Study on Aerodynamic Noise of Ahmed Body Mounted with Different Spoiler Configurations
Abstract
1. Introduction
2. CFD Case Description and Numerical Settings
2.1. Geometry Model
2.2. Domain and Boundary Conditions
2.3. Numerical Methods
2.4. Mesh Strategy
3. Results and Discussion
3.1. Design and Noise Characteristics
3.2. Flow Behavior
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zaareer, M.; Mourad, A.H. Effect of vehicle side mirror base position on aerodynamic forces and acoustics. Alex. Eng. J. 2022, 61, 1437–1448. [Google Scholar] [CrossRef]
- Zin, M.Z.M.; Rahman, W.M.W.W.A. Simulation the effect of spoiler on aerodynamic for sedan car. J. Automot. Powertrain Transp. Technol. 2022, 2, 1–8. [Google Scholar] [CrossRef]
- Liu, W.; Zeng, S.; Chen, X. Design and Experiment of Adaptive Profiling Header Based on Multi-Body Dynamics–Discrete Element Method Coupling. Agriculture 2024, 14, 105. [Google Scholar] [CrossRef]
- Ding, Z.; Tang, Z.; Zhang, B.; Ding, Z. Vibration Response of Metal Plate and Shell Structure under Multi-Source Excitation with Welding and Bolt Connection. Agriculture 2024, 14, 816. [Google Scholar] [CrossRef]
- Yu, Z.; Li, Y.; Du, X.; Liu, Y. Threshing cylinder unbalance detection using a signal extraction method based on parameter-adaptive variational mode decomposition. Biosyst. Eng. 2024, 244, 26–41. [Google Scholar] [CrossRef]
- Sun, J.; Wang, Z.; Ding, S.; Xia, J.; Xing, G. Adaptive disturbance observer-based fixed time nonsingular terminal sliding mode control for path-tracking of unmanned agricultural tractors. Biosyst. Eng. 2024, 246, 96–109. [Google Scholar]
- Nusser, K.; Becker, S. Numerical investigation of the fluid structure acoustics interaction on a simplified car model. Acta Acust. 2021, 5, 22. [Google Scholar] [CrossRef]
- Xu, L.; Chai, X.; Gao, Z.; Li, Y.; Wang, Y. Experimental study on driver seat vibration characteristics of crawler-type combine harvester. Int. J. Agric. Biol. Eng. 2019, 12, 90–97. [Google Scholar] [CrossRef]
- Zhu, Z.; Yang, Y.; Wang, D.; Cai, Y.; Lai, L. Energy Saving Performance of Agricultural Tractor Equipped with Mechanic-Electronic-Hydraulic Powertrain System. Agriculture 2022, 12, 436. [Google Scholar] [CrossRef]
- Zhu, Z.; Zeng, L.; Cheng, L.; Zou, R.; Cai, Y. Fuzzy Adaptive Energy Management Strategy for a Hybrid Agricultural Tractor Equipped with HMCVT. Agriculture 2022, 12, 1986. [Google Scholar] [CrossRef]
- Cui, B.; Cui, X.; Wei, X.; Zhu, Y.; Ma, Z.; Zhao, Y.; Liu, Y. Design and Testing of a Tractor Automatic Navigation System Based on Dynamic Path Search and a Fuzzy Stanley Model. Agriculture 2024, 14, 2136. [Google Scholar] [CrossRef]
- Chode, K.K.; Viswanathan, H.; Chow, K.; Reese, H. Investigating the aerodynamic drag and noise characteristics of a standard square back vehicle with inclined side-view mirror configurations using a hybrid computational aeroacoustics (CAA) approach. Phys. Fluids 2023, 35, 075148. [Google Scholar] [CrossRef]
- Schell, A.; Cotoni, V. Prediction of interior noise in a sedan due to exterior flow. SAE Int. J. Passeng. Cars-Mech. Syst. 2015, 8, 1090–1096. [Google Scholar] [CrossRef]
