Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,347)

Search Parameters:
Keywords = combustion engine efficiency

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2128 KiB  
Article
Economic Evaluation of Vehicle Operation in Road Freight Transport—Case Study of Slovakia
by Miloš Poliak, Kristián Čulík, Milada Huláková and Erik Kováč
World Electr. Veh. J. 2025, 16(8), 409; https://doi.org/10.3390/wevj16080409 - 22 Jul 2025
Viewed by 90
Abstract
The European Union is committed to reducing greenhouse gas emissions across all sectors, including the transportation sector. It is possible to assume that road freight transport will need to undergo technological changes, leading to greater use of alternative powertrains. This article builds on [...] Read more.
The European Union is committed to reducing greenhouse gas emissions across all sectors, including the transportation sector. It is possible to assume that road freight transport will need to undergo technological changes, leading to greater use of alternative powertrains. This article builds on previous research on the energy consumption of battery electric trucks (BETs) and assesses the economic efficiency of electric vehicles in freight transport through a cost calculation. The primary objective was to determine the conditions under which a BET becomes cost-effective for a transport operator. These findings are practically relevant for freight carriers. Unlike other studies, this article does not focus on total cost of ownership (TCO) but rather compares the variable and fixed costs of BETs and conventional internal combustion engine trucks (ICETs). In this article, the operating costs of BETs were calculated and modeled based on real-world measurements of a tested vehicle. The research findings indicate that BETs are economically efficient, primarily when state subsidies are provided, compensating for the significant difference in purchase costs between BETs and conventional diesel trucks. This study found that optimizing operational conditions (daily routes) enables BETs to reach a break-even point at approximately 110,000 km per year, even without subsidies. Another significant finding is that battery capacity degradation leads to a projected annual operating cost increase of approximately 4%. Full article
Show Figures

Figure 1

26 pages, 7439 KiB  
Review
A Review of Marine Dual-Fuel Engine New Combustion Technology: Turbulent Jet-Controlled Premixed-Diffusion Multi-Mode Combustion
by Jianlin Cao, Zebang Liu, Hao Shi, Dongsheng Dong, Shuping Kang and Lingxu Bu
Energies 2025, 18(15), 3903; https://doi.org/10.3390/en18153903 - 22 Jul 2025
Viewed by 148
Abstract
Driven by stringent emission regulations, advanced combustion modes utilizing turbulent jet ignition technology are pivotal for enhancing the performance of marine low-speed natural gas dual-fuel engines. This review focuses on three novel combustion modes, yielding key conclusions: (1) Compared to the conventional DJCDC [...] Read more.
Driven by stringent emission regulations, advanced combustion modes utilizing turbulent jet ignition technology are pivotal for enhancing the performance of marine low-speed natural gas dual-fuel engines. This review focuses on three novel combustion modes, yielding key conclusions: (1) Compared to the conventional DJCDC mode, the TJCDC mode exhibits a significantly higher swirl ratio and turbulence kinetic energy in the main chamber during initial combustion. This promotes natural gas jet development and combustion acceleration, leading to shorter ignition delay, reduced combustion duration, and a combustion center (CA50) positioned closer to the Top Dead Center (TDC), alongside higher peak cylinder pressure and a faster early heat release rate. Energetically, while TJCDC incurs higher heat transfer losses, it benefits from lower exhaust energy and irreversible exergy loss, indicating greater potential for useful work extraction, albeit with slightly higher indicated specific NOx emissions. (2) In the high-compression ratio TJCPC mode, the Liquid Pressurized Natural Gas (LPNG) injection parameters critically impact performance. Delaying the start of injection (SOI) or extending the injection duration degrades premixing uniformity and increases unburned methane (CH4) slip, with the duration effects showing a load dependency. Optimizing both the injection timing and duration is, therefore, essential for emission control. (3) Increasing the excess air ratio delays the combustion phasing in TJCPC (longer ignition delay, extended combustion duration, and retarded CA50). However, this shift positions the heat release more optimally relative to the TDC, resulting in significantly improved indicated thermal efficiency. This work provides a theoretical foundation for optimizing high-efficiency, low-emission combustion strategies in marine dual-fuel engines. Full article
(This article belongs to the Special Issue Towards Cleaner and More Efficient Combustion)
Show Figures

