Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = colonic motor dysfunction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1299 KB  
Review
The Sweet Side of Constipation: Colonic Motor Dysfunction in Diabetes Mellitus
by Michelantonio De Fano, Sara Baluganti, Marcello Manco, Francesca Porcellati, Carmine G. Fanelli and Gabrio Bassotti
Nutrients 2025, 17(19), 3038; https://doi.org/10.3390/nu17193038 - 24 Sep 2025
Cited by 1 | Viewed by 3459
Abstract
Background/Objectives: Chronic constipation is a prevalent gastrointestinal (GI) disorder among individuals with diabetes mellitus (DM), occurring more often than in healthy subjects. This review provides a systematic overview of this often-underestimated clinical condition in people with DM. Methods: A narrative review [...] Read more.
Background/Objectives: Chronic constipation is a prevalent gastrointestinal (GI) disorder among individuals with diabetes mellitus (DM), occurring more often than in healthy subjects. This review provides a systematic overview of this often-underestimated clinical condition in people with DM. Methods: A narrative review of literature up to 30 May 2025 was conducted, focusing on studies regarding the pathogenesis of constipation in DM, the correlation with GLP-1 RAs treatment, and the diagnostic-therapeutic framework. Results: The mechanisms underlying constipation in DM remain largely unclear; however, a multifactorial etiology has been proposed, involving structural changes in various tissues within the GI tract wall, as well as functional abnormalities, often secondary to hyperglycemia. It is noteworthy that the use of GLP-1 RAs, a class of medications crucial for managing glycemic control and reducing cardiovascular and renal risk in type 2 DM, is another cause of constipation. The diagnosis of constipation is typically based on clinical evaluation, as validated methods for assessing colonic transit are invasive and available only in specialized centers. Treatment objectives include alleviating symptoms and restoring bowel function. The primary strategy for management involves dietary changes and physical activity. If the clinical response is inadequate, the use of laxatives is recommended. Finally, newer agents and mechanical methods may be considered for scenarios that are particularly severe. Conclusions: Given the increasing global prevalence of DM, healthcare professionals must recognize the clinical problem constituted by the occurrence of chronic constipation, especially considering the use of medications such as GLP-1 RAs that may induce this clinical condition. Full article
(This article belongs to the Section Nutrition and Diabetes)
Show Figures

Figure 1

24 pages, 3892 KB  
Article
Rotenone Induces Parkinsonism with Constipation Symptoms in Mice by Disrupting the Gut Microecosystem, Inhibiting the PI3K-AKT Signaling Pathway and Gastrointestinal Motility
by Li Liu, Yan Zhao, Weixing Yang, Yuqin Fan, Lixiang Han, Jun Sheng, Yang Tian and Xiaoyu Gao
Int. J. Mol. Sci. 2025, 26(5), 2079; https://doi.org/10.3390/ijms26052079 - 27 Feb 2025
Cited by 3 | Viewed by 2262
Abstract
Parkinson’s disease (PD) is one of the most common neurodegenerative diseases. Constipation is a prodromal symptom of PD. It is important to investigate the pathogenesis of constipation symptoms in PD. Rotenone has been successfully used to establish PD animal models. However, the specific [...] Read more.
Parkinson’s disease (PD) is one of the most common neurodegenerative diseases. Constipation is a prodromal symptom of PD. It is important to investigate the pathogenesis of constipation symptoms in PD. Rotenone has been successfully used to establish PD animal models. However, the specific mechanism of rotenone-induced constipation symptoms is not well understood. In this work, we found that constipation symptoms appeared earlier than motor impairment in mice gavaged with a low dose of rotenone (30 mg/kg·BW). Rotenone not only caused loss of dopaminergic neurons and accumulation of α-synuclein, but also significantly reduced serum 5-HT levels and 5-HTR4 in the striatum and colon. The mRNA expression of aquaporins, gastrointestinal motility factors (c-Kit, Cx43, smMLCK and MLC-3) in mouse colon was also significantly regulated by rotenone. In addition, both colon and brain showed rotenone-induced inflammation and barrier dysfunction; the PI3K/AKT pathway in the substantia nigra and colon was also significantly inhibited by rotenone. Importantly, the structure, composition and function of the gut microbiota were also significantly altered by rotenone. Some specific taxa were closely associated with motor and constipation symptoms, inflammation, and gut and brain barrier status in PD mice. Akkermansia, Staphylococcus and Lachnospiraceae_UCG006 may play a role in exacerbating constipation symptoms, whereas Acinetobacter, Lactobacillus, Bifidobacterium, Solibacillus and Eubacterium_xylanophilum_groups may be beneficial in stimulating gastrointestinal peristalsis, maintaining motor function and alleviating inflammation and barrier damage in mice. In conclusion, low-dose rotenone can cause parkinsonism with constipation symptoms in mice by disrupting the intestinal microecosystem and inhibiting the PI3K-AKT pathway and gastrointestinal motility. Full article
Show Figures

