (c) map genomic regions associated with resistance to each disease using genome-wide association study (GWAS). A diversity panel of 196 spring wheat genotypes was evaluated for their reaction to stripe rust at eight environments, leaf rust at four environments, leaf spot at three environments, common bunt at two environments, and grain yield at five environments. The panel was genotyped with the Wheat 90K SNP array and a few KASP SNPs of which we used 23,342 markers for statistical analyses. The RLPSI analysis performed by restricting the expected genetic gain for yield displayed significant (p < 0.05) differences among the 3125 economic weights. Using the best four economic weights, a subset of 22 of the 196 genotypes were selected as potential parents with resistance to the four diseases and acceptable grain yield. GWAS identified 37 genomic regions, which included 12 for common bunt, 13 for leaf rust, 5 for stripe rust, and 7 for leaf spot. Each genomic region explained from 6.6 to 16.9% and together accounted for 39.4% of the stripe rust, 49.1% of the leaf spot, 94.0% of the leaf rust, and 97.9% of the common bunt phenotypic variance combined across all environments. Results from this study provide valuable information for wheat breeders selecting parental combinations for new crosses to develop improved germplasm with enhanced resistance to the four diseases as well as the physical positions of genomic regions that confer resistance, which facilitates direct comparisons for independent mapping studies in the future. Full article
Show Figures

Figure 1

10 pages, 780 KiB  
Article
Effects of Valley Topography on Acoustic Communication in Birds: Why Do Birds Avoid Deep Valleys in Daqinggou Nature Reserve?
by Songkai Guo, Wenhui Wu, Yaxin Liu, Xiaofang Kang and Chunwang Li
Animals 2022, 12(21), 2896; https://doi.org/10.3390/ani12212896 - 22 Oct 2022
Viewed by 2101
Abstract
To investigate the effects of valley topography on the acoustic transmission of avian vocalisations, we carried out playback experiments in Daqinggou valley, Inner Mongolia, China. During the experiments, we recorded the vocalisations of five avian species, the large-billed crow (Corvus macrorhynchos Wagler, [...] Read more.
To investigate the effects of valley topography on the acoustic transmission of avian vocalisations, we carried out playback experiments in Daqinggou valley, Inner Mongolia, China. During the experiments, we recorded the vocalisations of five avian species, the large-billed crow (Corvus macrorhynchos Wagler, 1827), common cuckoo (Cuculus canorus Linnaeus, 1758), Eurasian magpie (Pica pica Linnaeus, 1758), Eurasian tree sparrow (Passer montanus Linnaeus, 1758), and meadow bunting (Emberiza cioides Brand, 1843), at transmission distances of 30 m and 50 m in the upper and lower parts of the valley and analysed the intensity, the fundamental frequency (F0), and the first three formant frequencies (F1/F2/F3) of the sounds. We also investigated bird species diversity in the upper and lower valley. We found that: (1) at the distance of 30 m, there were significant differences in F0/F1/F2/F3 in Eurasian magpies, significant differences in F1/F2/F3 in the meadow bunting and Eurasian tree sparrow, and partially significant differences in sound frequency between the upper and lower valley in the other two species; (2) at the distance of 50 m, there were significant differences in F0/F1/F2/F3 in two avian species (large-billed crow and common cuckoo) between the upper and lower valley and partially significant differences in sound frequency between the upper and lower valley in the other three species; (2) there were significant differences in the acoustic intensities of crow, cuckoo, magpie, and bunting calls between the upper and lower valley. (3) Species number and richness were significantly higher in the upper valley than in the lower valley. We suggested that the structure of valley habitats may lead to the breakdown of acoustic signals and communication in birds to varying degrees. The effect of valley topography on acoustic communication could be one reason for animal species avoiding deep valleys. Full article
(This article belongs to the Special Issue Bird Culture: Diversity and Functions of Bird Vocalizations)
Show Figures

