Very Low-Pressure CID Experiments: High Energy Transfer and Fragmentation Pattern at the Single Collision Regime
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Consideration of Non-Colliding Molecular Ions
Appendix B
Parameter | Values | Energy Conversion (eV) | Energy Transfer |
---|---|---|---|
Degree of spontaneous fragmentation | 0.03% | 3.74 | 131% |
0.10% | 4.44 | 110% | |
Residence time for spontaneous fragmentation | 6 μs | 3.91 | 115% |
24 μs | 4.34 | 128% | |
Residence time for CID fragmentation | 6 μs | 4.82 | 142% |
24 μs | 3.08 | 91% | |
Critical energy | 1.09 eV | 3.62 | 107% |
1.29 eV | 4.77 | 141% |
References
- McLuckey, S.A. Principles of Collisional Activation in Analytical Mass Spectrometry. J. Am. Soc. Mass Spectrom. 1992, 3, 599–614. [Google Scholar] [CrossRef] [PubMed]
- Cooks, R.G. Collision-Induced Dissociation of Polyatomic Ions. In Collision Spectroscopy; Cooks, R.G., Ed.; Springer: Boston, MA, USA, 1978; pp. 357–450. ISBN 978-1-4613-3955-7. [Google Scholar]
- Jennings, K.R. The Changing Impact of the Collision-Induced Decomposition of Ions on Mass Spectrometry. Int. J. Mass Spectrom. 2000, 200, 479–493. [Google Scholar] [CrossRef]
- Rubino, F.M. Center-of-Mass Iso-Energetic Collision-Induced Decomposition in Tandem Triple Quadrupole Mass Spectrometry. Molecules 2020, 25, 2250. [Google Scholar] [CrossRef] [PubMed]
- McLuckey, S.A. Collision Energy Effects in Tandem Mass Spectrometry as Revealed by a Proton-Bound Dimer Ion. Org. Mass Spectrom. 1984, 19, 545–550. [Google Scholar] [CrossRef]
- Bayat, P.; Lesage, D.; Cole, R.B. Low-Energy Collision-Induced Dissociation (Low-Energy CID), Collision-Induced Dissociation (CID), and Higher Energy Collision Dissociation (HCD) Mass Spectrometry for Structural Elucidation of Saccharides and Clarification of Their Dissolution Mechanism in DMAc/LiCl. J. Mass Spectrom. 2018, 53, 705–716. [Google Scholar] [CrossRef]
- Mörlein, S.; Schuster, C.; Paal, M.; Vogeser, M. Collision Energy-Breakdown Curves—An Additional Tool to Characterize MS/MS Methods. Clin. Mass Spectrom. 2020, 18, 48–53. [Google Scholar] [CrossRef]
- Rodgers, M.T.; Armentrout, P.B. Noncovalent Metal–Ligand Bond Energies as Studied by Threshold Collision-Induced Dissociation. Mass Spectrom. Rev. 2000, 19, 215–247. [Google Scholar] [CrossRef]
- Danquah, B.D.; Opuni, K.F.M.; Roewer, C.; Koy, C.; Glocker, M.O. Mass Spectrometric Analysis of Antibody—Epitope Peptide Complex Dissociation: Theoretical Concept and Practical Procedure of Binding Strength Characterization. Molecules 2020, 25, 4776. [Google Scholar] [CrossRef]
- Song, J.K.; Memboeuf, A.; Heeren, R.; Vekey, K.; van den Brink, O.F. Discrimination between Charge-Catalyzed and Chargeindependent Fragmentation Processes of Cationized Poly(n-Butyl Acrylate). Rapid Commun. Mass Spectrom. 2010, 24, 3214–3216. [Google Scholar] [CrossRef]
- Li, W.; Chen, W.; Niu, X.; Zhao, C.; Tu, P.; Li, J.; Liu, W.; Song, Y. Characterization of Metabolic Correlations of Ursodeoxycholic Acid with Other Bile Acid Species through In Vitro Sequential Metabolism and Isomer-Focused Identification. Molecules 2023, 28, 4801. [Google Scholar] [CrossRef]