- Cerrato, G. Automotive sound quality–powertrain, road and wind noise. Sound Vib. 2009, 43, 16–24. [Google Scholar]
- Zaareer, M.N.; Mourad, A.H.I.; Darabseh, T.; Abdullah, K.; ElSayed, M.S. Aeroacoustics wind noise optimization for vehicle’s side mirror base. Int. J. Thermofluids 2023, 18, 100332. [Google Scholar] [CrossRef]
- Ye, J.; Xu, M.; Xing, P.; Cheng, Y.; Meng, D.; Tang, Y.; Zhu, M. Investigation of aerodynamic noise reduction of exterior side view mirror based on bionic shark fin structure. Appl. Acoust. 2021, 182, 108188. [Google Scholar] [CrossRef]
- Jiao, D.Q.; Zhou, H.C.; Huang, T.H.; Zhang, W. Numerical Study on Aerodynamic Noise Reduction in Passenger Car with Fender Shape Optimization. Symmetry 2024, 16, 651. [Google Scholar] [CrossRef]
- Lu, E.; Ma, Z.; Li, Y.; Xu, L.; Tang, Z. Adaptive backstepping control of tracked robot running trajectory based on real-time slip parameter estimation. Int. J. Agric. Biol. Eng. 2020, 13, 178–187. [Google Scholar] [CrossRef]
- Chen, Y.X.; Chen, L.; Huang, C.; Liu, Y.; Wang, C. A dynamic tire model based on HPSO-SVM. Int. J. Agric. Biol. Eng. 2019, 12, 36–41. [Google Scholar] [CrossRef]
- Chen, Y.X.; Chen, L.; Wang, R.C.; Xu, X.; Shen, Y.J.; Liu, Y.L. Modeling and test on height adjustment system of electrically-controlled air suspension for agricultural vehicles. Int. J. Agric. Biol. Eng. 2016, 9, 40–47. [Google Scholar]
- Liu, H.; Yan, S.C.; Shen, Y.; Li, C.H.; Zhang, Y.F.; Hussain, F. Model predictive control system based on direct yaw moment control for 4WID self-steering agriculture vehicle. Int. J. Agric. Biol. Eng. 2021, 14, 175–181. [Google Scholar] [CrossRef]
- Yin, T.S.; Taib, I.; Husaini, M.H.; Ibrahim, W.M.N.W.; Saad, M.A.C.; Basar, N.; Halif, M.H. Modelling of the effect of rear spoiler angle on the aerodynamics of passenger car. J. Adv. Fluid Heat Mater. Eng. 2025, 4, 36–45. [Google Scholar]
- Cheng, S.Y.; Mansor, S. Influence of rear-roof spoiler on the aerodynamic performance of hatchback vehicle. MATEC Web Conf. 2017, 90, 9. [Google Scholar] [CrossRef]
- Wu, B. CFD study of submersible mixers in anaerobic digesters. Trans. ASABE 2017, 60, 275–282. [Google Scholar] [CrossRef]
- Liang, Z.W.; Xu, L.Z.; De Baerdemaeker, J.; Li, Y.M.; Saeys, W. Optimisation of a multi-duct cleaning device for rice combine harvesters utilising CFD and experiments. Biosyst. Eng. 2020, 190, 25–40. [Google Scholar] [CrossRef]
- Hu, Y.; Chen, Y.; Wei, W.; Hu, Z.; Li, P. Optimization design of spray cooling fan based on CFD simulation and field experiment for horticultural crops. Agriculture 2021, 11, 18. [Google Scholar] [CrossRef]
- Ni, J.H.; Dong, J.T.; Ullah, I.; Mao, H.P. CFD simulation of sucrose flow field in the stem of greenhouse tomato seedling. Int. J. Agric. Biol. Eng. 2022, 15, 111–115. [Google Scholar] [CrossRef]
- Liu, J.P.; Hussain, Z.; Wang, X.J.; Li, Y.F. Optimization and numerical simulation of the internal flow field of water-pesticide integrated microsprinklers. Irrig. Drain. 2023, 72, 328–342. [Google Scholar] [CrossRef]
