Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (511)

Search Parameters:
Keywords = collaborative construction projects

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 8824 KiB  
Article
Platform Approaches in the AEC Industry: Stakeholder Perspectives and Case Study
by Layla Mujahed, Gang Feng and Jianghua Wang
Buildings 2025, 15(15), 2684; https://doi.org/10.3390/buildings15152684 - 30 Jul 2025
Viewed by 119
Abstract
The architecture, engineering, and construction (AEC) industry faces challenges related to inefficiencies and fragmentation that highlight the need for advanced construction technologies and drive interest in innovative solutions such as the platform approach to design. This study assessed platform-based building design through (1) [...] Read more.
The architecture, engineering, and construction (AEC) industry faces challenges related to inefficiencies and fragmentation that highlight the need for advanced construction technologies and drive interest in innovative solutions such as the platform approach to design. This study assessed platform-based building design through (1) interviews with practitioners from China, Jordan, and the UK, which helped to define the platform approach in the AEC industry and the challenges involved, and (2) a residential building design simulation conducted to evaluate the potential of the platform approach. The simulated design’s materials costs, energy efficiency, and construction time were compared with those of the traditional building design. The results of the comparison corroborate the interview findings concerning practitioners’ perspectives on platform definition, benefits, challenges, and implementation. The findings also demonstrate the potential of the platform approach to enhance productivity and scalability through modularization, kit-of-parts configuration, and standardization. This research bridges the gap between theory and practice by supporting shareholder perspectives on building design and construction with the results of a simulated platform approach to a real-world design project. This research addresses the urgent need to better understand and test the platform approach to achieve material, energy, and construction time savings through collaborative and practice-informed design. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

21 pages, 741 KiB  
Article
Partnering Contracts and Conflict Levels in Norwegian Construction Projects
by Omar K. Sabri and Haakon Nygaard Kristiansen
Buildings 2025, 15(15), 2676; https://doi.org/10.3390/buildings15152676 - 29 Jul 2025
Viewed by 130
Abstract
The Norwegian construction sector has long struggled with conflict, particularly in large-scale and complex projects, where adversarial practices, rigid procurement systems, and insufficient early collaboration are common. This study explores how partnering contracts, which are collaborative delivery models designed to align stakeholder interests, [...] Read more.
The Norwegian construction sector has long struggled with conflict, particularly in large-scale and complex projects, where adversarial practices, rigid procurement systems, and insufficient early collaboration are common. This study explores how partnering contracts, which are collaborative delivery models designed to align stakeholder interests, affect conflict dynamics in real-world settings. Employing a mixed-methods approach, it combines semi-structured interviews with 21 experienced Norwegian construction professionals and a structured survey of 33 industry experts. The findings reveal that partnering can foster trust, improve communication, and reduce adversarial behavior through mechanisms such as early contractor involvement, joint goal setting, and open dialogue. However, participants also identified critical risks: superficial collaboration rituals, ambiguous roles, and unresolved structural inequalities that can exacerbate tensions. Importantly, the study emphasizes that partnering success depends less on the contract itself and more on cultural alignment, stakeholder competence, and long-term relational commitment. These insights contribute to a more nuanced understanding of how collaborative contracting influences conflict mitigation in the Norwegian construction sector. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

20 pages, 4277 KiB  
Article
BIM and HBIM: Comparative Analysis of Distinct Modelling Approaches for New and Heritage Buildings
by Alcínia Zita Sampaio, Augusto M. Gomes, João Tomé and António M. Pinto
Heritage 2025, 8(8), 299; https://doi.org/10.3390/heritage8080299 - 28 Jul 2025
Viewed by 174
Abstract
The Building Information Modelling (BIM) methodology has been applied in distinct sectors of the construction industry with a growing demonstration of benefits, supporting the elaboration of integrated and collaborative projects. The main foundation of the methodology is the generation of a three-dimensional (3D) [...] Read more.
The Building Information Modelling (BIM) methodology has been applied in distinct sectors of the construction industry with a growing demonstration of benefits, supporting the elaboration of integrated and collaborative projects. The main foundation of the methodology is the generation of a three-dimensional (3D) digital representation, the BIM model, concerning the different disciplines that make up a complete project. The BIM model includes a database referring to all the information regarding the geometric and physical aspects of the project. The procedure related to the generation of BIM models presents a significant difference depending on whether the project refers to new or old buildings. Current BIM systems contain libraries with various types of parametric objects that are effortlessly adaptable to new constructions. However, the generation of models of old buildings, supported by the definition of detailed new parametric objects, is required. The present study explores the distinct modelling procedures applied in the generation of specific parametric objects for new and old constructions, with the objective of evaluating the comparative complexity that the designer faces in modelling specific components. For a correct representation of new buildings in the design phase or for the reproduction of the accurate architectural configuration of heritage buildings, the modelling process presents significant differences identified in the study. Full article
Show Figures