Figure 1

16 pages, 3950 KB  
Article
Effect of the Flavonoid Rutin on the Modulation of the Myenteric Plexuses in an Experimental Model of Parkinson’s Disease
by Livia Bacelar de Jesus, Annyta Fernandes Frota, Fillipe Mendes de Araújo, Rafael Leonne Cruz de Jesus, Maria de Fátima Dias Costa, Darizy Flavia Silva Amorim de Vasconcelos, Marcelo Biondaro Gois, Gyselle Chrystina Baccan, Victor Diogenes Amaral da Silva and Silvia Lima Costa
Int. J. Mol. Sci. 2024, 25(2), 1037; https://doi.org/10.3390/ijms25021037 - 15 Jan 2024
Cited by 8 | Viewed by 2972
Abstract
Recent discoveries have shown that enteric glial cells play an important role in different neurodegenerative disorders, such as Parkinson’s disease (PD), which is characterized by motor dysfunctions caused by the progressive loss of dopaminergic neurons in the substance nigra pars compacta and non-motor [...] Read more.
Recent discoveries have shown that enteric glial cells play an important role in different neurodegenerative disorders, such as Parkinson’s disease (PD), which is characterized by motor dysfunctions caused by the progressive loss of dopaminergic neurons in the substance nigra pars compacta and non-motor symptoms including gastrointestinal dysfunction. In this study, we investigated the modulatory effects of the flavonoid rutin on the behavior and myenteric plexuses in a PD animal model and the response of enteric glia. Adult male Wistar rats were submitted to stereotaxic injection with 6-hydroxydopamine or saline, and they were untreated or treated with rutin (10 mg/kg) for 14 days. The ileum was collected to analyze tissue reactivity and immunohistochemistry for neurons (HuC/HuD) and enteric glial cells (S100β) in the myenteric plexuses. Behavioral tests demonstrated that treatment with rutin improved the motor capacity of parkinsonian animals and improved intestinal transit without interfering with the cell population; rutin treatment modulated the reactivity of the ileal musculature through muscarinic activation, reducing relaxation through the signaling pathway of nitric oxide donors, and increased the longitudinal contractility of the colon musculature in parkinsonian animals. Rutin revealed modulatory activities on the myenteric plexus, bringing relevant answers regarding the effect of the flavonoid in this system and the potential application of PD adjuvant treatment. Full article
Show Figures