Figure 1

11 pages, 4327 KiB  
Article
Metabolomic Analysis of Wheat Grains after Tilletia laevis Kühn Infection by Using Ultrahigh-Performance Liquid Chromatography–Q-Exactive Mass Spectrometry
by Muhammad Jabran, Delai Chen, Ghulam Muhae-Ud-Din, Taiguo Liu, Wanquan Chen, Changzhong Liu and Li Gao
Metabolites 2022, 12(9), 805; https://doi.org/10.3390/metabo12090805 - 28 Aug 2022
Cited by 3 | Viewed by 2188
Abstract
Tilletia laevis causes common bunt disease in wheat, with severe losses of production yield and seed quality. Metabolomics studies provide detailed information about the biochemical changes at the cell and tissue level of the plants. Ultrahigh-performance liquid chromatography–Q-exactive mass spectrometry (UPLC-QE-MS) was used [...] Read more.
Tilletia laevis causes common bunt disease in wheat, with severe losses of production yield and seed quality. Metabolomics studies provide detailed information about the biochemical changes at the cell and tissue level of the plants. Ultrahigh-performance liquid chromatography–Q-exactive mass spectrometry (UPLC-QE-MS) was used to examine the changes in wheat grains after T. laevis infection. PCA analysis suggested that T. laevis-infected and non-infected samples were scattered separately during the interaction. In total, 224 organic acids and their derivatives, 170 organoheterocyclic compounds, 128 lipids and lipid-like molecules, 85 organic nitrogen compounds, 64 benzenoids, 31 phenylpropanoids and polyketides, 21 nucleosides, nucleotides, their analogues, and 10 alkaloids and derivatives were altered in hyphal-infected grains. According to The Kyoto Encyclopedia of Genes and genomes analysis, the protein digestion and absorption, biosynthesis of amino acids, arginine and proline metabolism, vitamin digestion and absorption, and glycine, serine, and threonine metabolism pathways were activated in wheat crops after T. laevis infection. Full article
Show Figures

Figure 1

13 pages, 2298 KiB  
Article
ITRAQ-Based Proteomic Analysis of Wheat (Triticum aestivum) Spikes in Response to Tilletia controversa Kühn and Tilletia foetida Kühn Infection, Causal Organisms of Dwarf Bunt and Common Bunt of Wheat
by Ting He, Tongshuo Xu, Ghulam Muhae-Ud-Din, Qingyun Guo, Taiguo Liu, Wanquan Chen and Li Gao
Biology 2022, 11(6), 865; https://doi.org/10.3390/biology11060865 - 5 Jun 2022
Cited by 5 | Viewed by 2711
Abstract
Dwarf bunt and common bunt diseases of wheat are caused by Tilletia controversa Kühn and Tilletia foetida Kühn, respectively, and losses caused by these diseases can reach 70–80% in favourable conditions. T. controversa and T. foetida are fungal pathogens belonging to the Exobasidiomycetes [...] Read more.
Dwarf bunt and common bunt diseases of wheat are caused by Tilletia controversa Kühn and Tilletia foetida Kühn, respectively, and losses caused by these diseases can reach 70–80% in favourable conditions. T. controversa and T. foetida are fungal pathogens belonging to the Exobasidiomycetes within the basidiomycetous smut fungi (Ustilaginomycotina). In order to illuminate the proteomics differences of wheat spikes after the infection of T. controversa and T. foetida, the isobaric tags for relative and absolute quantification (iTRAQ) technique was used for better clarification. A total of 4553 proteins were differentially detected after T. controversa infection; 4100 were upregulated, and 453 were downregulated. After T. foetida infection, 804 differentially expressed proteins were detected; 447 were upregulated and 357 were downregulated. In-depth data analysis revealed that 44, 50 and 82 proteins after T. controversa and 9, 6 and 16 proteins after T. foetida were differentially expressed, which are antioxidant, plant-pathogen interaction and glutathione proteins, respectively, and 9 proteins showed results consistent with PRM. The top 20 KEGG enrichment pathways were identified after pathogen infection. On the basis of gene ontology, the upregulated proteins were linked with metabolic process, catalytic activity, transferase activity, photosynthetic membrane, extracellular region and oxidoreductase activity. The results expanded our understanding of the proteome in wheat spikes in response to T. controversa and T. foetida infection and provide a basis for further investigation for improving the defense mechanism of the wheat crops. Full article
Show Figures

