Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = collisional energy transfer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2812 KiB  
Perspective
The Generation of Wind Velocity via Scale Invariant Gibbs Free Energy: Turbulence Drives the General Circulation
by Adrian F. Tuck
Entropy 2025, 27(7), 740; https://doi.org/10.3390/e27070740 - 10 Jul 2025
Viewed by 292
Abstract
The mechanism for the upscale deposition of energy into the atmosphere from molecules and photons up to organized wind systems is examined. This analysis rests on the statistical multifractal analysis of airborne observations. The results show that the persistence of molecular velocity after [...] Read more.
The mechanism for the upscale deposition of energy into the atmosphere from molecules and photons up to organized wind systems is examined. This analysis rests on the statistical multifractal analysis of airborne observations. The results show that the persistence of molecular velocity after collision in breaking the continuous translational symmetry of an equilibrated gas is causative. The symmetry breaking may be caused by excited photofragments with the associated persistence of molecular velocity after collision, interaction with condensed phase surfaces (solid or liquid), or, in a scaling environment, an adjacent scale having a different velocity and temperature. The relationship of these factors for the solution to the Navier–Stokes equation in an atmospheric context is considered. The scale invariant version of Gibbs free energy, carried by the most energetic molecules, enables the acceleration of organized flow (winds) from the smallest planetary scales by virtue of the nonlinearity of the mechanism, subject to dissipation by the more numerous average molecules maintaining an operational temperature via infrared radiation to the cold sink of space. The fastest moving molecules also affect the transfer of infrared radiation because their higher kinetic energy and the associated more-energetic collisions contribute more to the far wings of the spectral lines, where the collisional displacement from the central energy level gap is greatest and the lines are less self-absorbed. The relationship of events at these scales to macroscopic variables such as the thermal wind equation and its components will be considered in the Discussion section. An attempt is made to synthesize the mechanisms by which winds are generated and sustained, on all scales, by appealing to published works since 2003. This synthesis produces a view of the general circulation that includes thermodynamics and the defining role of turbulence in driving it. Full article
(This article belongs to the Section Statistical Physics)
Show Figures

Figure 1

18 pages, 921 KiB  
Article
Irreversibility and Energy Transfer at Non-MHD Scales in a Magnetospheric Current Disruption Event
by Giuseppe Consolini and Paola De Michelis
Entropy 2025, 27(3), 260; https://doi.org/10.3390/e27030260 - 1 Mar 2025
Cited by 1 | Viewed by 688
Abstract
Irreversibility and the processes occurring at ion and sub-ion scales are key challenges in understanding energy dissipation in non-collisional space plasmas. Recent advances have significantly improved the characterization of irreversibility and energy transfer across scales in turbulent fluid-like media, using high-order correlation functions [...] Read more.
Irreversibility and the processes occurring at ion and sub-ion scales are key challenges in understanding energy dissipation in non-collisional space plasmas. Recent advances have significantly improved the characterization of irreversibility and energy transfer across scales in turbulent fluid-like media, using high-order correlation functions and testing the validity of certain fluctuation relations. In this study, we explore irreversibility at non-MHD scales during a magnetospheric current disruption event. Our approach involves analyzing the asymmetric correlation function, assessing the validity of a fluctuation relation, and investigating delayed coupling between different scales to reveal evidence of a cascading mechanism. The results clearly demonstrate the irreversible nature of fluctuations at ion and sub-ion scales. Additionally, we provide potential evidence for an energy cascading mechanism occurring over short time delays. Full article
Show Figures

Figure 1

24 pages, 3758 KiB  
Article
Charge Transfer in He+ − He → He(1s4l, l ≥ 2) − He+ Collisions in Intermediate Energy Range
by Patryk Kamiński and Ryszard Drozdowski
Int. J. Mol. Sci. 2024, 25(14), 7833; https://doi.org/10.3390/ijms25147833 - 17 Jul 2024
Viewed by 1127
Abstract
The anticrossing spectra of the helium line λ1s4l D3,F1s2p P3=447.2 nm emitted after electron capture by He+ ions in [...] Read more.
The anticrossing spectra of the helium line λ1s4l D3,F1s2p P3=447.2 nm emitted after electron capture by He+ ions in He+He collisions were measured for projectile energies of 10–29 keV. Furthermore, considering the excited states’ time evolution, the theoretical intensity functions were calculated. The electric field and density distributions of the target He atoms in the collision volume were taken into account, and by fitting the theoretical intensities to the measured ones, the post-collisional states of the charge-transferred He atoms were determined. The results indicate that for the intermediate projectile energy range, the electronic charge distributions were asymmetric, but the electric dipole moments did not change, as in the case of the target atoms excited directly in the collisions. This result shows that the Paul trap mechanism may play an important role in the charge transfer excitation in this energy range. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Figure 1

