Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (594)

Search Parameters:
Keywords = combined noise reduction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3854 KB  
Article
Denoising and Mosaicking Methods for Radar Images of Road Interiors
by Changrong Li, Zhiyong Huang, Bo Zang and Huayang Yu
Appl. Sci. 2025, 15(19), 10485; https://doi.org/10.3390/app151910485 - 28 Sep 2025
Abstract
Three-dimensional ground-penetrating radar can quickly visualize the internal condition of the road; however, it faces challenges such as data splicing difficulties and image noise interference. Scanning antenna and lane size differences, as well as equipment and environmental interference, make the radar image difficult [...] Read more.
Three-dimensional ground-penetrating radar can quickly visualize the internal condition of the road; however, it faces challenges such as data splicing difficulties and image noise interference. Scanning antenna and lane size differences, as well as equipment and environmental interference, make the radar image difficult to interpret, which affects disease identification accuracy. For this reason, this paper focuses on road radar image splicing and noise reduction. The primary research includes the following: (1) We make use of backward projection imaging algorithms to visualize the internal information of the road, combined with a high-precision positioning system, splicing of multi-lane data, and the use of bilinear interpolation algorithms to make the three-dimensional radar data uniformly distributed. (2) Aiming at the defects of the low computational efficiency of the traditional adaptive median filter sliding window, a Deep Q-learning algorithm is introduced to construct a reward and punishment mechanism, and the feedback reward function quickly determines the filter window size. The results show that the method is outstanding in improving the peak signal-to-noise ratio, compared with the traditional algorithm, improving the denoising performance by 2–7 times. It effectively suppresses multiple noise types while precisely preserving fine details such as 0.1–0.5 mm microcrack edges, significantly enhancing image clarity. After processing, images were automatically recognized using YOLOv8x. The detection rate for transverse cracks in images improved significantly from being undetectable in mixed noise and original images to exceeding 90% in damage detection. This effectively validates the critical role of denoising in enhancing the automatic interpretation capability of internal road cracks. Full article
Show Figures

Figure 1

25 pages, 7439 KB  
Article
COA–VMPE–WD: A Novel Dual-Denoising Method for GPS Time Series Based on Permutation Entropy Constraint
by Ziyu Wang and Xiaoxing He
Appl. Sci. 2025, 15(19), 10418; https://doi.org/10.3390/app151910418 - 25 Sep 2025
Abstract
To address the challenge of effectively filtering out noise components in GPS coordinate time series, we propose a denoising method based on parameter-optimized variational mode decomposition (VMD). The method combines permutation entropy with mutual information as the fitness function and uses the crayfish [...] Read more.
To address the challenge of effectively filtering out noise components in GPS coordinate time series, we propose a denoising method based on parameter-optimized variational mode decomposition (VMD). The method combines permutation entropy with mutual information as the fitness function and uses the crayfish (COA) algorithm to adaptively obtain the optimal parameter combination of the number of modal decompositions and quadratic penalty factors for VMD, and then, sample entropy is used to identify effective mode components (IMF), which are reconstructed into denoised signals to achieve effective separation of signal and noise The experiments were conducted using simulated signals and 52 GPS station data from CMONOC to compare and analyze the COA–VMPE–WD method with wavelet denoising (WD), empirical mode decomposition (EMD), ensemble empirical mode decomposition (EEMD), and complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) methods. The result shows that the COA–VMPE–WD method can effectively remove noise from GNSS coordinate time series and preserve the original features of the signal, with the most significant effect on the U component. The COA–VMPE–WD method reduced station velocity by an average of 50.00%, 59.09%, 18.18%, and 64.00% compared to the WD, EMD, EEMD, and CEEMDAN methods. The noise reduction effect is higher than the other four methods, providing reliable data for subsequent analysis and processing. Full article
(This article belongs to the Special Issue Advanced GNSS Technologies: Measurement, Analysis, and Applications)
Show Figures