Figure 1

22 pages, 5450 KiB  
Article
Optimization of a Heavy-Duty Hydrogen-Fueled Internal Combustion Engine Injector for Optimum Performance and Emission Level
by Murat Ozkara and Mehmet Zafer Gul
Appl. Sci. 2025, 15(15), 8131; https://doi.org/10.3390/app15158131 - 22 Jul 2025
Viewed by 172
Abstract
Hydrogen is a promising zero-carbon fuel for internal combustion engines; however, the geometric optimization of injectors for low-pressure direct-injection (LPDI) systems under lean-burn conditions remains underexplored. This study presents a high-fidelity optimization framework that couples a validated computational fluid dynamics (CFD) combustion model [...] Read more.
Hydrogen is a promising zero-carbon fuel for internal combustion engines; however, the geometric optimization of injectors for low-pressure direct-injection (LPDI) systems under lean-burn conditions remains underexplored. This study presents a high-fidelity optimization framework that couples a validated computational fluid dynamics (CFD) combustion model with a surrogate-assisted multi-objective genetic algorithm (MOGA). The CFD model was validated using particle image velocimetry (PIV) data from non-reacting flow experiments conducted in an optically accessible research engine developed by Sandia National Laboratories, ensuring accurate prediction of in-cylinder flow structures. The optimization focused on two critical geometric parameters: injector hole count and injection angle. Partial indicated mean effective pressure (pIMEP) and in-cylinder NOx emissions were selected as conflicting objectives to balance performance and emissions. Adaptive mesh refinement (AMR) was employed to resolve transient in-cylinder flow and combustion dynamics with high spatial accuracy. Among 22 evaluated configurations including both capped and uncapped designs, the injector featuring three holes at a 15.24° injection angle outperformed the baseline, delivering improved mixture uniformity, reduced knock tendency, and lower NOx emissions. These results demonstrate the potential of geometry-based optimization for advancing hydrogen-fueled LPDI engines toward cleaner and more efficient combustion strategies. Full article
Show Figures

Figure 1

12 pages, 1540 KiB  
Article
Consumables Usage and Carbon Dioxide Emissions in Logging Operations
by Dariusz Pszenny and Tadeusz Moskalik
Forests 2025, 16(7), 1197; https://doi.org/10.3390/f16071197 - 20 Jul 2025
Viewed by 172
Abstract
In this study, we comprehensively analyzed material consumption (fuel, hydraulic oil, lubricants, and AdBlue fluid) and estimated carbon dioxide emissions during logging operations. This study was carried out in the northeastern part of Poland. Four harvesters and four forwarders representing two manufacturers (John [...] Read more.
In this study, we comprehensively analyzed material consumption (fuel, hydraulic oil, lubricants, and AdBlue fluid) and estimated carbon dioxide emissions during logging operations. This study was carried out in the northeastern part of Poland. Four harvesters and four forwarders representing two manufacturers (John Deere-Deere & Co., Moline, USA, and Komatsu Forest AB, Umeå, Sweden) were analyzed to compare their operational efficiency and constructional influences on overall operating costs. Due to differences in engine emission standards, approximate greenhouse gas emissions were estimated. The results indicate that harvesters equipped with Stage V engines have lower fuel consumption, while large forwarders use more consumables than small ones per hour and cubic meter of harvested and extracted timber. A strong positive correlation was observed between total machine time and fuel consumption (r = 0.81), as well as between machine time and total volume of timber harvested (r = 0.72). Older and larger machines showed about 40% higher combustion per unit of wood processed. Newer machines meeting higher emission standards (Stage V) generally achieved lower CO2 and other GHG emissions compared to older models. Machines with Stage V engines emitted about 2.07 kg CO2 per processing of 1 m3 of wood, while machines with older engine types emitted as much as 4.35 kg CO2 per 1 m3—roughly half as much. These differences are even more pronounced in the context of nitrogen oxide (NOx) emissions: the estimated NOx emissions for the older engine types were as high as ~85 g per m3, while those for Stage V engines were only about 5 g per m3 of harvested wood. Continuing the study would need to expand the number of machines analyzed, as well as acquire more detailed performance data on individual operators. A tool that could make this possible would be fleet monitoring services offered by the manufacturers of the surveyed harvesters and forwards, such as Smart Forestry or Timber Manager. Full article
(This article belongs to the Section Forest Operations and Engineering)
Show Figures