Figure 1

16 pages, 1482 KiB  
Article
Assessment of Sustainable Building Design with Green Star Rating Using BIM
by Mazharuddin Syed Ahmed and Rehan Masood
Energies 2025, 18(15), 3994; https://doi.org/10.3390/en18153994 - 27 Jul 2025
Viewed by 342
Abstract
Globally, construction is among the leading sectors causing carbon emissions. Sustainable practices have become the focus, which aligns with the nation’s commitments to the Paris Agreement by targeting a 30% reduction in emissions from the 2005 levels by 2030. However, evaluation for sustainability [...] Read more.
Globally, construction is among the leading sectors causing carbon emissions. Sustainable practices have become the focus, which aligns with the nation’s commitments to the Paris Agreement by targeting a 30% reduction in emissions from the 2005 levels by 2030. However, evaluation for sustainability is critical, and the Green Star certification provides assurance. Building information modelling has emerged as a transformative technology, integrating environmental sustainability into building design and construction. This study explores the use of BIM to enhance green building outcomes, focusing on optimising stakeholder engagement, energy efficiency, waste control, and environmentally sustainable design. This study employed a case study of an educational building, illustrating how BIM frameworks support Green Star certifications by streamlining design analysis, enhancing project value, and improving compliance with sustainability metrics. Findings highlight BIM’s role in advancing low-carbon, energy-efficient building designs while fostering collaboration across disciplines. This research investigates the foundational approach required to establish a framework for implementing the Green Star certification in non-residential, environmentally sustainable designs. Further, this study underscores the importance of integrating BIM in achieving Green Star benchmarks and provides a roadmap for leveraging digital modelling to meet global sustainability goals. Recommendations include expanding BIM capabilities to support broader environmental assessments and operational efficiencies. Full article
Show Figures

Figure 1

18 pages, 4648 KiB  
Article
Wood- and Steel-Based Offsite Construction Solutions for Sustainable Building Renovation: Assessing the European and Italian Contexts
by Graziano Salvalai, Francesca Gadusso and Miriam Benedetti
Sustainability 2025, 17(15), 6799; https://doi.org/10.3390/su17156799 - 26 Jul 2025
Viewed by 417
Abstract
Offsite construction (OSC) offers a promising alternative for accelerating refurbishment projects across Italy and Europe. However, its adoption remains limited due to technical, regulatory, and cultural barriers. This study, conducted as part of the OFFICIO project, maps the current European OSC landscape, with [...] Read more.
Offsite construction (OSC) offers a promising alternative for accelerating refurbishment projects across Italy and Europe. However, its adoption remains limited due to technical, regulatory, and cultural barriers. This study, conducted as part of the OFFICIO project, maps the current European OSC landscape, with a focus on wood and light-steel technologies for sustainable building refurbishment. Combining a literature review, analysis of funded projects, and market data for 541 OSC products, the study develops tailored KPIs to assess these products’ technical maturity, prefabrication level, and environmental integration. The results reveal that wood-based OSC, although less widespread, is more mature and centered on the use of multi-layer panels, while steel-based systems, though more prevalent, remain largely tied to semi-offsite construction, indicating untapped development potential. Research efforts, especially concentrated in Mediterranean regions, focus on technological integration of renewable energy systems. A significant literature gap was identified in information concerning panel-to-wall connection, critical for renovation, limiting OSC’s adaptability to regeneration of existing buildings. The findings highlight the need for cross-sector collaboration, legislative clarity, and better alignment of public procurement standards with OSC characteristics. Addressing these issues is essential to bridge the gap between research prototypes and industrial adoption and accelerate the sustainable transformation of Europe’s construction sector to help meet climate neutrality targets. Full article
Show Figures

Figure 1

42 pages, 2167 KiB  
Systematic Review
Towards Sustainable Construction: Systematic Review of Lean and Circular Economy Integration
by Abderrazzak El Hafiane, Abdelali En-nadi and Mohamed Ramadany
Sustainability 2025, 17(15), 6735; https://doi.org/10.3390/su17156735 - 24 Jul 2025
Viewed by 361
Abstract
The construction sector significantly contributes to global environmental degradation through intensive resource extraction, high energy consumption, and substantial waste generation. Addressing this unsustainable trajectory requires integrated approaches that simultaneously improve operational efficiency and material circularity. Lean Construction (LC) and Circular Economy (CE) offer [...] Read more.
The construction sector significantly contributes to global environmental degradation through intensive resource extraction, high energy consumption, and substantial waste generation. Addressing this unsustainable trajectory requires integrated approaches that simultaneously improve operational efficiency and material circularity. Lean Construction (LC) and Circular Economy (CE) offer complementary frameworks for enhancing process performance and reducing environmental impacts. However, their combined implementation remains underdeveloped and fragmented. This study conducts a systematic literature review (SLR) of 18 peer-reviewed articles published between 2010 and 2025, selected using PRISMA 2020 guidelines and sourced from Scopus and Web of Science databases. A mixed-method approach combines bibliometric mapping and qualitative content analysis to investigate how LC and CE are jointly operationalized in construction contexts. The findings reveal that LC improves cost, time, and workflow reliability, while CE enables reuse, modularity, and lifecycle extension. Integration is further supported by digital tools—such as Building Information Modelling (BIM), Design for Manufacture and Assembly (DfMA), and digital twins—which enhance traceability and flow optimization. Nonetheless, persistent barriers—including supply chain fragmentation, lack of standards, and regulatory gaps—continue to constrain widespread adoption. This review identifies six strategic enablers for LC-CE integration: crossdisciplinary competencies, collaborative governance, interoperable digital systems, standardized indicators, incentive-based regulation, and pilot demonstrator projects. By consolidating fragmented evidence, the study provides a structured research agenda and practical insights to guide the transition toward more circular, efficient, and sustainable construction practices. Full article
Show Figures