Figure 1

36 pages, 35564 KB  
Article
Enhancing Soundscape Characterization and Pattern Analysis Using Low-Dimensional Deep Embeddings on a Large-Scale Dataset
by Daniel Alexis Nieto Mora, Leonardo Duque-Muñoz and Juan David Martínez Vargas
Mach. Learn. Knowl. Extr. 2025, 7(4), 109; https://doi.org/10.3390/make7040109 - 24 Sep 2025
Viewed by 48
Abstract
Soundscape monitoring has become an increasingly important tool for studying ecological processes and supporting habitat conservation. While many recent advances focus on identifying species through supervised learning, there is growing interest in understanding the soundscape as a whole while considering patterns that extend [...] Read more.
Soundscape monitoring has become an increasingly important tool for studying ecological processes and supporting habitat conservation. While many recent advances focus on identifying species through supervised learning, there is growing interest in understanding the soundscape as a whole while considering patterns that extend beyond individual vocalizations. This broader view requires unsupervised approaches capable of capturing meaningful structures related to temporal dynamics, frequency content, spatial distribution, and ecological variability. In this study, we present a fully unsupervised framework for analyzing large-scale soundscape data using deep learning. We applied a convolutional autoencoder (Soundscape-Net) to extract acoustic representations from over 60,000 recordings collected across a grid-based sampling design in the Rey Zamuro Reserve in Colombia. These features were initially compared with other audio characterization methods, showing superior performance in multiclass classification, with accuracies of 0.85 for habitat cover identification and 0.89 for time-of-day classification across 13 days. For the unsupervised study, optimized dimensionality reduction methods (Uniform Manifold Approximation and Projection and Pairwise Controlled Manifold Approximation and Projection) were applied to project the learned features, achieving trustworthiness scores above 0.96. Subsequently, clustering was performed using KMeans and Density-Based Spatial Clustering of Applications with Noise (DBSCAN), with evaluations based on metrics such as the silhouette, where scores above 0.45 were obtained, thus supporting the robustness of the discovered latent acoustic structures. To interpret and validate the resulting clusters, we combined multiple strategies: spatial mapping through interpolation, analysis of acoustic index variance to understand the cluster structure, and graph-based connectivity analysis to identify ecological relationships between the recording sites. Our results demonstrate that this approach can uncover both local and broad-scale patterns in the soundscape, providing a flexible and interpretable pathway for unsupervised ecological monitoring. Full article
Show Figures

Figure 1

18 pages, 6741 KB  
Article
Revealing Sea-Level Dynamics Driven by El Niño–Southern Oscillation: A Hybrid Local Mean Decomposition–Wavelet Framework for Multi-Scale Analysis
by Xilong Yuan, Shijian Zhou, Fengwei Wang and Huan Wu
J. Mar. Sci. Eng. 2025, 13(10), 1844; https://doi.org/10.3390/jmse13101844 - 24 Sep 2025
Viewed by 125
Abstract
Analysis of global mean sea-level (GMSL) variations provides insights into their spatial and temporal characteristics. To analyze the sea-level cycle and its correlation with the El Niño–Southern Oscillation (ENSO, represented by the Oceanic Niño Index), this study proposes an enhanced analytical framework integrating [...] Read more.
Analysis of global mean sea-level (GMSL) variations provides insights into their spatial and temporal characteristics. To analyze the sea-level cycle and its correlation with the El Niño–Southern Oscillation (ENSO, represented by the Oceanic Niño Index), this study proposes an enhanced analytical framework integrating Local Mean Decomposition with an improved wavelet thresholding technique and wavelet transform. The GMSL time series (January 1993 to July 2020) underwent multi-scale decomposition and noise reduction using Local Mean Decomposition combined with improved wavelet thresholding. Subsequently, the Morlet continuous wavelet transform was applied to analyze the signal characteristics of both GMSL and the Oceanic Niño Index. Finally, cross-wavelet transform and wavelet coherence analyses were employed to investigate their correlation and phase relationships. Key findings include the following: (1) Persistent intra-annual variability (8–16-month cycles) dominates the GMSL signal, superimposed by interannual fluctuations (4–8-month cycles) related to climatic and seasonal forcing. (2) Phase analysis reveals that GMSL generally leads the Oceanic Niño Index during El Niño events but lags during La Niña events. (3) Strong El Niño episodes (May 1997 to May 1998 and October 2014 to April 2016) resulted in substantial net GMSL increases (+7 mm and +6 mm) and significant peak anomalies (+8 mm and +10 mm). (4) Pronounced negative peak anomalies occur during La Niña events, though prolonged events are often masked by the long-term sea-level rise trend, whereas shorter events exhibit clearly discernible and rapid GMSL decline. The results demonstrate that the proposed framework effectively elucidates the multi-scale coupling between ENSO and sea-level variations, underscoring its value for refining the understanding and prediction of climate-driven sea-level changes. Full article
Show Figures