15 pages, 2099 KiB  
Article
X-ray Line-Intensity Ratios in Neon-like Xenon: Significantly Reducing the Discrepancy between Measurements and Simulations
by Shihan Huang, Zhiming Tang, Yang Yang, Hongming Zhang, Ziqiang Tian, Shaokun Ma, Jinyu Li, Chao Zeng, Huajian Ji, Ke Yao and Yaming Zou
Appl. Sci. 2024, 14(11), 4381; https://doi.org/10.3390/app14114381 - 22 May 2024
Cited by 1 | Viewed by 1379
Abstract
The X-ray spectra of L-shell transitions in Neon-like Xenon ion (Xe44+) have been precisely measured at the Shanghai Electron-Beam Ion Trap using a high-resolution crystal spectrometer. Focusing on the line-intensity ratio of the 3F {2p6-(2p51/23s1/2 [...] Read more.
The X-ray spectra of L-shell transitions in Neon-like Xenon ion (Xe44+) have been precisely measured at the Shanghai Electron-Beam Ion Trap using a high-resolution crystal spectrometer. Focusing on the line-intensity ratio of the 3F {2p6-(2p51/23s1/2)J=1} and 3D {2p6-(2p53/23d5/2)J=1} lines (3F/3D), our measurements have achieved remarkable precision improvements over the previous studies. These spectra have been simulated using the collisional-radiative model (CRM) within the Flexible Atomic Code, showing good agreement with the measurements. The previously reported discrepancies, approximately ranging from 10% to 20%, have been significantly reduced in this work to below 1.4% for electron-beam energies exceeding 6 keV and to around 7% for lower energies. Furthermore, our analysis of population fluxes of the involved levels reveals a very high sensitivity of the 3F line to radiation cascades. This suggests that the current CRM, which conventionally excludes interionic population transfer processes, may underestimate the population of the upper level of the 3F line and the cascade-related higher levels, thus explaining the remaining discrepancies. These findings provide a solid foundation for further minimizing these discrepancies and are crucial for understanding the atomic structure and plasma model of these ions. Full article
(This article belongs to the Special Issue Plasma Physics: Theory, Methods and Applications)
Show Figures

Figure 1

18 pages, 2417 KiB  
Article
Enhanced Characterization of Lysine-Linked Antibody Drug Conjugates Enabled by Middle-Down Mass Spectrometry and Higher-Energy Collisional Dissociation-Triggered Electron-Transfer/Higher-Energy Collisional Dissociation and Ultraviolet Photodissociation
by Eleanor Watts, Aarti Bashyal, Sean D. Dunham, Christopher M. Crittenden and Jennifer S. Brodbelt
Antibodies 2024, 13(2), 30; https://doi.org/10.3390/antib13020030 - 17 Apr 2024
Cited by 3 | Viewed by 2995
Abstract
As the development of new biotherapeutics advances, increasingly sophisticated tandem mass spectrometry methods are needed to characterize the most complex molecules, including antibody drug conjugates (ADCs). Lysine-linked ADCs, such as trastuzumab-emtansine (T-DM1), are among the most heterogeneous biotherapeutics. Here, we implement a workflow [...] Read more.
As the development of new biotherapeutics advances, increasingly sophisticated tandem mass spectrometry methods are needed to characterize the most complex molecules, including antibody drug conjugates (ADCs). Lysine-linked ADCs, such as trastuzumab-emtansine (T-DM1), are among the most heterogeneous biotherapeutics. Here, we implement a workflow that combines limited proteolysis with HCD-triggered EThcD and UVPD mass spectrometry for the characterization of the resulting middle-down large-sized peptides of T-DM1. Fifty-three payload-containing peptides were identified, ranging in mass from 1.8 to 16.9 kDa, and leading to the unambiguous identification of 46 out of 92 possible conjugation sites. In addition, seven peptides were identified containing multiple payloads. The characterization of these types of heterogeneous peptides represents an important step in unraveling the combinatorial nature of lysine-conjugated ADCs. Full article
(This article belongs to the Section Antibody-Based Therapeutics)
Show Figures