- Pallecchi, M.; Braconi, L.; Menicatti, M.; Giachetti, S.; Dei, S.; Teodori, E.; Bartolucci, G. Simultaneous Degradation Study of Isomers in Human Plasma by HPLC-MS/MS and Application of LEDA Algorithm for Their Characterization. Int. J. Mol. Sci. 2022, 23, 13139. [Google Scholar] [CrossRef] [PubMed]
- Gawlig, C.; Rühl, M. Investigation of the Influence of Charge State and Collision Energy on Oligonucleotide Fragmentation by Tandem Mass Spectrometry. Molecules 2023, 28, 1169. [Google Scholar] [CrossRef] [PubMed]
- Zins, E.; Pepe, C.; Schröder, D. Energy-Dependent Dissociation of Benzylpyridinium Ions in an Ion-Trap Mass Spectrometer. J. MASS Spectrom. 2010, 45, 1253–1260. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, C.C.J.; Bowen, C.; Elbourne, M.; Cawley, A.; McLeod, M.D. Energy-Resolved Fragmentation Aiding the Structure Elucidation of Steroid Biomarkers. J. Am. Soc. Mass Spectrom. 2022, 33, 1276–1281. [Google Scholar] [CrossRef] [PubMed]
- Menachery, S.P.M.; Laprévote, O.; Nguyen, T.P.; Aravind, U.K.; Gopinathan, P.; Aravindakumar, C.T. Identification of Position Isomers by Energy-Resolved Mass Spectrometry. J. Mass Spectrom. 2015, 50, 944–950. [Google Scholar] [CrossRef] [PubMed]
- Armentrout, P.B.; Ervin, K.M.; Rodgers, M.T. Statistical Rate Theory and Kinetic Energy-Resolved Ion Chemistry: Theory and Applications. J. Phys. Chem. A 2008, 112, 10071–10085. [Google Scholar] [CrossRef] [PubMed]
- Révész, Á.; Rokob, T.A.; Jeanne Dit Fouque, D.; Hüse, D.; Háda, V.; Turiák, L.; Memboeuf, A.; Vékey, K.; Drahos, L. Optimal Collision Energies and Bioinformatics Tools for Efficient Bottom-up Sequence Validation of Monoclonal Antibodies. Anal. Chem. 2019, 91, 13128–13135. [Google Scholar] [CrossRef] [PubMed]
- Révész, Á.; Milley, M.G.; Nagy, K.; Szabó, D.; Kalló, G.; Csősz, É.; Vékey, K.; Drahos, L. Tailoring to Search Engines: Bottom-Up Proteomics with Collision Energies Optimized for Identification Confidence. J. Proteome Res. 2021, 20, 474–484. [Google Scholar] [CrossRef]
- Hinneburg, H.; Stavenhagen, K.; Schweiger-Hufnagel, U.; Pengelley, S.; Jabs, W.; Seeberger, P.; Silva, D.; Wuhrer, M.; Kolarich, D. The Art of Destruction: Optimizing Collision Energies in Quadrupole-Time of Flight (Q-TOF) Instruments for Glycopeptide-Based Glycoproteomics. J. Am. Soc. MASS Spectrom. 2016, 27, 507–519. [Google Scholar] [CrossRef]
- Guo, Y.; Chowdhury, T.; Seshadri, M.; Cupp-Sutton, K.; Wang, Q.; Yu, D.; Wu, S. Optimization of Higher-Energy Collisional Dissociation Fragmentation Energy for Intact Protein-Level Tandem Mass Tag Labeling. J. Proteome Res. 2023, 22, 1406–1418. [Google Scholar] [CrossRef]
- Ichou, F.; Lesage, D.; Machuron-Mandard, X.; Junot, C.; Cole, R.B.; Tabet, J.-C. Collision Cell Pressure Effect on CID Spectra Pattern Using Triple Quadrupole Instruments: A RRKM Modeling. J. Mass Spectrom. 2013, 48, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Collette, C.; De Pauw, E. Calibration of the Internal Energy Distribution of Ions Produced by Electrospray. Rapid Commun. Mass Spectrom. 1998, 12, 165–170. [Google Scholar] [CrossRef]