Figure 1

15 pages, 3539 KB  
Article
Dietary Supplement, Containing the Dry Extract of Curcumin, Emblica and Cassia, Counteracts Intestinal Inflammation and Enteric Dysmotility Associated with Obesity
by Vanessa D’Antongiovanni, Matteo Fornai, Laura Benvenuti, Clelia Di Salvo, Carolina Pellegrini, Federica Cappelli, Stefano Masi and Luca Antonioli
Metabolites 2023, 13(3), 410; https://doi.org/10.3390/metabo13030410 - 9 Mar 2023
Cited by 10 | Viewed by 2486
Abstract
Intestinal epithelial barrier (IEB) impairment and enteric inflammation are involved in the onset of obesity and gut-related dysmotility. Dietary supplementation with natural plant extracts represents a useful strategy for the management of body weight gain and systemic inflammation associated with obesity. Here, we [...] Read more.
Intestinal epithelial barrier (IEB) impairment and enteric inflammation are involved in the onset of obesity and gut-related dysmotility. Dietary supplementation with natural plant extracts represents a useful strategy for the management of body weight gain and systemic inflammation associated with obesity. Here, we evaluate the efficacy of a food supplement containing the dry extract of Curcumin, Emblica and Cassia in counteracting enteric inflammation and motor abnormalities in a mouse model of obesity, induced by a high-fat diet (HFD). Male C57BL/6 mice, fed with standard diet (SD) or HFD, were treated with a natural mixture (Curcumin, Emblica and Cassia). After 8 weeks, body weight, BMI, liver and spleen weight, along with metabolic parameters and colonic motor activity were evaluated. Additionally, plasma LBP, fecal calprotectin, colonic levels of MPO and IL-1β, as well as the expression of occludin, TLR-4, MYD88 and NF-κB were investigated. Plant-based food supplement administration (1) counteracted the increase in body weight, BMI and metabolic parameters, along with a reduction in spleen and liver weight; (2) showed strengthening effects on the IEB integrity; and (3) reduced enteric inflammation and oxidative stress, as well as ameliorated the colonic contractile dysfunctions. Natural mixture administration reduced intestinal inflammation and counteracted the intestinal motor dysfunction associated with obesity. Full article
(This article belongs to the Special Issue Lipid Metabolism Regulation and Obesity Treatment)
Show Figures

Figure 1

21 pages, 1640 KB  
Article
Treatment with the Olive Secoiridoid Oleacein Protects against the Intestinal Alterations Associated with EAE
by Beatriz Gutiérrez-Miranda, Isabel Gallardo, Eleni Melliou, Isabel Cabero, Yolanda Álvarez, Marta Hernández, Prokopios Magiatis, Marita Hernández and María Luisa Nieto
Int. J. Mol. Sci. 2023, 24(5), 4977; https://doi.org/10.3390/ijms24054977 - 4 Mar 2023
Cited by 9 | Viewed by 3553
Abstract
Multiple sclerosis (MS) is a CNS inflammatory demyelinating disease. Recent investigations highlight the gut-brain axis as a communication network with crucial implications in neurological diseases. Thus, disrupted intestinal integrity allows the translocation of luminal molecules into systemic circulation, promoting systemic/brain immune-inflammatory responses. In [...] Read more.
Multiple sclerosis (MS) is a CNS inflammatory demyelinating disease. Recent investigations highlight the gut-brain axis as a communication network with crucial implications in neurological diseases. Thus, disrupted intestinal integrity allows the translocation of luminal molecules into systemic circulation, promoting systemic/brain immune-inflammatory responses. In both, MS and its preclinical model, the experimental autoimmune encephalomyelitis (EAE) gastrointestinal symptoms including “leaky gut” have been reported. Oleacein (OLE), a phenolic compound from extra virgin olive oil or olive leaves, harbors a wide range of therapeutic properties. Previously, we showed OLE effectiveness preventing motor defects and inflammatory damage of CNS tissues on EAE mice. The current studies examine its potential protective effects on intestinal barrier dysfunction using MOG35-55-induced EAE in C57BL/6 mice. OLE decreased EAE-induced inflammation and oxidative stress in the intestine, preventing tissue injury and permeability alterations. OLE protected from EAE-induced superoxide anion and accumulation of protein and lipid oxidation products in colon, also enhancing its antioxidant capacity. These effects were accompanied by reduced colonic IL-1β and TNFα levels in OLE-treated EAE mice, whereas the immunoregulatory cytokines IL-25 and IL-33 remained unchanged. Moreover, OLE protected the mucin-containing goblet cells in colon and the serum levels of iFABP and sCD14, markers that reflect loss of intestinal epithelial barrier integrity and low-grade systemic inflammation, were significantly reduced. These effects on intestinal permeability did not draw significant differences on the abundance and diversity of gut microbiota. However, OLE induced an EAE-independent raise in the abundance of Akkermansiaceae family. Consistently, using Caco-2 cells as an in vitro model, we confirmed that OLE protected against intestinal barrier dysfunction induced by harmful mediators present in both EAE and MS. This study proves that the protective effect of OLE in EAE also involves normalizing the gut alterations associated to the disease. Full article
Show Figures