- Hussain, S.; Hu, J.J.; Chen, Y.; Ali, A.; Song, H.Y.; Zheng, D.C.; Farid, M.U.; Ghafoor, A.; Ahmed, M. CFD study of self-cleaning system of multi-stage tangential roller threshing unit for precise buckwheat breeding. Heliyon 2024, 10, e27180. [Google Scholar] [CrossRef]
- Zuo, H.H. Study on the aerodynamic performance of a hollow spoiler for a pure electric SUV. Shanghai Auto 2022, 9. [Google Scholar]
- Zhou, H.C.; Zhang, W.; Huang, T.H.; Li, H.R. Numerical analysis of the aerodynamic performance of an ahmed body fitted with spoilers of different opening areas. Fluid Dyn. Mater. Process. 2025, 21, 1113. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, R.; Luo, Q.; Zhang, Y.; Li, B.; Guo, H. Research on the aerodynamic noise mechanism and noise reduction of SUV roof hollow spoiler. J. Mech. Eng. 2024, 60, 398–408. [Google Scholar]
- Zhang, Y.D.; Zhang, J.Y.; Li, T.; Zhang, L. Investigation of the aeroacoustic behavior and aerodynamic noise of a high-speed train pantograph. Sci. China Technol. Sci. 2017, 60, 561–575. [Google Scholar] [CrossRef]
- Li, T.; Qin, D.; Kan, X.; Zhang, J.Y. Study on aerodynamic drag and noise reduction of high-speed pantograph with streamwise holes. Eng. Appl. Comput. Fluid Mech. 2025, 19, 12–22. [Google Scholar] [CrossRef]
- Abid, A. Aerodynamic Phenomena of Controlling Passive Flow of a Time-Independent Ground Vehicle Under the Scope of Optimally Slanted Rear Wing-Spoiler Combination. Eng. Rep. 2025, 7, e13123. [Google Scholar] [CrossRef]
- Mintao, D.; Jun, S.; Bin, Y. Simulation and optimization of spoiler wind noise based on wavenumber-frequency analysis. Acta Aerodyn. Sin. 2024, 42, 69–76. [Google Scholar]
- Yudianto, A. Application of multi-objective adjoint-based aerodynamic optimisation on generic road vehicle with rear spoiler. Automot. Exp. 2024, 7, 28–47. [Google Scholar] [CrossRef]
- Zhou, H.C.; Qin, R.Z.; Zheng, Z. Comparative analysis of the aerodynamic behavior on Ahmed body mounted with different wheel configurations. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2024, 238, 128–146. [Google Scholar] [CrossRef]
- Siddiqui, N.A.; Chaab, M.A. A simple passive device for the drag reduction of an ahmed body. J. Appl. Fluid Mech. 2020, 14, 147–164. [Google Scholar]
- Liu, K.; Zhang, B.F.; Zhang, Y.C.; Zhou, Y. Flow structure around a low-drag Ahmed body. J. Fluid Mech. 2021, 913, A21. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, H.; Hua, L.; Zhang, D.M. Three-dimensional flow breakup characteristics of a circular jet with different nozzle geometries. Biosyst. Eng. 2020, 193, 216–231. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, H.; Xiang, Q.J.; Chen, C. Comparison of PIV experiment and numerical simulation on the velocity distribution of intermediate pressure jets with different nozzle parameters. Irrig. Drain. 2017, 66, 510–519. [Google Scholar] [CrossRef]
- Zhang, Z.Q.; Chen, J.; Li, Y.M.; Guan, Z.H.; Liao, C.Q.; Qiao, X.S. Design and experiment on the air-blowing and vibrating supply seed tray for precision seeder. Int. J. Agric. Biol. Eng. 2022, 15, 115–121. [Google Scholar] [CrossRef]