Figure 1

20 pages, 2049 KiB  
Article
Genomic Predictions for Common Bunt, FHB, Stripe Rust, Leaf Rust, and Leaf Spotting Resistance in Spring Wheat
by Kassa Semagn, Muhammad Iqbal, Diego Jarquin, José Crossa, Reka Howard, Izabela Ciechanowska, Maria Antonia Henriquez, Harpinder Randhawa, Reem Aboukhaddour, Brent D. McCallum, Anita L. Brûlé-Babel, Alireza Navabi, Amidou N’Diaye, Curtis Pozniak and Dean Spaner
Genes 2022, 13(4), 565; https://doi.org/10.3390/genes13040565 - 23 Mar 2022
Cited by 17 | Viewed by 3263
Abstract
Some studies have investigated the potential of genomic selection (GS) on stripe rust, leaf rust, Fusarium head blight (FHB), and leaf spot in wheat, but none of them have assessed the effect of the reaction norm model that incorporated GE interactions. In addition, [...] Read more.
Some studies have investigated the potential of genomic selection (GS) on stripe rust, leaf rust, Fusarium head blight (FHB), and leaf spot in wheat, but none of them have assessed the effect of the reaction norm model that incorporated GE interactions. In addition, the prediction accuracy on common bunt has not previously been studied. Here, we investigated within-population prediction accuracies using the baseline M1 model and two reaction norm models (M2 and M3) with three random cross-validation (CV1, CV2, and CV0) schemes. Three Canadian spring wheat populations were evaluated in up to eight field environments and genotyped with 3158, 5732, and 23,795 polymorphic markers. The M3 model that incorporated GE interactions reduced residual variance by an average of 10.2% as compared with the main effect M2 model and increased prediction accuracies on average by 2–6%. In some traits, the M3 model increased prediction accuracies up to 54% as compared with the M2 model. The average prediction accuracies of the M3 model with CV1, CV2, and CV0 schemes varied from 0.02 to 0.48, from 0.25 to 0.84, and from 0.14 to 0.87, respectively. In both CV2 and CV0 schemes, stripe rust in all three populations, common bunt and leaf rust in two populations, as well as FHB severity, FHB index, and leaf spot in one population had high to very high (0.54–0.87) prediction accuracies. This is the first comprehensive genomic selection study on five major diseases in spring wheat. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

11 pages, 990 KiB  
Article
Association Mapping for Common Bunt Resistance in Wheat Landraces and Cultivars
by Philipp Matthias Steffan, Anders Borgen, Anna Maria Torp, Gunter Backes and Søren K. Rasmussen
Agronomy 2022, 12(3), 642; https://doi.org/10.3390/agronomy12030642 - 5 Mar 2022
Cited by 2 | Viewed by 2677
Abstract
Common bunt is a seed borne disease of wheat whose importance is likely to increase due to the growing organic seed market, which, in addition to seed phytosanitary measures, relies on genetic resistances towards the disease. Genome wide association studies in wheat have [...] Read more.
Common bunt is a seed borne disease of wheat whose importance is likely to increase due to the growing organic seed market, which, in addition to seed phytosanitary measures, relies on genetic resistances towards the disease. Genome wide association studies in wheat have been proven to be a useful tool in the detection of genetic polymorphisms underlying phenotypic trait variation in wheat. Here 248 wheat landraces and cultivars representing 130 years of breeding history were screened for two years in the field for their resistance reactions towards common bunt. The majority of lines exhibited high levels of susceptibility towards common bunt, while 25 accessions had less than 10% infection. Using Diversity Array Technology (DArT) markers for genotyping and correcting for population stratification by using a compressed mixed linear model, we identified two significant marker trait associations (MTA) for common bunt resistance, designated QCbt.cph-2B and QCbt.cph-7A, located on wheat chromosomes 2B and 7A, respectively. This shows that genome wide association studies (GWAS) are applicable in the search for genetic polymorphisms for resistance towards less studied plant diseases such as common bunt in the context of an under representation of resistant lines. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