Figure 1

22 pages, 3966 KB  
Article
Broadband Acoustic Modal Identification by Combined Sensor Array Measurements
by Kunbo Xu, Dongjun Liu, Zekai Zong, Chenzhe Xiang, Weiyang Qiao and Liang Yu
Acoustics 2025, 7(4), 60; https://doi.org/10.3390/acoustics7040060 - 23 Sep 2025
Viewed by 99
Abstract
This paper proposes a synchronous measurement method for broadband acoustic modal identification based on a combined microphone array, which is capable of overcoming the acoustic modal aliasing issue arising from a limited number of microphones. In the proposed method, the cross-correlation combination of [...] Read more.
This paper proposes a synchronous measurement method for broadband acoustic modal identification based on a combined microphone array, which is capable of overcoming the acoustic modal aliasing issue arising from a limited number of microphones. In the proposed method, the cross-correlation combination of axial and circumferential arrays is performed by utilizing the relevant characteristics of turbulent noise modes, thereby realizing modal identification of turbulent noise in a wide range with a small number of acoustic measurement points. For fast iteration, the modal cross terms are optimized by leveraging the relevant characteristics of turbulent noise modes. This method can effectively distinguish the distribution information of forward- and backward-propagating acoustic modes. The accuracy of the identified acoustic modes is verified through numerical simulations, and the method is experimentally validated using experimental results from an axial flow compressor. The results show that this method can effectively suppress the aliasing problem. Compared with the traditional rotating axial array method, it has higher testing efficiency in circumferential and radial modal identification, requires fewer sound-pressure measurement points, and is more suitable for rapid evaluation of noise reduction designs. Full article
Show Figures

Figure 1

35 pages, 8459 KB  
Article
Research on the EEMD-SE-IWTD Combined Noise Reduction Method for High-Speed Transient Complex Features in Acceleration Signals
by Huifa Shi, Shaojie Ma, Feiyin Li, Tong Tang, Kunming Jia and He Zhang
Sensors 2025, 25(19), 5940; https://doi.org/10.3390/s25195940 - 23 Sep 2025
Viewed by 203
Abstract
Traditional noise reduction methods often struggle to balance noise suppression with the preservation of transient features in acceleration signals, especially when dealing with high-speed transient data. This study proposes a novel noise reduction method combining ensemble empirical mode decomposition (EEMD), sample entropy (SE), [...] Read more.
Traditional noise reduction methods often struggle to balance noise suppression with the preservation of transient features in acceleration signals, especially when dealing with high-speed transient data. This study proposes a novel noise reduction method combining ensemble empirical mode decomposition (EEMD), sample entropy (SE), and improved wavelet threshold denoising (IWTD) to address the issue. The method utilizes EEMD to decompose the signal into intrinsic mode functions (IMFs) and a residual term. By setting an SE threshold (SE = 0.3), it effectively differentiates noise-dominated components from those containing significant transient features. IWTD is then applied to the noise-dominated components, and the processed components are reconstructed to yield the denoised signal. A baseline signal is generated in the lab, and noise is added to create the test set. The results show that this method achieves optimal noise reduction performance. Its effectiveness is validated through the output signal-to-noise ratio, root mean square error, and correlation coefficient. Overall, this method enhances noise reduction performance while preserving transient features. The method has been validated using real multi-layer penetration acceleration signals, supporting subsequent penetration layer identification and inversion analysis of the penetration process. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

16 pages, 2013 KB  
Article
Cross-Subject EEG Emotion Recognition Using SSA-EMS Algorithm for Feature Extraction
by Yuan Lu and Jingying Chen
Entropy 2025, 27(9), 986; https://doi.org/10.3390/e27090986 - 21 Sep 2025
Viewed by 236
Abstract
This study proposes a novel SSA-EMS framework that integrates Singular Spectrum Analysis (SSA) with Effect-Matched Spatial Filtering (EMS), combining the noise-reduction capability of SSA with the dynamic feature extraction advantages of EMS to optimize cross-subject EEG-based emotion feature extraction. Experiments were conducted using [...] Read more.
This study proposes a novel SSA-EMS framework that integrates Singular Spectrum Analysis (SSA) with Effect-Matched Spatial Filtering (EMS), combining the noise-reduction capability of SSA with the dynamic feature extraction advantages of EMS to optimize cross-subject EEG-based emotion feature extraction. Experiments were conducted using the SEED dataset under two evaluation paradigms: “cross-subject sample combination” and “subject-independent” assessment. Random Forest (RF) and SVM classifiers were employed to perform pairwise classification of three emotional states—positive, neutral, and negative. Results demonstrate that the SSA-EMS framework achieves RF classification accuracies exceeding 98% across the full frequency band, significantly outperforming single frequency bands. Notably, in the subject-independent evaluation, model accuracy remains above 96%, confirming the algorithm’s strong cross-subject generalization capability. Experimental results validate that the SSA-EMS framework effectively captures dynamic neural differences associated with emotions. Nevertheless, limitations in binary classification and the potential for multimodal extension remain important directions for future research. Full article
Show Figures