Figure 1

21 pages, 21858 KB  
Article
Exploring the Neuroprotective Mechanism of Curcumin Inhibition of Intestinal Inflammation against Parkinson’s Disease Based on the Gut-Brain Axis
by Lifan Zhong, Benchi Cai, Qitong Wang, Xi Li, Wendi Xu and Tao Chen
Pharmaceuticals 2023, 16(1), 39; https://doi.org/10.3390/ph16010039 - 27 Dec 2022
Cited by 22 | Viewed by 5501
Abstract
Parkinson’s disease (PD) is a chronic progressive neurodegenerative disease commonly seen in aged people, in which gastrointestinal dysfunction is the most common nonmotor symptom and the activation of the gut–brain axis by intestinal inflammation may contribute to the pathogenesis of PD. In a [...] Read more.
Parkinson’s disease (PD) is a chronic progressive neurodegenerative disease commonly seen in aged people, in which gastrointestinal dysfunction is the most common nonmotor symptom and the activation of the gut–brain axis by intestinal inflammation may contribute to the pathogenesis of PD. In a previous study, curcumin was considered neuroprotective in PD, and this neuroprotective mechanism may act by inhibiting intestinal inflammation. Therefore, the aim of this study was to evaluate the effect of curcumin on motor dysfunction and the loss of dopaminergic neurons in a PD mouse model, induced by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) using open field test and pole test behavioral assessments and the immunofluorescence and Western blot methods. Moreover, the effects of curcumin on gastrointestinal dysfunction, gastric barrier function, pro-inflammatory cytokines, and the SIRT1/NRF2 pathway in intestinal tissues in a PD mouse model were assessed using fecal parameters and intestinal dynamics, immunofluorescence, ELISA, and Western blot. A motor impairment study of an MPTP-induced mouse group prior to treatment with curcumin had a lower total movement distance and a slow average speed, while there was no statistical difference in the curcumin group. After treatment with curcumin, the total movement distance and average speed improved, the tyrosine hydroxylase (TH) rate in the substantia nigra pars compacta (SNpc) and striatum were reduced, the pyroptosis of AIM2 and caspase-1 activations were inhibited, and intestinal inflammatory factors and intestinal inflammation were reduced. Curcumin improved gastrointestinal disorders and gastrointestinal barrier function in the MPTP-induced mice and reversed MPTP-induced motor dysfunction and dopaminergic neuron loss in mice. The above effects may be partly dependent on curcumin activation of the SIRT1/NRF2 pathway in the colon. This study provides a potential opportunity to develop new preventive measures and novel therapeutic approaches that could target the gut–brain axis in the context of PD and provide a new intervention in the treatment of Parkinson’s disease. Full article
(This article belongs to the Section Natural Products)
Show Figures