23 pages, 11122 KiB  
Article
Deciphering the Host–Pathogen Interactome of the Wheat–Common Bunt System: A Step towards Enhanced Resilience in Next Generation Wheat
by Raghav Kataria and Rakesh Kaundal
Int. J. Mol. Sci. 2022, 23(5), 2589; https://doi.org/10.3390/ijms23052589 - 26 Feb 2022
Cited by 10 | Viewed by 3658
Abstract
Common bunt, caused by two fungal species, Tilletia caries and Tilletia laevis, is one of the most potentially destructive diseases of wheat. Despite the availability of synthetic chemicals against the disease, organic agriculture relies greatly on resistant cultivars. Using two computational approaches—interolog [...] Read more.
Common bunt, caused by two fungal species, Tilletia caries and Tilletia laevis, is one of the most potentially destructive diseases of wheat. Despite the availability of synthetic chemicals against the disease, organic agriculture relies greatly on resistant cultivars. Using two computational approaches—interolog and domain-based methods—a total of approximately 58 M and 56 M probable PPIs were predicted in T. aestivumT. caries and T. aestivumT. laevis interactomes, respectively. We also identified 648 and 575 effectors in the interactions from T. caries and T. laevis, respectively. The major host hubs belonged to the serine/threonine protein kinase, hsp70, and mitogen-activated protein kinase families, which are actively involved in plant immune signaling during stress conditions. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of the host proteins revealed significant GO terms (O-methyltransferase activity, regulation of response to stimulus, and plastid envelope) and pathways (NF-kappa B signaling and the MAPK signaling pathway) related to plant defense against pathogens. Subcellular localization suggested that most of the pathogen proteins target the host in the plastid. Furthermore, a comparison between unique T. caries and T. laevis proteins was carried out. We also identified novel host candidates that are resistant to disease. Additionally, the host proteins that serve as transcription factors were also predicted. Full article
(This article belongs to the Special Issue Plant Biology and Biotechnology: Focus on Genomics and Bioinformatics)
Show Figures

Figure 1

14 pages, 2858 KiB  
Article
Species-Specific Responses of Bird Song Output in the Presence of Drones
by Andrew M. Wilson, Kenneth S. Boyle, Jennifer L. Gilmore, Cody J. Kiefer and Matthew F. Walker
Drones 2022, 6(1), 1; https://doi.org/10.3390/drones6010001 - 21 Dec 2021
Cited by 7 | Viewed by 4179
Abstract
Drones are now widely used to study wildlife, but their application in the study of bioacoustics is limited. Drones can be used to collect data on bird vocalizations, but an ongoing concern is that noise from drones could change bird vocalization behavior. To [...] Read more.
Drones are now widely used to study wildlife, but their application in the study of bioacoustics is limited. Drones can be used to collect data on bird vocalizations, but an ongoing concern is that noise from drones could change bird vocalization behavior. To test for behavioral impact, we conducted an experiment using 30 sound localization arrays to track the song output of 7 songbird species before, during, and after a 3 min flight of a small quadcopter drone hovering 48 m above ground level. We analyzed 8303 song bouts, of which 2285, from 184 individual birds were within 50 m of the array centers. We used linear mixed effect models to assess whether patterns in bird song output could be attributed to the drone’s presence. We found no evidence of any effect of the drone on five species: American Robin Turdus migratorius, Common Yellowthroat Geothlypis trichas, Field Sparrow Spizella pusilla, Song Sparrow Melospiza melodia, and Indigo Bunting Passerina cyanea. However, we found a substantial decrease in Yellow Warbler Setophaga petechia song detections during the 3 min drone hover; there was an 81% drop in detections in the third minute (Wald test, p < 0.001) compared with before the drone’s introduction. By contrast, the number of singing Northern Cardinal Cardinalis cardinalis increased when the drone was overhead and remained almost five-fold higher for 4 min after the drone departed (p < 0.001). Further, we found an increase in cardinal contact/alarm calls when the drone was overhead, with the elevated calling rate lasting for 2 min after the drone departed (p < 0.001). Our study suggests that the responses of songbirds to drones may be species-specific, an important consideration when proposing the use of drones in avian studies. We note that recent advances in drone technology have resulted in much quieter drones, which makes us hopeful that the impact that we detected could be greatly reduced. Full article
(This article belongs to the Special Issue Ecological Applications of Drone-Based Remote Sensing)
Show Figures