Figure 1

15 pages, 8281 KB  
Article
Study on Aerodynamic Noise of Ahmed Body Mounted with Different Spoiler Configurations
by Zhi-Ping Wang, Wei Zhang, Hao-Ran Li and Hai-Chao Zhou
Appl. Sci. 2025, 15(18), 10029; https://doi.org/10.3390/app151810029 - 14 Sep 2025
Viewed by 622
Abstract
This study employs computational fluid dynamics methods to investigate the aerodynamic noise of a 35° inclination Ahmed body mounted with six hollow spoilers of different opening areas. The study combines the steady k-ε model and the transient large eddy simulation model, and extracts [...] Read more.
This study employs computational fluid dynamics methods to investigate the aerodynamic noise of a 35° inclination Ahmed body mounted with six hollow spoilers of different opening areas. The study combines the steady k-ε model and the transient large eddy simulation model, and extracts acoustic data through the Ffowcs-Williams & Hawkings equation. The results show that all spoilers can effectively reduce noise, but there is a non-near relationship between the noise reduction effect, aerodynamic drag, and opening area of the spoilers. Among them, Case 4 achieves the optimal noise reduction effect, though its drag is slightly higher than that of the Base model. Flow field analysis reveals that the 300 Hz noise peak originates from the entrainment of side airflow into the wake region. The hollow spoilers achieve noise reduction by altering the vortex structures in the wake, and this finding provides targeted guidance for the optimization design of spoilers, helping to deepen the understanding of the mechanism by which hollow spoilers affect aerodynamic noise. Full article
(This article belongs to the Section Fluid Science and Technology)
Show Figures

Figure 1

23 pages, 3843 KB  
Article
Leveraging Reconfigurable Massive MIMO Antenna Arrays for Enhanced Wireless Connectivity in Biomedical IoT Applications
by Sunday Enahoro, Sunday Cookey Ekpo, Yasir Al-Yasir and Mfonobong Uko
Sensors 2025, 25(18), 5709; https://doi.org/10.3390/s25185709 - 12 Sep 2025
Viewed by 362
Abstract
The increasing demand for real-time, energy-efficient, and interference-resilient communication in smart healthcare environments has intensified interest in Biomedical Internet of Things (Bio-IoT) systems. However, ensuring reliable wireless connectivity for wearable and implantable biomedical sensors remains a challenge due to mobility, latency sensitivity, power [...] Read more.
The increasing demand for real-time, energy-efficient, and interference-resilient communication in smart healthcare environments has intensified interest in Biomedical Internet of Things (Bio-IoT) systems. However, ensuring reliable wireless connectivity for wearable and implantable biomedical sensors remains a challenge due to mobility, latency sensitivity, power constraints, and multi-user interference. This paper addresses these issues by proposing a reconfigurable massive multiple-input multiple-output (MIMO) antenna architecture, incorporating hybrid analog–digital beamforming and adaptive signal processing. The methodology combines conventional algorithms—such as Least Mean Square (LMS), Zero-Forcing (ZF), and Minimum Variance Distortionless Response (MVDR)—with a novel mobility-aware beamforming scheme. System-level simulations under realistic channel models (Rayleigh, Rician, 3GPP UMa) evaluate signal-to-interference-plus-noise ratio (SINR), bit error rate (BER), energy efficiency, outage probability, and fairness index across varying user loads and mobility scenarios. Results show that the proposed hybrid beamforming system consistently outperforms benchmarks, achieving up to 35% higher throughput, a 65% reduction in packet drop rate, and sub-10 ms latency even under high-mobility conditions. Beam pattern analysis confirms robust nulling of interference and dynamic lobe steering. This architecture is well-suited for next-generation Bio-IoT deployments in smart hospitals, enabling secure, adaptive, and power-aware connectivity for critical healthcare monitoring applications. Full article
(This article belongs to the Special Issue Challenges and Future Trends in Antenna Technology)
Show Figures