Figure 1

22 pages, 1400 KiB  
Article
Reliability Study of Electric Buses in the Urban Public Transport System
by Andrzej Niewczas, Joanna Rymarz, Marcin Ślęzak, Dariusz Kasperek and Piotr Hołyszko
Energies 2025, 18(14), 3863; https://doi.org/10.3390/en18143863 - 20 Jul 2025
Viewed by 283
Abstract
Contemporary research on electric buses focuses mainly on the following issues: energy efficiency, range and transport costs, and traction battery technology. However, little research has been conducted on operational reliability. This article presents a comparative assessment of the reliability of electric buses in [...] Read more.
Contemporary research on electric buses focuses mainly on the following issues: energy efficiency, range and transport costs, and traction battery technology. However, little research has been conducted on operational reliability. This article presents a comparative assessment of the reliability of electric buses in relation to combustion engine buses. The research was conducted under real conditions in the city of Lublin, Poland. The reliability functions of buses and their structural components were determined based on the Weibull distribution. It was shown that electric buses have a shorter distance between failures than combustion engine buses of analogous capacity. The statistical significance of the differences in reliability between electric and combustion engine buses was verified. The suitability of the Weibull model as a model of bus reliability in comparative studies was verified. The results of the research can be used to monitor current sustainable public transport development programs and to improve bus diagnostic and maintenance systems in transport companies. Full article
Show Figures

Figure 1

21 pages, 5207 KiB  
Article
Experimental Study on Co-Firing of Coal and Biomass in Industrial-Scale Circulating Fluidized Bed Boilers
by Haoteng Zhang and Chunjiang Yu
Energies 2025, 18(14), 3832; https://doi.org/10.3390/en18143832 - 18 Jul 2025
Viewed by 197
Abstract
Based on the low-carbon transition needs of coal-fired boilers, this study conducted industrial trials of direct biomass co-firing on a 620 t/h high-temperature, high-pressure circulating fluidized bed (CFB) boiler, gradually increasing the co-firing ratio. It used compressed biomass pellets, achieving stable 20 wt% [...] Read more.
Based on the low-carbon transition needs of coal-fired boilers, this study conducted industrial trials of direct biomass co-firing on a 620 t/h high-temperature, high-pressure circulating fluidized bed (CFB) boiler, gradually increasing the co-firing ratio. It used compressed biomass pellets, achieving stable 20 wt% (weight percent) operation. By analyzing boiler parameters and post-shutdown samples, the comprehensive impact of biomass co-firing on the boiler system was assessed. The results indicate that biomass pellets were blended with coal at the last conveyor belt section before the furnace, successfully ensuring operational continuity during co-firing. Further, co-firing biomass up rates of to 20 wt% do not significantly impact the fuel combustion efficiency (gaseous and solid phases) or boiler thermal efficiency and also have positive effects in reducing the bottom ash and SOx and NOx emissions and lowering the risk of low-temperature corrosion. The biomass co-firing slightly increases the combustion share in the dense phase zone and raises the bed temperature. The strong ash adhesion characteristics of the biomass were observed, which were overcome by increasing the ash blowing frequency. Under 20 wt% co-firing, the annual CO2 emissions reductions can reach 130,000 tons. This study provides technical references and practical experience for the engineering application of direct biomass co-firing in industrial-scale CFB boilers. Full article
(This article belongs to the Section A4: Bio-Energy)
Show Figures