Graphical abstract

11 pages, 1596 KiB  
Article
Very Low-Pressure CID Experiments: High Energy Transfer and Fragmentation Pattern at the Single Collision Regime
by Dániel Szabó, Ágnes Gömöry, Krisztina Ludányi, Károly Vékey and László Drahos
Molecules 2024, 29(1), 211; https://doi.org/10.3390/molecules29010211 - 30 Dec 2023
Viewed by 1867
Abstract
We have performed CID experiments on a triple quadrupole instrument, lowering the collision gas pressure by 50 times compared to its conventional value. The results show that at very low-collision gas pressure, single collisions dominate the spectra. Indirectly, these results suggest that under [...] Read more.
We have performed CID experiments on a triple quadrupole instrument, lowering the collision gas pressure by 50 times compared to its conventional value. The results show that at very low-collision gas pressure, single collisions dominate the spectra. Indirectly, these results suggest that under conventional conditions, 20–50 collisions may be typical in CID experiments. The results show a marked difference between low- and high-pressure CID spectra, the latter being characterized in terms of ‘slow heating’ and predominance of consecutive reactions. The results indicate that under single collision conditions, the collisional energy transfer efficiency is very high: nearly 100% of the center of mass kinetic energy is converted to internal energy. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Figure 1

15 pages, 4013 KiB  
Article
Structural Characterization of Daunomycin-Peptide Conjugates by Various Tandem Mass Spectrometric Techniques
by Adina Borbély, Lilla Pethő, Ildikó Szabó, Mohammed Al-Majidi, Arnold Steckel, Tibor Nagy, Sándor Kéki, Gergő Kalló, Éva Csősz, Gábor Mező and Gitta Schlosser
Int. J. Mol. Sci. 2021, 22(4), 1648; https://doi.org/10.3390/ijms22041648 - 6 Feb 2021
Cited by 2 | Viewed by 3535
Abstract
The use of peptide-drug conjugates has generated wide interest as targeted antitumor therapeutics. The anthracycline antibiotic, daunomycin, is a widely used anticancer agent and it is often conjugated to different tumor homing peptides. However, comprehensive analytical characterization of these conjugates via tandem mass [...] Read more.
The use of peptide-drug conjugates has generated wide interest as targeted antitumor therapeutics. The anthracycline antibiotic, daunomycin, is a widely used anticancer agent and it is often conjugated to different tumor homing peptides. However, comprehensive analytical characterization of these conjugates via tandem mass spectrometry (MS/MS) is challenging due to the lability of the O-glycosidic bond and the appearance of MS/MS fragment ions with little structural information. Therefore, we aimed to investigate the optimal fragmentation conditions that suppress the prevalent dissociation of the anthracycline drug and provide good sequence coverage. In this study, we comprehensively compared the performance of common fragmentation techniques, such as higher energy collisional dissociation (HCD), electron transfer dissociation (ETD), electron-transfer higher energy collisional dissociation (EThcD) and matrix-assisted laser desorption/ionization–tandem time-of-flight (MALDI-TOF/TOF) activation methods for the structural identification of synthetic daunomycin-peptide conjugates by high-resolution tandem mass spectrometry. Our results showed that peptide backbone fragmentation was inhibited by applying electron-based dissociation methods to conjugates, most possibly due to the “electron predator” effect of the daunomycin. We found that efficient HCD fragmentation was largely influenced by several factors, such as amino acid sequences, charge states and HCD energy. High energy HCD and MALDI-TOF/TOF combined with collision induced dissociation (CID) mode are the methods of choice to unambiguously assign the sequence, localize different conjugation sites and differentiate conjugate isomers. Full article
(This article belongs to the Special Issue High Resolution Mass Spectrometry in Molecular Sciences)
Show Figures

Figure 1

18 pages, 3756 KiB  
Article
Finding Value in Wastewaters from the Cork Industry: Carbon Dots Synthesis and Fluorescence for Hemeprotein Detection
by Marta R. Alexandre, Alexandra I. Costa, Mário N. Berberan-Santos and José V. Prata
Molecules 2020, 25(10), 2320; https://doi.org/10.3390/molecules25102320 - 15 May 2020
Cited by 12 | Viewed by 3433
Abstract
Valorisation of industrial low-value waste residues was preconized. Hence, carbon dots (C-dots) were synthesized from wastewaters of the cork industry—an abundant and affordable, but environmentally-problematic industrial effluent. The carbon nanomaterials were structurally and morphologically characterised, and their photophysical properties were analysed by an [...] Read more.
Valorisation of industrial low-value waste residues was preconized. Hence, carbon dots (C-dots) were synthesized from wastewaters of the cork industry—an abundant and affordable, but environmentally-problematic industrial effluent. The carbon nanomaterials were structurally and morphologically characterised, and their photophysical properties were analysed by an ensemble of spectroscopy techniques. Afterwards, they were successfully applied as highly-sensitive fluorescence probes for the direct detection of haemproteins. Haemoglobin, cytochrome c and myoglobin were selected as specific targets owing to their relevant roles in living organisms, wherein their deficiencies or surpluses are associated with several medical conditions. For all of them, remarkable responses were achieved, allowing their detection at nanomolar levels. Steady-state and time-resolved fluorescence, ground-state UV–Vis absorption and electronic circular dichroism techniques were used to investigate the probable mechanisms behind the fluorescence turn-off of C-dots. Extensive experimental evidence points to a static quenching mechanism. Likewise, resonance energy transfer and collisional quenching have been discarded as excited-state deactivating mechanisms. It was additionally found that an oxidative, photoinduced electron transfer occurs for cytochrome c, the most electron-deficient protein. Besides, C-dots prepared from citric acid/ethylenediamine were comparatively assayed for protein detection and the differences between the two types of nanomaterials highlighted. Full article
Show Figures