Graphical abstract

19 pages, 7054 KB  
Article
Dual-Hit Model of Parkinson’s Disease: Impact of Dysbiosis on 6-Hydroxydopamine-Insulted Mice—Neuroprotective and Anti-Inflammatory Effects of Butyrate
by Carmen Avagliano, Lorena Coretti, Adriano Lama, Claudio Pirozzi, Carmen De Caro, Davide De Biase, Luigia Turco, Maria Pina Mollica, Orlando Paciello, Antonio Calignano, Rosaria Meli, Francesca Lembo and Giuseppina Mattace Raso
Int. J. Mol. Sci. 2022, 23(12), 6367; https://doi.org/10.3390/ijms23126367 - 7 Jun 2022
Cited by 31 | Viewed by 5677
Abstract
Recent evidence highlights Parkinson’s disease (PD) initiation in the gut as the prodromal phase of neurodegeneration. Gut impairment due to microbial dysbiosis could affect PD pathogenesis and progression. Here, we propose a two-hit model of PD through ceftriaxone (CFX)-induced dysbiosis and gut inflammation [...] Read more.
Recent evidence highlights Parkinson’s disease (PD) initiation in the gut as the prodromal phase of neurodegeneration. Gut impairment due to microbial dysbiosis could affect PD pathogenesis and progression. Here, we propose a two-hit model of PD through ceftriaxone (CFX)-induced dysbiosis and gut inflammation before the 6-hydroxydopamine (6-OHDA) intrastriatal injection to mimic dysfunctional gut-associated mechanisms preceding PD onset. Therefore, we showed that dysbiosis and gut damage amplified PD progression, worsening motor deficits induced by 6-OHDA up to 14 days post intrastriatal injection. This effect was accompanied by a significant increase in neuronal dopaminergic loss (reduced tyrosine hydroxylase expression and increased Bcl-2/Bax ratio). Notably, CFX pretreatment also enhanced systemic and colon inflammation of dual-hit subjected mice. The exacerbated inflammatory response ran in tandem with a worsening of colonic architecture and gut microbiota perturbation. Finally, we demonstrated the beneficial effect of post-biotic sodium butyrate in limiting at once motor deficits, neuroinflammation, and colon damage and re-shaping microbiota composition in this novel dual-hit model of PD. Taken together, the bidirectional communication of the microbiota–gut–brain axis and the recapitulation of PD prodromal/pathogenic features make this new paradigm a useful tool for testing or repurposing new multi-target compounds in the treatment of PD. Full article
Show Figures

Figure 1

20 pages, 5085 KB  
Article
Further Characterization of Intrastriatal Lipopolysaccharide Model of Parkinson’s Disease in C57BL/6 Mice
by Isaac Deng, Frances Corrigan, Sanjay Garg, Xin-Fu Zhou and Larisa Bobrovskaya
Int. J. Mol. Sci. 2021, 22(14), 7380; https://doi.org/10.3390/ijms22147380 - 9 Jul 2021
Cited by 13 | Viewed by 5816
Abstract
Parkinson’s disease (PD) is the most common movement disorder, characterized by progressive degeneration of the nigrostriatal pathway, which consists of dopaminergic cell bodies in substantia nigra and their neuronal projections to the striatum. Moreover, PD is associated with an array of non-motor symptoms [...] Read more.
Parkinson’s disease (PD) is the most common movement disorder, characterized by progressive degeneration of the nigrostriatal pathway, which consists of dopaminergic cell bodies in substantia nigra and their neuronal projections to the striatum. Moreover, PD is associated with an array of non-motor symptoms such as olfactory dysfunction, gastrointestinal dysfunction, impaired regulation of the sleep-wake cycle, anxiety, depression, and cognitive impairment. Inflammation and concomitant oxidative stress are crucial in the pathogenesis of PD. Thus, this study aimed to model PD via intrastriatal injection of the inflammagen lipopolysaccharide (LPS)to investigate if the lesion causes olfactory and motor impairments, inflammation, oxidative stress, and alteration in synaptic proteins in the olfactory bulb, striatum, and colon. Ten µg of LPS was injected unilaterally into the striatum of 27 male C57BL/6 mice, and behavioural assessment was conducted at 4 and 8 weeks post-treatment, followed by tissue collection. Intrastriatal LPS induced motor impairment in C57BL/6 mice at 8 weeks post-treatment evidenced by reduced latency time in the rotarod test. LPS also induced inflammation in the striatum characterized by increased expression of microglial marker Iba-1 and astrocytic marker GFAP, with degeneration of dopaminergic neuronal fibres (reduced tyrosine hydroxylase immunoreactivity), and reduction of synaptic proteins and DJ-1 protein. Additionally, intrastriatal LPS induced inflammation, oxidative stress and alterations in synaptic proteins within the olfactory bulb, although this did not induce a significant impairment in olfactory function. Intrastriatal LPS induced mild inflammatory changes in the distal colon, accompanied by increased protein expression of 3-nitrotyrosine-modified proteins. This model recapitulated the major features of PD such as motor impairment and degeneration of dopaminergic neuronal fibres in the striatum, as well as some pathological changes in the olfactory bulb and colon; thus, this model could be suitable for understanding clinical PD and testing neuroprotective strategies. Full article
Show Figures