Figure 1

26 pages, 2207 KiB  
Article
Enhancing Electric Vehicle Battery Charging Efficiency Using an Improved Parrot Optimizer and Photovoltaic Systems
by Ebrahim Sheykhi and Mutlu Yilmaz
Energies 2025, 18(14), 3808; https://doi.org/10.3390/en18143808 - 17 Jul 2025
Viewed by 171
Abstract
There has been a great need for replacing combustion-powered vehicles with electric vehicles (EV), and fully electric cars are meant to replace combustion engine cars. This has led to considerable research into improving the performance of EVs, especially via electric motor voltage control. [...] Read more.
There has been a great need for replacing combustion-powered vehicles with electric vehicles (EV), and fully electric cars are meant to replace combustion engine cars. This has led to considerable research into improving the performance of EVs, especially via electric motor voltage control. A wide range of optimization algorithms have been used as traditional approaches, but the dynamic parameters of electric motors, impacted by temperature and different driving cycles, continue to be a problem. This study introduces an improved version of the Parrot Optimizer (IPO) aimed at enhancing voltage regulation in EVs. The algorithm can intelligently adjust certain motor parameters for adaptive management to maintain performance based on different situations. To ensure a stable and sustainable power supply for the powertrain of the EV, a photovoltaic (PV) system is used with energy storage batteries. Such an arrangement seeks to deliver permanent electric energy, a solution to traditional grid electricity reliance. This demonstrates the effectiveness of IPO, with the resultant motor performance remaining optimal despite parameter changes. It is also illustrated that energy production, by integrating PV systems, prevents excessive voltage line drops and thus voltage imbalances. The proposed intelligent controller is verified based on multiple simulations, demonstrating and ensuring significant improvements in EV efficiency and reliability. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

7 pages, 482 KiB  
Proceeding Paper
Parameters Characterizing the Performance of Automotive Electronic Control Systems on Petrol Engine Emissions
by Hristo Konakchiev and Evgeni Dimitrov
Eng. Proc. 2025, 100(1), 41; https://doi.org/10.3390/engproc2025100041 - 15 Jul 2025
Viewed by 186
Abstract
It is evident that a novel engineering solution is required in order to elevate a greater number of polluting cars into a higher category. There appears to be a paucity of direct interest in upgrading Euro 1, 2, 3, 4, and 5 vehicles [...] Read more.
It is evident that a novel engineering solution is required in order to elevate a greater number of polluting cars into a higher category. There appears to be a paucity of direct interest in upgrading Euro 1, 2, 3, 4, and 5 vehicles to the highest possible level, primarily through software modifications of the parameters determining the performance of the internal combustion engine (ICE). The potential for advancement in this area is evidenced by the presence of systems that enhance environmental efficiency, even in Euro 2 vehicles. These include exhaust gas recirculation, catalytic converter, lambda sensor, electronic control fuel injection, and ignition timing. It is precisely these vehicles that are subject to optimization, a process which would allow the maximum service life of otherwise more reliable but older vehicles to be exploited. Full article
Show Figures

Figure 1

34 pages, 2634 KiB  
Article
Toward Low-Carbon Mobility: Greenhouse Gas Emissions and Reduction Opportunities in Thailand’s Road Transport Sector
by Pantitcha Thanatrakolsri and Duanpen Sirithian
Clean Technol. 2025, 7(3), 60; https://doi.org/10.3390/cleantechnol7030060 - 11 Jul 2025
Viewed by 511
Abstract
Road transportation is a major contributor to greenhouse gas (GHG) emissions in Thailand. This study assesses the potential for GHG mitigation in the road transport sector from 2018 to 2030. Emission factors for various vehicle types and technologies were derived using the International [...] Read more.
Road transportation is a major contributor to greenhouse gas (GHG) emissions in Thailand. This study assesses the potential for GHG mitigation in the road transport sector from 2018 to 2030. Emission factors for various vehicle types and technologies were derived using the International Vehicle Emissions (IVE) model. Emissions were then estimated based on country-specific vehicle data. In the baseline year 2018, total emissions were estimated at 23,914.02 GgCO2eq, primarily from pickups (24.38%), trucks (20.96%), passenger cars (19.48%), and buses (16.95%). Multiple mitigation scenarios were evaluated, including the adoption of electric vehicles (EVs), improvements in fuel efficiency, and a shift to renewable energy. Results indicate that transitioning all newly registered passenger cars (PCs) to EVs while phasing out older models could lead to a 16.42% reduction in total GHG emissions by 2030. The most effective integrated scenario, combining the expansion of electric vehicles with improvements in internal combustion engine efficiency, could achieve a 41.96% reduction, equivalent to 18,378.04 GgCO2eq. These findings highlight the importance of clean technology deployment and fuel transition policies in meeting Thailand’s climate goals, while providing a valuable database to support strategic planning and implementation. Full article
Show Figures