Figure 1

22 pages, 7476 KB  
Article
Neural Network for Robotic Control and Security in Resistant Settings
by Kubra Kose, Nuri Alperen Kose and Fan Liang
Electronics 2025, 14(18), 3618; https://doi.org/10.3390/electronics14183618 - 12 Sep 2025
Viewed by 391
Abstract
As the industrial automation landscape advances, the integration of sophisticated perception and manipulation technologies into robotic systems has become crucial for enhancing operational efficiency and precision. This paper presents a significant enhancement to a robotic system by incorporating the Mask R-CNN deep learning [...] Read more.
As the industrial automation landscape advances, the integration of sophisticated perception and manipulation technologies into robotic systems has become crucial for enhancing operational efficiency and precision. This paper presents a significant enhancement to a robotic system by incorporating the Mask R-CNN deep learning algorithm and the Intel® RealSense™ D435 camera with the UFactory xArm 5 robotic arm. The Mask R-CNN algorithm, known for its powerful object detection and segmentation capabilities, combined with the depth-sensing features of the D435, enables the robotic system to perform complex tasks with high accuracy. This integration facilitates the detection, manipulation, and precise placement of single objects, achieving 98% detection accuracy, 98% gripping accuracy, and 100% transport accuracy, resulting in a peak manipulation accuracy of 99%. Experimental evaluations demonstrate a 20% improvement in manipulation success rates with the incorporation of depth data, reflecting significant enhancements in operational flexibility and efficiency. Additionally, the system was evaluated under adversarial conditions where structured noise was introduced to test its stability, leading to only a minor reduction in performance. Furthermore, this study delves into cybersecurity concerns pertinent to robotic systems, addressing vulnerabilities such as physical attacks, network breaches, and operating system exploits. The study also addresses specific threats, including sabotage and service disruptions, and emphasizes the importance of implementing comprehensive cybersecurity measures to protect advanced robotic systems in manufacturing environments. To ensure truly robust, secure, and reliable robotic operations in industrial environments, this paper highlights the critical role of international cybersecurity standards and safety standards for the physical protection of industrial robot applications and their human operators. Full article
Show Figures

Figure 1

34 pages, 16782 KB  
Article
Ultra-Short-Term Prediction of Monopile Offshore Wind Turbine Vibration Based on a Hybrid Model Combining Secondary Decomposition and Frequency-Enhanced Channel Self-Attention Transformer
by Zhenju Chuang, Yijie Zhao, Nan Gao and Zhenze Yang
J. Mar. Sci. Eng. 2025, 13(9), 1760; https://doi.org/10.3390/jmse13091760 - 11 Sep 2025
Viewed by 273
Abstract
Ice loads continue to pose challenges to the structural safety of offshore wind turbines (OWTs), while the rapid development of offshore wind power in cold regions is enabling the deployment of OWTs in deeper waters. To accurately simulate the dynamic response of an [...] Read more.
Ice loads continue to pose challenges to the structural safety of offshore wind turbines (OWTs), while the rapid development of offshore wind power in cold regions is enabling the deployment of OWTs in deeper waters. To accurately simulate the dynamic response of an OWT under combined ice–wind loading, this paper proposes a Discrete Element Method–Wind Turbine Integrated Analysis (DEM-WTIA) framework. The framework can synchronously simulate discontinuous ice-crushing processes and aeroelastic–structural dynamic responses through a holistic turbine model that incorporates rotor dynamics and control systems. To address the issue of insufficient prediction accuracy for dynamic responses, we introduced a multivariate time series forecasting method that integrates a secondary decomposition strategy with a hybrid prediction model. First, we developed a parallel signal processing mechanism, termed Adaptive Complete Ensemble Empirical Mode Decomposition with Improved Singular Spectrum Analysis (CEEMDAN-ISSA), which achieves adaptive denoising via permutation entropy-driven dynamic window optimization and multi-feature fusion-based anomaly detection, yielding a noise suppression rate of 76.4%. Furthermore, we propose the F-Transformer prediction model, which incorporates a Frequency-Enhanced Channel Attention Mechanism (FECAM). By integrating the Discrete Cosine Transform (DCT) into the Transformer architecture, the F-Transformer mines hidden features in the frequency domain, capturing potential periodicities in discontinuous data. Experimental results demonstrate that signals processed by ISSA exhibit increased signal-to-noise ratios and enhanced fidelity. The F-Transformer achieves a maximum reduction of 31.86% in mean squared error compared to the standard Transformer and maintains a coefficient of determination (R2) above 0.91 under multi-condition coupled testing. By combining adaptive decomposition and frequency-domain enhancement techniques, this framework provides a precise and highly adaptable ultra-short-term response forecasting tool for the safe operation and maintenance of offshore wind power in cold regions. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