- Yu, J.X.; Zhangzhong, L.L.; Lan, R.P.; Zhang, X.; Xu, L.L.; Li, J.J. Ensemble learning simulation method for hydraulic characteristic parameters of emitters driven by limited data. Agronomy 2023, 13, 21. [Google Scholar] [CrossRef]
- Meile, W.; Brenn, G.; Reppenhagen, A. Experiments and numerical simulations on the aerodynamics of the Ahmed body. CFD Lett. 2011, 3, 32–39. [Google Scholar]
- Shahin, I.; Alqaradawi, M.; Gadala, M.; Badr, O. On the aero acoustic and internal flows structure in a centrifugal compressor with hub side cavity operating at off design condition. Aerosp. Sci. Technol. 2017, 60, 68–83. [Google Scholar] [CrossRef]
- Guo, J.; Tan, X.M.; Yang, Z.G.; Xue, Y.Q.; Shen, Y.N.; Wang, H.W. Aeroacoustic optimization design of the middle and upper part of pantograph. Appl. Sci. 2022, 12, 11. [Google Scholar] [CrossRef]
- Zhang, Z.; Lu, Y.Z.; Yang, M.Y.; Wang, G.Q.; Zhao, Y.Q.; Hu, Y.G. Optimal training strategy for high-performance detection model of multi-cultivar tea shoots based on deep learning methods. Sci. Hortic. 2024, 328, 112949. [Google Scholar] [CrossRef]
- Wang, J.; Chen, R. An improved finite element model for the hydraulic analysis of drip irrigation subunits considering local emitter head loss. Irrig. Sci. 2024, 38, 147–162. [Google Scholar] [CrossRef]
Points | P1 | P2 | P3 | P4 | P5 | S1 | S2 | S3 | S4 | S5 |
---|---|---|---|---|---|---|---|---|---|---|
X | 892.5 | 922.8 | 953.1 | 983.4 | 1014 | 812.5 | 842.8 | 873.1 | 903.4 | 933.7 |
Y | 0 | 0 | 0 | 0 | 0 | 234.5 | 234.5 | 234.5 | 234.5 | 234.5 |
Z | 271.8 | 250.6 | 229.3 | 208.1 | 186.9 | 271.8 | 250.6 | 229.3 | 208.1 | 186.9 |
Mesh Details | Coarse | Medium | Fine |
---|---|---|---|
Main enclosure | 200–300 mm | 150–200 mm | 100–200 mm |
Refine enclosure | 30–40 mm | 20–30 mm | 10–20 mm |
Body size for Ahmed model | 6–8 mm | 3–4 mm | 2–5 mm |
Inflation | 5 layers, first layer thickness 0.1 mm | 5 layers, first layer thickness 0.5 mm | 5 layers, first layer thickness 0.25 mm |
Elements | 765,860 | 1,112,568 | 1,369,190 |
Drag coefficient | 0.263 | 0.273 | 0.275 |
Meile [45] | 0.279 experiment | ||
Siddiqui [39] | 0.271 CFD simulation | ||
Zhou [31] | 0.274 CFD simulation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.-P.; Zhang, W.; Li, H.-R.; Zhou, H.-C. Study on Aerodynamic Noise of Ahmed Body Mounted with Different Spoiler Configurations. Appl. Sci. 2025, 15, 10029. https://doi.org/10.3390/app151810029
Wang Z-P, Zhang W, Li H-R, Zhou H-C. Study on Aerodynamic Noise of Ahmed Body Mounted with Different Spoiler Configurations. Applied Sciences. 2025; 15(18):10029. https://doi.org/10.3390/app151810029
Chicago/Turabian StyleWang, Zhi-Ping, Wei Zhang, Hao-Ran Li, and Hai-Chao Zhou. 2025. "Study on Aerodynamic Noise of Ahmed Body Mounted with Different Spoiler Configurations" Applied Sciences 15, no. 18: 10029. https://doi.org/10.3390/app151810029
APA StyleWang, Z.-P., Zhang, W., Li, H.-R., & Zhou, H.-C. (2025). Study on Aerodynamic Noise of Ahmed Body Mounted with Different Spoiler Configurations. Applied Sciences, 15(18), 10029. https://doi.org/10.3390/app151810029