Figure 1

24 pages, 4757 KiB  
Article
Effect of Port-Injecting Isopropanol on Diesel Engine Performance and Emissions by Changing EGR Ratio and Charge Temperature
by Horng-Wen Wu, Po-Hsien He and Ting-Wei Yeh
Processes 2025, 13(7), 2224; https://doi.org/10.3390/pr13072224 - 11 Jul 2025
Viewed by 251
Abstract
Researchers have tended to blend isopropanol (IPA) with other fuels in diesel engines to reduce emissions and improve performance. However, low-reactivity controlled compression ignition via port injection at a low cetane number results in a well-mixed charge of low-reactivity fuel, air, and recirculated [...] Read more.
Researchers have tended to blend isopropanol (IPA) with other fuels in diesel engines to reduce emissions and improve performance. However, low-reactivity controlled compression ignition via port injection at a low cetane number results in a well-mixed charge of low-reactivity fuel, air, and recirculated exhaust gas (EGR). This study’s novel approach combines critical elements, such as the mass fraction of port-injected IPA, EGR ratio, and charge temperature, to improve combustion characteristics and lessen emissions from a diesel engine. The results demonstrated that the injection of IPA and the installation of EGR at the inlet reduced NOx, smoke, and PM2.5. On the contrary, HC and CO increased with the port-injection of IPA and EGR. Preheating air at the inlet can suppress the emissions of HC and CO. Under 1500 rpm and 60% load, when compared to diesel at the same EGR ratio and charge temperature, the maximum smoke decrease rate (26%) and PM2.5 decrease rate (21%) occur at 35% IPA, 45 °C, and 10% EGR, while the maximum NOx decrease rate (24%) occurs at 35% IPA, 60 °C, and 20% EGR. These findings support the novelty of the research. Conversely, it modestly increased CO and HC emissions. However, port-injecting IPA increased thermal efficiency by up to 24% at 60 °C, 1500 rpm, and 60% load with EGR. Full article
Show Figures

Figure 1

27 pages, 4389 KiB  
Article
Application of Machine Learning for Fuel Consumption and Emission Prediction in a Marine Diesel Engine Using Diesel and Waste Cooking Oil
by Tadas Žvirblis, Kristina Čižiūnienė and Jonas Matijošius
J. Mar. Sci. Eng. 2025, 13(7), 1328; https://doi.org/10.3390/jmse13071328 - 11 Jul 2025
Viewed by 302
Abstract
This study creates and tests a machine learning model that can predict fuel use and emissions (NOx, CO2, CO, HC, PN) from a marine internal combustion engine when it is running normally. The model learned from data collected from [...] Read more.
This study creates and tests a machine learning model that can predict fuel use and emissions (NOx, CO2, CO, HC, PN) from a marine internal combustion engine when it is running normally. The model learned from data collected from conventional diesel fuel experiments. Subsequently, we evaluated its ability to transfer by employing the parameters associated with waste cooking oil (WCO) biodiesel and its 60/40 diesel mixture. The machine learning model demonstrated exceptional proficiency in forecasting diesel mode (R2 > 0.95), effectively encapsulating both long-term trends and short-term fluctuations in fuel consumption and emissions across various load regimes. Upon the incorporation of WCO data, the model maintained its capacity to identify trends; however, it persistently overestimated emissions of CO, HC, and PN. This discrepancy arose primarily from the differing chemical composition of the fuel, particularly in terms of oxygen content and density. A significant correlation existed between indicators of incomplete combustion and the utilization of fuel. Nonetheless, NOx exhibited an inverse relationship with indicators of combustion efficiency. The findings indicate that the model possesses the capability to estimate emissions in real time, requiring only a modest amount of additional training to operate effectively with alternative fuels. This approach significantly diminishes the necessity for prolonged experimental endeavors, rendering it an invaluable asset for the formulation of fuel strategies and initiatives aimed at mitigating carbon emissions in maritime operations. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