Graphical abstract

16 pages, 1325 KiB  
Article
Spatially-Resolved Spectroscopic Diagnostics of a Miniature RF Atmospheric Pressure Plasma Jet in Argon Open to Ambient Air
by Florent P. Sainct, Antoine Durocher-Jean, Reetesh Kumar Gangwar, Norma Yadira Mendoza Gonzalez, Sylvain Coulombe and Luc Stafford
Plasma 2020, 3(2), 38-53; https://doi.org/10.3390/plasma3020005 - 1 Apr 2020
Cited by 13 | Viewed by 4941
Abstract
The spatially-resolved electron temperature, rotational temperature, and number density of the two metastable Ar 1 s levels were investigated in a miniature RF Ar glow discharge jet at atmospheric pressure. The 1 s level population densities were determined from optical absorption spectroscopy (OAS) [...] Read more.
The spatially-resolved electron temperature, rotational temperature, and number density of the two metastable Ar 1 s levels were investigated in a miniature RF Ar glow discharge jet at atmospheric pressure. The 1 s level population densities were determined from optical absorption spectroscopy (OAS) measurements assuming a Voigt profile for the plasma emission and a Gaussian profile for the lamp emission. As for the electron temperature, it was deduced from the comparison of the measured Ar 2 p i 1 s j emission lines with those simulated using a collisional-radiative model. The Ar 1 s level population higher than 10 18 m 3 and electron temperature around 2.5 eV were obtained close to the nozzle exit. In addition, both values decreased steadily along the discharge axis. Rotational temperatures determined from OH(A) and N 2 (C) optical emission featured a large difference with the gas temperature found from a thermocouple; a feature ascribed to the population of emitting OH and N 2 states by energy transfer reactions involving the Ar 1 s levels. Full article
(This article belongs to the Special Issue Low Temperature Plasma Jets: Physics, Diagnostics and Applications)
Show Figures

Figure 1

12 pages, 2231 KiB  
Article
Anomalous Humidity Dependence in Photoacoustic Spectroscopy of CO Explained by Kinetic Cooling
by Jakob Hayden, Bettina Baumgartner and Bernhard Lendl
Appl. Sci. 2020, 10(3), 843; https://doi.org/10.3390/app10030843 - 24 Jan 2020
Cited by 18 | Viewed by 3596
Abstract
Water affects the amplitude of photoacoustic signals from many gas phase molecules. In quartz-enhanced photoacoustic (QEPAS) measurements of CO excited at the fundamental vibrational resonance of CO, the photoacoustic signal decreases with increasing humidity, reaches a pronounced minimum at ~0.19%V, and [...] Read more.
Water affects the amplitude of photoacoustic signals from many gas phase molecules. In quartz-enhanced photoacoustic (QEPAS) measurements of CO excited at the fundamental vibrational resonance of CO, the photoacoustic signal decreases with increasing humidity, reaches a pronounced minimum at ~0.19%V, and increases with humidity for higher water contents. This peculiar trend is explained by competing endothermal and exothermal pathways of the vibrational relaxation of CO in N2 and H2O. Near-resonant vibrational–vibrational transfer from CO to N2, whose vibrational frequency is 188 cm−1 higher than in CO, consumes thermal energy, yielding a kinetic cooling effect. In contrast, vibrational relaxation via H2O is fast and exothermal, and hence counteracts kinetic cooling, explaining the observed trend. A detailed kinetic model for collisional relaxation of CO in N2 and H2O is presented. Simulations using rate constants obtained from literature were performed and compared to humidity dependent QEPAS experiments at varying pressure. Agreement between the experiments and simulations confirmed the validity of the model. The kinetic model can be used to identify optimized experimental conditions for sensing CO and can be readily adapted to include further collision partners. Full article
(This article belongs to the Special Issue Quartz-Enhanced Photoacoustic and Photothermal Spectroscopy)
Show Figures