Figure 1

19 pages, 10842 KiB  
Review
Centenary of Soil and Air Borne Wheat Karnal Bunt Disease Research: A Review
by Mir Asif Iquebal, Pallavi Mishra, Ranjeet Maurya, Sarika Jaiswal, Anil Rai and Dinesh Kumar
Biology 2021, 10(11), 1152; https://doi.org/10.3390/biology10111152 - 9 Nov 2021
Cited by 11 | Viewed by 5835
Abstract
Karnal bunt (KB) of wheat (Triticum aestivum L.), known as partial bunt has its origin in Karnal, India and is caused by Tilletia indica (Ti). Its incidence had grown drastically since late 1960s from northwestern India to northern India in early 1970s. [...] Read more.
Karnal bunt (KB) of wheat (Triticum aestivum L.), known as partial bunt has its origin in Karnal, India and is caused by Tilletia indica (Ti). Its incidence had grown drastically since late 1960s from northwestern India to northern India in early 1970s. It is a seed, air and soil borne pathogen mainly affecting common wheat, durum wheat, triticale and other related species. The seeds become inedible, inviable and infertile with the precedence of trimethylamine secreted by teliospores in the infected seeds. Initially the causal pathogen was named Tilletia indica but was later renamed Neovossia indica. The black powdered smelly spores remain viable for years in soil, wheat straw and farmyard manure as primary sources of inoculum. The losses reported were as high as 40% in India and also the cumulative reduction of national farm income in USA was USD 5.3 billion due to KB. The present review utilizes information from literature of the past 100 years, since 1909, to provide a comprehensive and updated understanding of KB, its causal pathogen, biology, epidemiology, pathogenesis, etc. Next generation sequencing (NGS) is gaining popularity in revolutionizing KB genomics for understanding and improving agronomic traits like yield, disease tolerance and disease resistance. Genetic resistance is the best way to manage KB, which may be achieved through detection of genes/quantitative trait loci (QTLs). The genome-wide association studies can be applied to reveal the association mapping panel for understanding and obtaining the KB resistance locus on the wheat genome, which can be crossed with elite wheat cultivars globally for a diverse wheat breeding program. The review discusses the current NGS-based genomic studies, assembly, annotations, resistant QTLs, GWAS, technology landscape of diagnostics and management of KB. The compiled exhaustive information can be beneficial to the wheat breeders for better understanding of incidence of disease in endeavor of quality production of the crop. Full article
(This article belongs to the Special Issue Plant-Pathogen Interaction)
Show Figures

Graphical abstract

20 pages, 2420 KiB  
Article
Sustainable Wheat Production and Food Security of Domestic Wheat in Tajikistan: Implications of Seed Health and Protein Quality
by Bahromiddin Husenov, Siham Asaad, Hafiz Muminjanov, Larisa Garkava-Gustavsson and Eva Johansson
Int. J. Environ. Res. Public Health 2021, 18(11), 5751; https://doi.org/10.3390/ijerph18115751 - 27 May 2021
Cited by 9 | Viewed by 4141
Abstract
Staple crop yield, quality and sustainable production are critical for domestic food security in developing countries. In Tajikistan, both seed-borne diseases and protein quality impair the yield and the quality of the major staple crop, wheat. Here, we used a detailed two-year survey [...] Read more.
Staple crop yield, quality and sustainable production are critical for domestic food security in developing countries. In Tajikistan, both seed-borne diseases and protein quality impair the yield and the quality of the major staple crop, wheat. Here, we used a detailed two-year survey of fields on 21 wheat-producing farms in Tajikistan, combined with lab analyses on seed health and protein quality, to investigate the presence of seed-borne diseases and bread-making quality in Tajik wheat. Seed samples were collected for the analysis of: (i) the presence of common bunt (Tilletia spp.) using the centrifuge wash test, (ii) the major pathogenic fungi on/in the seed using the agar plate test and (iii) the protein amount and size distribution using size-exclusion high-performance liquid chromatography (SE-HPLC). Field occurrence of common bunt and loose smut was generally low (3 farms in year one (14%) showed common bunt occurrence), but the presence of fungi was observed microscopically on most seed samples (on seeds from 19 out of 21 farms = 91%). Tilletia laevis was the dominant agent in common bunt (present in 19 farms compared to T. tritici present in 6 farms). Altogether, 18 different fungi were identified from seed samples by microscopy. Protein composition, measured with high-performance liquid chromatography as protein amount and size distribution (known to correlate with bread-making quality), differed significantly between samples from different farms and years, although the farm type and land elevation of the farm were not the determinants of the protein composition. The presence of certain fungi on the seed correlated significantly with the protein quality and could then have an impact on the bread-making quality of the Tajik wheat. The presence of seed-borne diseases, a low protein content and weak gluten were the characteristics of the majority of the grain samples, mostly irrespective of farm type and farmer’s knowledge. For sustainable development of the Tajik farming systems, and to strengthen the food security of the country, the knowledge of Tajik farmers needs to be increased independently of farm type; in general, plant breeding is required and certified seeds need to be made available throughout the country. Full article
Show Figures

Figure 1

Back to TopTop