- Fenner, M.A.; McEwen, C.N. Survival Yield Comparison between ESI and SAII: Mechanistic Implications. Int. J. Mass Spectrom. 2015, 378, 107–112. [Google Scholar] [CrossRef]
- Memboeuf, A.; Jullien, L.; Lartia, R.; Brasme, B.; Gimbert, Y. Tandem Mass Spectrometric Analysis of a Mixture of Isobars Using the Survival Yield Technique. J. Am. Soc. Mass Spectrom. 2011, 22, 1744–1752. [Google Scholar] [CrossRef] [PubMed]
- Hill, D.W.; Baveghems, C.L.; Albaugh, D.R.; Kormos, T.M.; Lai, S.; Ng, H.K.; Grant, D.F. Correlation of Ecom50 Values between Mass Spectrometers: Effect of Collision Cell Radiofrequency Voltage on Calculated Survival Yield. Rapid Commun. Mass Spectrom. 2012, 26, 2303–2310. [Google Scholar] [CrossRef] [PubMed]
- Gabelica, V.; Pauw, E.D. Internal Energy and Fragmentation of Ions Produced in Electrospray Sources. Mass Spectrom. Rev. 2005, 24, 566–587. [Google Scholar] [CrossRef] [PubMed]
- Asakawa, D.; Saikusa, K. Pentafluorobenzylpyridinium: New Thermometer Ion for Characterizing the Ions Produced by Collisional Activation during Tandem Mass Spectrometry. Anal. Sci. 2023, 39, 2031–2039. [Google Scholar] [CrossRef] [PubMed]
- Drahos, L.; Vékey, K. MassKinetics: A Theoretical Model of Mass Spectra Incorporating Physical Processes, Reaction Kinetics and Mathematical Descriptions. J. Mass Spectrom. 2001, 36, 237–263. [Google Scholar] [CrossRef] [PubMed]
- McLuckey, S.A.; Goeringer, D.E. Slow Heating Methods in Mass Spectrometry. J. Mass Spectrom. 1997, 32, 461–474. [Google Scholar] [CrossRef]
- Belgacem, O.; Pittenauer, E.; Openshaw, M.E.; Hart, P.J.; Bowdler, A.; Allmaier, G. Axial Spatial Distribution Focusing: Improving MALDI-TOF/RTOF Mass Spectrometric Performance for High-Energy Collision-Induced Dissociation of Biomolecules. Rapid Commun. Mass Spectrom. 2016, 30, 343–351. [Google Scholar] [CrossRef]
- Yan, Y.; Ubukata, M.; Cody, R.B.; Holy, T.E.; Gross, M.L. High-Energy Collision-Induced Dissociation by MALDI TOF/TOF Causes Charge-Remote Fragmentation of Steroid Sulfates. J. Am. Soc. Mass Spectrom. 2014, 25, 1404–1411. [Google Scholar] [CrossRef] [PubMed]
- Frankfater, C.; Jiang, X.; Hsu, F.-F. Characterization of Long-Chain Fatty Acid as N-(4-Aminomethylphenyl) Pyridinium Derivative by MALDI LIFT-TOF/TOF Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2018, 29, 1688–1699. [Google Scholar] [CrossRef] [PubMed]
- Heeren, R.M.A.; Vékey, K. Novel Method to Determine Collisional Energy Transfer Efficiency by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Rapid Commun. Mass Spectrom. 1998, 12, 1175–1181. [Google Scholar] [CrossRef]
- Marzluff, E.M.; Campbell, S.; Rodgers, M.T.; Beauchamp, J.L. Collisional Activation of Large Molecules Is an Efficient Process. J. Am. Chem. Soc. 1994, 116, 6947–6948. [Google Scholar] [CrossRef]
- Rodgers, M.T.; Ervin, K.M.; Armentrout, P.B. Statistical Modeling of Collision-Induced Dissociation Thresholds. J. Chem. Phys. 1997, 106, 4499–4508. [Google Scholar] [CrossRef]
- Nystrom, J.A.; Bursey, M.M.; Hass, J.R. Conversion of Kinetic Energy to Internal Energy in the 2-Pentanone Molecular Ion at Threshold in Low-Energy Collisions with Helium Target Atoms. Int. J. Mass Spectrom. Ion Process. 1984, 55, 263–274. [Google Scholar] [CrossRef]