28 pages, 3589 KB  
Article
Broadband Low-Frequency Sound Absorption Enabled by a Rubber-Based Ni50Ti50 Alloy Multilayer Acoustic Coating
by Yizhe Huang, Ziyi Liu, Qiyuan Fan, Huizhen Zhang, Bin Huang, Qibai Huang and Zhifu Zhang
J. Mar. Sci. Eng. 2025, 13(9), 1756; https://doi.org/10.3390/jmse13091756 - 11 Sep 2025
Viewed by 357
Abstract
Acoustic coatings play a vital role in enhancing the acoustic stealth of underwater structures across the full depth range and, especially, in the low-frequency band. However, existing small-scale acoustic coatings struggle to achieve low-frequency broadband sound absorption, which limits further performance improvements. Ni [...] Read more.
Acoustic coatings play a vital role in enhancing the acoustic stealth of underwater structures across the full depth range and, especially, in the low-frequency band. However, existing small-scale acoustic coatings struggle to achieve low-frequency broadband sound absorption, which limits further performance improvements. Ni50Ti50 alloy, with their shape memory effect, hyper elasticity, and high damping properties, offer promising applications in vibration and noise control. In this study, a rubber-based Ni50Ti50 alloy multilayer acoustic coating is proposed, based on the sound absorption mechanism of rubber and the vibration and noise reduction mechanism of Ni50Ti50 alloy. The sound absorption characteristics of the proposed composite coating were obtained through analytical derivations, numerical simulations, and experimental investigations. The objective was to combine the high-frequency absorption capability of rubber and the low-frequency absorption characteristics of Ni50Ti50 alloy without increasing material dimensions, thereby introducing a novel approach for the design of the next generation of underwater acoustic coatings. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

23 pages, 4045 KB  
Article
Advanced Robust Heading Control for Unmanned Surface Vessels Using Hybrid Metaheuristic-Optimized Variable Universe Fuzzy PID with Enhanced Smith Predictor
by Siyu Zhan, Qiang Liu, Zhao Zhao, Shen’ao Zhang and Yaning Xu
Biomimetics 2025, 10(9), 611; https://doi.org/10.3390/biomimetics10090611 - 10 Sep 2025
Viewed by 359
Abstract
With the increasing deployment of unmanned surface vessels (USVs) in complex marine operations such as ocean monitoring, search and rescue, and military reconnaissance, precise heading control under environmental disturbances and system delays has become a critical challenge. This paper presents an advanced robust [...] Read more.
With the increasing deployment of unmanned surface vessels (USVs) in complex marine operations such as ocean monitoring, search and rescue, and military reconnaissance, precise heading control under environmental disturbances and system delays has become a critical challenge. This paper presents an advanced robust heading control strategy for USVs operating under these demanding conditions. The proposed approach integrates three key innovations: (1) an enhanced Smith predictor for accurate time-delay compensation, (2) a variable-universe fuzzy PID controller with self-adaptive scaling domains that dynamically adjust to error magnitude and rate of change, and (3) a hybrid metaheuristic optimization algorithm combining beetle antennae search, harmony search, and genetic algorithm (BAS-HSA-GA) for optimal parameter tuning. Through comprehensive simulations using a Nomoto first-order time-delay model under combined white noise and second-order wave disturbances, the system demonstrates superior performance with over 90% reduction in steady-state heading error and ≈30% faster settling time compared to conventional PID and single-optimization fuzzy PID methods. Field trials under sea-state 4 conditions confirm 15–25% lower tracking error in realistic operating scenarios. The controller’s stability is rigorously verified through Lyapunov analysis, while comparative studies show significant improvements in S-shaped path tracking performance, achieving better IAE/ITAE metrics than DRL, ANFC, and ACO approaches. This work provides a comprehensive solution for high-precision, delay-resilient USV heading control in dynamic marine environments. Full article
(This article belongs to the Section Bioinspired Sensorics, Information Processing and Control)
Show Figures