22 pages, 7206 KiB  
Article
The Impact of Diesel Injection Strategy and In-Cylinder Temperature on the Combustion and Emissions of Ammonia/Diesel Dual-Fuel Marine Engine
by Wei Guan, Songchun Luo, Jie Wu, Hua Lou, Lei Wang, Feng Wu, Li Li, Fuchuan Huang and Haibin He
Energies 2025, 18(14), 3631; https://doi.org/10.3390/en18143631 - 9 Jul 2025
Viewed by 257
Abstract
This study investigates the impact of different combustion control strategies on marine engine combustion and emission characteristics at a high ammonia energy ratio. Compared to the strategy of maintaining a constant fuel injection duration, the strategy of keeping the fuel injection pressure constant [...] Read more.
This study investigates the impact of different combustion control strategies on marine engine combustion and emission characteristics at a high ammonia energy ratio. Compared to the strategy of maintaining a constant fuel injection duration, the strategy of keeping the fuel injection pressure constant allows the kinetic energy of diesel to remain at a higher level. This results in an increase in combustion efficiency and indicated the thermal efficiency of the engine, while also reducing CO2 and soot emissions. However, when the ammonia energy ratio increases to more than 50%, the indicated thermal efficiency starts to decrease along with the increase in the emissions of N2O and unburned ammonia. To address these issues, one of the potential means is to improve the in-cylinder combustion environment by increasing the in-cylinder gas temperature. This can enhance combustion efficiency and ultimately optimize the performance and emission characteristics of dual-fuel engines, which results in an increase in the combustion efficiency to 98% and indicated thermal efficiency to 54.47% at a relatively high ammonia energy ratio of 60%. Emission results indicate that N2O emissions decrease from 1099 ppm to 25 ppm, while unburned ammonia emissions drop from 16016 ppm to 100 ppm. Eventually, the greenhouse gas emissions were reduced by about 85.3% in comparison with the baseline case. Full article
Show Figures

Figure 1

17 pages, 6868 KiB  
Article
Development of a Throttleable 6 kN H2O2/Butyl Alcohol Rocket Engine
by Zbigniew Gut, Adrian Parzybut and David Perigo
Aerospace 2025, 12(7), 617; https://doi.org/10.3390/aerospace12070617 - 8 Jul 2025
Viewed by 365
Abstract
The increasing demand for versatile and sustainable propulsion systems has intensified research into green propellants and advanced thrust modulation technologies. This study presents the development and testing of a throttleable rocket engine utilizing 98% hydrogen peroxide by mass as the oxidizer and butyl [...] Read more.
The increasing demand for versatile and sustainable propulsion systems has intensified research into green propellants and advanced thrust modulation technologies. This study presents the development and testing of a throttleable rocket engine utilizing 98% hydrogen peroxide by mass as the oxidizer and butyl alcohol (as isomers n-butanol) as the fuel. Combining the environmental benefits of green propellants with variable thrust capabilities, the system addresses the challenges of modern space missions. Butyl alcohol was selected for its low toxicity, safety, storability, and favorable combustion performance, making it a strong candidate for future applications. The engine was designed to deliver a nominal thrust of 6 kN with the capability to throttle down to 1.2 kN. Experiments investigated the effects of pintle injector positions, supply pressures, and combustion chamber parameters on performance. Results demonstrated stable and efficient combustion across a wide operating range, highlighting the critical role of injector design and chamber geometry in ensuring consistent thrust and combustion efficiency. This research validates the potential of hydrogen peroxide and butyl alcohol as a sustainable propellant pair, particularly for planetary landers requiring precise thrust modulation for controlled descent. It marks a significant step in advancing sustainable propulsion technologies, contributing to the future of planetary exploration and interplanetary mission capabilities. Full article
(This article belongs to the Special Issue Green Propellants for In-Space Propulsion)
Show Figures