- Sztaray, J.; Memboeuf, A.; Drahos, L.; Vekey, K. Leucine Enkephalin—A Mass Spectrometry Standard. Mass Spectrom. Rev. 2011, 30, 298–320. [Google Scholar] [CrossRef]
- Marcus, R.A.; Rice, O.K. The Kinetics of the Recombination of Methyl Radicals and Iodine Atoms. J. Phys. Colloid Chem. 1951, 55, 894–908. [Google Scholar] [CrossRef]
- Rice, O.K.; Ramsperger, H.C. Theories of unimolecular gas reactions at low pressures. J. Am. Chem. Soc. 1927, 49, 1617–1629. [Google Scholar] [CrossRef]
- Kassel, L.S. Studies in Homogeneous Gas Reactions. II. Introduction of Quantum Theory. J. Phys. Chem. 1928, 32, 1065–1079. [Google Scholar] [CrossRef]
- Drahos, L.; Heeren, R.M.A.; Collette, C.; De Pauw, E.; Vékey, K. Thermal Energy Distribution Observed in Electrospray Source. J. Mass Spectrom. 1999, 34, 1373–1379. [Google Scholar] [CrossRef]
- Hoxha, A.; Collette, C.; De Pauw, E.; Leyh, B. Mechanism of Collisional Heating in Electrospray Mass Spectrometry: Ion Trajectory Calculation. J. Phys. Chem. A 2001, 105, 7326–7333. [Google Scholar] [CrossRef]
- Cooks, R.G.; Koskinen, J.T.; Thomas, P.D. The Kinetic Method of Making Thermochemical Determinations. J. Mass Spectrom. 1999, 34, 85–92. [Google Scholar] [CrossRef]
- Greisch, J.-F.; Gabelica, V.; Remacle, F.; De Pauw, E. Thermometer Ions for Matrix-Enhanced Laser Desorption/Ionization Internal Energy Calibration. Rapid Commun. Mass Spectrom. 2003, 17, 1847–1854. [Google Scholar] [CrossRef] [PubMed]
- Révész, Á.; Rokob, T.A.; Maász, G.; Márk, L.; Hevér, H.; Drahos, L.; Vékey, K. Fragmentation, Structure, and Energetics of Small Sodium Formate Clusters: Evidence for Strong Influence of Entropic Effects. Int. J. Mass Spectrom. 2013, 354–355, 292–302. [Google Scholar] [CrossRef]
- Révész, Á.; Hevér, H.; Steckel, A.; Schlosser, G.; Szabó, D.; Vékey, K.; Drahos, L. Collision Energies: Optimization Strategies for Bottom-up Proteomics. Mass Spectrom. Rev. 2023, 42, 1261–1299. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szabó, D.; Gömöry, Á.; Ludányi, K.; Vékey, K.; Drahos, L. Very Low-Pressure CID Experiments: High Energy Transfer and Fragmentation Pattern at the Single Collision Regime. Molecules 2024, 29, 211. https://doi.org/10.3390/molecules29010211
Szabó D, Gömöry Á, Ludányi K, Vékey K, Drahos L. Very Low-Pressure CID Experiments: High Energy Transfer and Fragmentation Pattern at the Single Collision Regime. Molecules. 2024; 29(1):211. https://doi.org/10.3390/molecules29010211
Chicago/Turabian StyleSzabó, Dániel, Ágnes Gömöry, Krisztina Ludányi, Károly Vékey, and László Drahos. 2024. "Very Low-Pressure CID Experiments: High Energy Transfer and Fragmentation Pattern at the Single Collision Regime" Molecules 29, no. 1: 211. https://doi.org/10.3390/molecules29010211
APA StyleSzabó, D., Gömöry, Á., Ludányi, K., Vékey, K., & Drahos, L. (2024). Very Low-Pressure CID Experiments: High Energy Transfer and Fragmentation Pattern at the Single Collision Regime. Molecules, 29(1), 211. https://doi.org/10.3390/molecules29010211