Figure 1

20 pages, 2366 KiB  
Article
Charge Transfer, Complexes Formation and Furan Fragmentation Induced by Collisions with Low-Energy Helium Cations
by Tomasz J. Wasowicz, Marta Łabuda and Boguslaw Pranszke
Int. J. Mol. Sci. 2019, 20(23), 6022; https://doi.org/10.3390/ijms20236022 - 29 Nov 2019
Cited by 13 | Viewed by 3893
Abstract
The present work focuses on unraveling the collisional processes leading to the fragmentation of the gas-phase furan molecules under the He+ and He2+ cations impact in the energy range 5–2000 eV. The presence of different mechanisms was identified by the analysis [...] Read more.
The present work focuses on unraveling the collisional processes leading to the fragmentation of the gas-phase furan molecules under the He+ and He2+ cations impact in the energy range 5–2000 eV. The presence of different mechanisms was identified by the analysis of the optical fragmentation spectra measured using the collision-induced emission spectroscopy (CIES) in conjunction with the ab initio calculations. The measurements of the fragmentation spectra of furan were performed at the different kinetic energies of both cations. In consequence, several excited products were identified by their luminescence. Among them, the emission of helium atoms excited to the 1s4d 1D2, 3D1,2,3 states was recorded. The structure of the furan molecule lacks an He atom. Therefore, observation of its emission lines is spectroscopic evidence of an impact reaction occurring via relocation of the electronic charge between interacting entities. Moreover, the recorded spectra revealed significant variations of relative band intensities of the products along with the change of the projectile charge and its velocity. In particular, at lower velocities of He+, the relative cross-sections of dissociation products have prominent resonance-like maxima. In order to elucidate the experimental results, the calculations have been performed by using a high level of quantum chemistry methods. The calculations showed that in both impact systems two collisional processes preceded fragmentation. The first one is an electron transfer from furan molecules to cations that leads to the neutralization and further excitation of the cations. The second mechanism starts from the formation of the He−C4H4O+/2+ temporary clusters before decomposition, and it is responsible for the appearance of the narrow resonances in the relative cross-section curves. Full article
(This article belongs to the Special Issue Radiation-Induced Damage to DNA)
Show Figures

Figure 1

34 pages, 7732 KiB  
Article
Top-Down Proteomics of Medicinal Cannabis
by Delphine Vincent, Steve Binos, Simone Rochfort and German Spangenberg
Proteomes 2019, 7(4), 33; https://doi.org/10.3390/proteomes7040033 - 24 Sep 2019
Cited by 9 | Viewed by 5957
Abstract
The revised legislation on medicinal cannabis has triggered a surge of research studies in this space. Yet, cannabis proteomics is lagging. In a previous study, we optimised the protein extraction of mature buds for bottom-up proteomics. In this follow-up study, we developed a [...] Read more.
The revised legislation on medicinal cannabis has triggered a surge of research studies in this space. Yet, cannabis proteomics is lagging. In a previous study, we optimised the protein extraction of mature buds for bottom-up proteomics. In this follow-up study, we developed a top-down mass spectrometry (MS) proteomics strategy to identify intact denatured protein from cannabis apical buds. After testing different source-induced dissociation (SID), collision-induced dissociation (CID), higher-energy collisional dissociation (HCD), and electron transfer dissociation (ETD) parameters on infused known protein standards, we devised three LC-MS/MS methods for top-down sequencing of cannabis proteins. Different MS/MS modes produced distinct spectra, albeit greatly overlapping between SID, CID, and HCD. The number of fragments increased with the energy applied; however, this did not necessarily translate into greater sequence coverage. Some precursors were more amenable to fragmentation than others. Sequence coverage decreased as the mass of the protein increased. Combining all MS/MS data maximised amino acid (AA) sequence coverage, achieving 73% for myoglobin. In this experiment, most cannabis proteins were smaller than 30 kD. A total of 46 cannabis proteins were identified with 136 proteoforms bearing different post-translational modifications (PTMs), including the excision of N-terminal M, the N-terminal acetylation, methylation, and acetylation of K resides, and phosphorylation. Most identified proteins are involved in photosynthesis, translation, and ATP production. Only one protein belongs to the phytocannabinoid biosynthesis, olivetolic acid cyclase. Full article
(This article belongs to the Special Issue Top-down Proteomics: In Memory of Dr. Alfred Yergey)
Show Figures

Graphical abstract

Back to TopTop