Figure 1

42 pages, 8877 KiB  
Review
Artificial-Intelligence-Based Energy Management Strategies for Hybrid Electric Vehicles: A Comprehensive Review
by Bin Huang, Wenbin Yu, Minrui Ma, Xiaoxu Wei and Guangya Wang
Energies 2025, 18(14), 3600; https://doi.org/10.3390/en18143600 - 8 Jul 2025
Viewed by 520
Abstract
The worldwide drive towards low-carbon transportation has made Hybrid Electric Vehicles (HEVs) a crucial component of sustainable mobility, particularly in areas with limited charging infrastructure. The core of HEV efficiency lies in the Energy Management Strategy (EMS), which regulates the energy distribution between [...] Read more.
The worldwide drive towards low-carbon transportation has made Hybrid Electric Vehicles (HEVs) a crucial component of sustainable mobility, particularly in areas with limited charging infrastructure. The core of HEV efficiency lies in the Energy Management Strategy (EMS), which regulates the energy distribution between the internal combustion engine and the electric motor. While rule-based and optimization methods have formed the foundation of EMS, their performance constraints under dynamic conditions have prompted researchers to explore artificial intelligence (AI)-based solutions. This paper systematically reviews four main AI-based EMS approaches—the knowledge-driven, data-driven, reinforcement learning, and hybrid methods—highlighting their theoretical foundations, core technologies, and key applications. The integration of AI has led to notable benefits, such as improved fuel efficiency, enhanced emission control, and greater system adaptability. However, several challenges remain, including generalization to diverse driving conditions, constraints in real-time implementation, and concerns related to data-driven interpretability. The review identifies emerging trends in hybrid methods, which combine AI and conventional optimization approaches to create more adaptive and effective HEV energy management systems. The paper concludes with a discussion of future research directions, focusing on safety, system resilience, and the role of AI in autonomous decision-making. Full article
(This article belongs to the Special Issue Optimized Energy Management Technology for Electric Vehicle)
Show Figures

Figure 1

32 pages, 6149 KiB  
Article
The Carbon Reduction Contribution of Battery Electric Vehicles: Evidence from China
by Ying Sun, Le Xiong, Rui Yan, Ruizhu Rao and Hongshuo Du
Energies 2025, 18(13), 3578; https://doi.org/10.3390/en18133578 - 7 Jul 2025
Viewed by 263
Abstract
The transition to passenger car electrification is a crucial step in China’s strategic efforts to achieve carbon peak and carbon neutrality. However, previous research has not considered the variances in vehicle models. Hence, this study aims to fill this gap by comparing the [...] Read more.
The transition to passenger car electrification is a crucial step in China’s strategic efforts to achieve carbon peak and carbon neutrality. However, previous research has not considered the variances in vehicle models. Hence, this study aims to fill this gap by comparing the carbon emission reduction and economic feasibility of battery electric vehicles (BEVs) in the Chinese market, taking into account different powertrains, vehicle segments, classes, and driving ranges. Next, the study identifies the most cost-effective BEV within each market segment, employing life-cycle assessment and life cycle cost analysis methods. Moreover, at different levels of technological development, we construct three low-carbon measures, including electricity decarbonization (ED), energy efficiency improvement (EEI), and vehicle lightweight (LW), to quantify the emission mitigation potentials from different carbon reduction pathways. The findings indicate that BEVs achieve an average carbon reduction of about 31.85% compared to internal combustion engine vehicles (ICEVs), demonstrating a significant advantage in carbon reduction. However, BEVs are not economically competitive. The total life cycle cost of BEVs is 1.04–1.68 times higher than that of ICEVs, with infrastructure costs accounting for 18.8–57.8% of the vehicle’ s life cycle costs. In terms of cost-effectiveness, different models yield different results, with sedans generally outperforming sport utility vehicles (SUVs). Among sedans, both A-class and B-class sedans have already reached a point of cost-effectiveness, with the BEV400 emerging as the optimal choice. In low-carbon emission reduction scenarios, BEVs could achieve carbon reduction potentials of up to 45.3%, 14.9%, and 9.0% in the ED, EEI, and LW scenarios, respectively. Thus, electricity decarbonization exhibits the highest potential for mitigating carbon emissions, followed by energy efficiency improvement and vehicle lightweight. There are obvious differences in the stages of impact among different measures. The ED measure primarily impacts the waste treatment process (WTP) stage, followed by the vehicle cycle, while the EEI measure only affects the WTP stage. The LW measure has a complex impact on emission reductions, as the carbon reductions achieved in the WTP stage are partially offset by the increased carbon emissions in the vehicle cycle. Full article
Show Figures

Figure 1

Back to TopTop