Figure 1

14 pages, 1139 KB  
Article
Distinctive Pathophysiology Underlying Constipation in Parkinson’s Disease: Implications for Cognitive Inefficiency
by Rosalind M. Tucker, Suzanne Ryan, Bu’ Hussain Hayee, Ingvar Bjarnason, Aisha D. Augustin, Chianna Umamahesan, David Taylor, Clive Weller, Sylvia M Dobbs, R John Dobbs and André Charlett
J. Clin. Med. 2020, 9(6), 1916; https://doi.org/10.3390/jcm9061916 - 19 Jun 2020
Cited by 10 | Viewed by 4768
Abstract
Depression is associated with constipation within and outside Parkinson’s disease (PD). Since inefficient cognitive-processing (bradyphrenia) features in PD and an enterokinetic agent improved cognitive performance in healthy individuals, bradyphrenia may be associated with constipation. We aim to define the archetypical bowel function of [...] Read more.
Depression is associated with constipation within and outside Parkinson’s disease (PD). Since inefficient cognitive-processing (bradyphrenia) features in PD and an enterokinetic agent improved cognitive performance in healthy individuals, bradyphrenia may be associated with constipation. We aim to define the archetypical bowel function of PD, and its association with cognition, mood, and motor features within and outside PD. We assessed colonic transit time (oral radio-opaque markers over 6 days), bowel function and psychometric questionnaires and measures of PD facets, including bradyphrenia, in 58 participants with diagnosed PD, and 71 without (controls). The best abdominal X-ray (day 7) predictors of PD status were total retained marker count and transverse colon segmental delay. However, Rome functional constipation status complemented segmental delay better, giving good specificity (85%) but low sensitivity (56%). Transverse colon marker count appeared to be age-associated only in PD. In PD, those correctly classified by bowel dysfunction had higher depression scores (p = 0.02) and longer cognitive-processing times than the misclassified (p = 0.05). Controls misclassified as PD by bowel dysfunction had higher depression and anxiety scores than the correctly classified (p = 0.002 and 0.003, respectively), but not slower cognitive processing. Measures of motor features were independent of sub-classification by bowel function in PD and in controls. In conclusion, constipation in PD has distinct localized pathophysiology, and is associated with bradyphrenia. Full article
Show Figures