Figure 1

18 pages, 4180 KB  
Article
The Modified Scaled Adaptive Daqrouq Wavelet for Biomedical Non-Stationary Signals Analysis
by Khaled Daqrouq and Rania A. Alharbey
Sensors 2025, 25(17), 5591; https://doi.org/10.3390/s25175591 - 8 Sep 2025
Viewed by 823
Abstract
The article presents Modified Scaled Adaptive Daqrouq Wavelet (MSADW) as an autonomous wavelet framework to overcome the analysis obstacles of traditional wavelets (Morlet and Daubechies) for signals with non-stationary characteristics. MSADW adjusts its waveform shape and frequency in real time based on the [...] Read more.
The article presents Modified Scaled Adaptive Daqrouq Wavelet (MSADW) as an autonomous wavelet framework to overcome the analysis obstacles of traditional wavelets (Morlet and Daubechies) for signals with non-stationary characteristics. MSADW adjusts its waveform shape and frequency in real time based on the specific characteristics of the signal, allowing it to outperform conventional wavelet methods. The system reaches adaptability through three core methods featuring gradient-dependent scale adjustments for fast transient detection and smooth regions, and instantaneous frequency monitoring achieved by a combination of STFT and Hilbert transforms and an iterative error reduction process using gradient descent and genetic algorithms. Continuous Wavelet Transform (CWT) combined with Discrete Wavelet Transform (DWT) extracts features from ECG and speech signals. Throughout this process, MSADW maintains great time precision to detect transients as well as maintain sensitivity for the audio’s base stability. Testing MSADW in practical use reveals its superior performance because it detects R-peaks accurately within 0.01 s through zero-crossing methods, which combine P/T-wave detection with effective ECG signal segmentation and noise-free reconstructed speech (MSE: 1.17×1031). The localized parameterization framework of MSADW, enabled by feedback refinement, fulfills missing aspects in biomedical signal evaluation and creates space for low-cost real-time evaluation methods for medical devices and arrhythmia and ischemic detection platforms. The theoretical backbone for MSADW establishes itself because this work shows how wavelet analysis can transition toward managing non-stationary and noise-prone domains. Full article
(This article belongs to the Special Issue Biosignal Sensing Analysis (EEG, EMG, ECG, PPG) (2nd Edition))
Show Figures

Figure 1

31 pages, 8391 KB  
Article
Evaluating Key Spatial Indicators for Shared Autonomous Vehicle Integration in Old Town Spaces
by Sucheng Yao, Kanjanee Budthimedhee, Sakol Teeravarunyou, Xinhao Chen and Ziqiang Zhang
World Electr. Veh. J. 2025, 16(9), 501; https://doi.org/10.3390/wevj16090501 - 5 Sep 2025
Viewed by 402
Abstract
As Shared Autonomous Vehicles (SAVs) emerge as a transformative force in urban mobility, integrating them into dense, historic urban environments presents distinct spatial and planning challenges—such as narrow street patterns, irregular road networks, and the need to protect cultural heritage. This study investigates [...] Read more.
As Shared Autonomous Vehicles (SAVs) emerge as a transformative force in urban mobility, integrating them into dense, historic urban environments presents distinct spatial and planning challenges—such as narrow street patterns, irregular road networks, and the need to protect cultural heritage. This study investigates the spatial adaptability of SAVs in Suzhou old town, a representative example of East Asian heritage cities. To assess spatial readiness, a hybrid weighting approach combining the Analytic Hierarchy Process (AHP) and the Entropy Weight Method (EWM) is used to evaluate 22 spatial indicators across livability, mobility, and spatial quality. These weighted indicators are mapped using a spatial density analysis based on Point of Interest (POI) data, revealing urban service distribution patterns and spatial mismatches. Results show that “Accessibility to Transportation Hubs” receives the highest composite weight, emphasizing the priority of linking SAVs with existing subway and bus networks. Environmental comfort factors—such as air quality, noise reduction, and access to green and recreational spaces—also rank highly, reflecting a growing emphasis on urban livability. Drawing on these findings, this study proposes four strategic directions for SAV integration that focus on network flexibility, public service redistribution, ecological enhancement, and cultural preservation. The proposed framework provides a transferable planning reference for historic urban areas transitioning toward intelligent, human-centered mobility systems. Full article
Show Figures

Figure 1

Back to TopTop