Figure 1

18 pages, 3133 KB  
Article
Glial A2B Adenosine Receptors Modulate Abnormal Tachykininergic Responses and Prevent Enteric Inflammation Associated with High Fat Diet-Induced Obesity
by Vanessa D’Antongiovanni, Laura Benvenuti, Matteo Fornai, Carolina Pellegrini, Renè van den Wijngaard, Silvia Cerantola, Maria Cecilia Giron, Valentina Caputi, Rocchina Colucci, Gyorgy Haskó, Zoltán H. Németh, Corrado Blandizzi and Luca Antonioli
Cells 2020, 9(5), 1245; https://doi.org/10.3390/cells9051245 - 18 May 2020
Cited by 30 | Viewed by 4284
Abstract
The role played by adenosine A2B receptors (A2BRs) in the regulation of enteric glial cell (EGC) functions remains unclear. This study was aimed at investigating the involvement of A2BRs in the control of EGC functions in a model [...] Read more.
The role played by adenosine A2B receptors (A2BRs) in the regulation of enteric glial cell (EGC) functions remains unclear. This study was aimed at investigating the involvement of A2BRs in the control of EGC functions in a model of obesity. C57BL/6 mice were fed with standard diet (SD) or high fat diet (HFD) for eight weeks. Colonic tachykininergic contractions were recorded in the presence of BAY60-6583 (A2BRs agonist), MRS1754 (A2BRs antagonist), and the gliotoxin fluorocitrate. Immunofluorescence distribution of HuC/D, S100β, and A2BRs was assessed in whole mount preparations of colonic myenteric plexus. To mimic HFD, EGCs were incubated in vitro with palmitate (PA) and lipopolysaccharide (LPS), in the absence or in the presence of A2BR ligands. Toll-like receptor 4 (TLR4) expression was assessed by Western blot analysis. Interleukin-1β (IL-1β), substance P (SP), and glial cell derived neurotrophic factor (GDNF) release were determined by enzyme-linked immunosorbent assay (ELISA) assays. MRS1754 enhanced electrically evoked tachykininergic contractions of colonic preparations from HFD mice. BAY60-6583 decreased the evoked tachykininergic contractions, with higher efficacy in HFD mice. Such effects were blunted upon incubation with fluorocitrate. In in vitro experiments on EGCs, PA and LPS increased TLR4 expression as well as IL-1β, GDNF, and SP release. Incubation with BAY60-6583 reduced TLR4 expression as well as IL-1β, GDNF, and SP release. Such effects were blunted by MRS1754. The present results suggest that A2BRs, expressed on EGCs, participate in the modulation of enteric inflammation and altered tachykininergic responses associated with obesity, thus representing a potential therapeutic target. Full article
(This article belongs to the Special Issue Adenosine Receptors: From Cell Biology to Human Diseases)
Show Figures

Graphical abstract

15 pages, 3160 KB  
Article
Distal Colon Motor Dysfunction in Mice with Chronic Kidney Disease: Putative Role of Uremic Toxins
by Elsa Hoibian, Nans Florens, Laetitia Koppe, Hubert Vidal and Christophe O. Soulage
Toxins 2018, 10(5), 204; https://doi.org/10.3390/toxins10050204 - 16 May 2018
Cited by 35 | Viewed by 7046
Abstract
Although gastrointestinal complications are a common feature of patients with chronic kidney disease (CKD), the impact of uremia on bowel motility remains poorly understood. The present study was, therefore, designed to investigate the impact of uremia on gut motility. Kidney failure was induced [...] Read more.
Although gastrointestinal complications are a common feature of patients with chronic kidney disease (CKD), the impact of uremia on bowel motility remains poorly understood. The present study was, therefore, designed to investigate the impact of uremia on gut motility. Kidney failure was induced in mice by chemical nephrectomy using an adenine diet (0.25% w/w). Gastrointestinal transit time and colon motility were explored in vivo and ex vivo. Colons from control mice were incubated with uremic plasma or uremic toxins (urea, indoxyl-sulfate or p-cresyl-sulfate) at concentrations encountered in patients with end-stage renal disease. Mice fed an adenine diet for 3 weeks exhibited a 3-fold increase in plasma urea (p < 0.001) evidencing kidney failure. The median gastrointestinal transit time was doubled (1.8-fold, p < 0.001) while a reduction in colonic propulsive motility was observed in CKD mice (3-fold, p < 0.001). Colon from CKD mice exhibited an abnormal pattern of contraction associated with a blunted maximal force of contraction. Control colons incubated with plasma from hemodialysis patients exhibited a blunted level of maximal contraction (p < 0.01). Incubation with urea did not elicit any difference but incubation with indoxyl-sulfate or p-cresyl-sulfate decreased the maximal force of contraction (−66% and −55%, respectively. p < 0.01). Taken together, these data suggest that uremia impairs colon motility probably through the retention of uremic toxins. Colon dysmotility might contribute to the gastrointestinal symptoms often reported in patients with CKD. Full article
(This article belongs to the Special Issue The Intestine and Uremia)
Show Figures

Figure 1

Back to TopTop