Figure 1

26 pages, 312 KiB  
Article
REN+HOMES Positive Carbon Building Methodology in Co-Design with Residents
by Dorin Beu, Alessio Pacchiana, Elena Rastei, Horaţiu Albu and Theodor Contolencu
Architecture 2025, 5(3), 51; https://doi.org/10.3390/architecture5030051 - 23 Jul 2025
Viewed by 196
Abstract
This article demonstrates how positioning residents as active co-designers fundamentally transforms both the process and outcomes of carbon-positive building development. Through structured collaborative workshops, shared decision-making protocols, and continuous partnership throughout the building lifecycle, the REN+HOMES Positive Carbon Building methodology challenges the conventional [...] Read more.
This article demonstrates how positioning residents as active co-designers fundamentally transforms both the process and outcomes of carbon-positive building development. Through structured collaborative workshops, shared decision-making protocols, and continuous partnership throughout the building lifecycle, the REN+HOMES Positive Carbon Building methodology challenges the conventional expert-driven approach to sustainable construction. Developed and validated through the H2020 REN+HOMES project, this resident-centered approach achieved remarkable technical performance—65.9% reduction in final energy demand—while simultaneously enhancing community ownership and long-term sustainability practices. By integrating participatory design with Zero Emissions Building (ZEB) criteria, renewable energy systems, and national carbon offset programs, the methodology proves that resident collaboration is not merely beneficial but essential for creating buildings that truly serve both environmental and human needs. This research establishes a new paradigm where technical excellence emerges from authentic partnership between residents and sustainability experts, offering a replicable framework for community-driven environmental regeneration. Full article
18 pages, 7903 KiB  
Article
Study on the Mechanical Response of FSP-IV Steel Sheet Pile Cofferdam and the Collaborative Mechanism of Sediment Control Technology in the Nenjiang Water Intake Project
by Ziguang Zhang, Liang Wu, Rui Luo, Lin Wei and Feifei Chen
Buildings 2025, 15(15), 2610; https://doi.org/10.3390/buildings15152610 - 23 Jul 2025
Viewed by 261
Abstract
In response to the dual challenges of the mechanical behavior of steel sheet pile cofferdam and sediment control in urban water intake projects, a multi-method integrated study was conducted based on the Nenjiang Project. The results show that the peak stress of FSP-IV [...] Read more.
In response to the dual challenges of the mechanical behavior of steel sheet pile cofferdam and sediment control in urban water intake projects, a multi-method integrated study was conducted based on the Nenjiang Project. The results show that the peak stress of FSP-IV steel sheet piles (64.3 MPa) is located at a depth of 5.5–8.0 m in the center of the foundation pit, and that the maximum horizontal displacement (6.96 mm) occurs at the middle of the side span of the F pile. The internal support stress increases with depth, reaching 87.2 MPa at the bottom, with significant stress concentration at the connection of the surrounding girder. The lack of support or excessively large spacing leads to insufficient stiffness at the side span (5.3 mm displacement at the F point) and right-angle area (B/H point). The simultaneously developed sediment control integrated system, through double-line water intake, layered placement of the geotextile filter, and the collaborative construction of the water intake hole–filter layer system, achieves a 75% reduction in sediment content and a decrease in standard deviation. This approach ensures stable water quality and continuous water supply, ultimately forming a systematic solution for water intake in high-sediment rivers. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

25 pages, 1507 KiB  
Article
DARN: Distributed Adaptive Regularized Optimization with Consensus for Non-Convex Non-Smooth Composite Problems
by Cunlin Li and Yinpu Ma
Symmetry 2025, 17(7), 1159; https://doi.org/10.3390/sym17071159 - 20 Jul 2025
Viewed by 206
Abstract
This paper proposes a Distributed Adaptive Regularization Algorithm (DARN) for solving composite non-convex and non-smooth optimization problems in multi-agent systems. The algorithm employs a three-phase iterative framework to achieve efficient collaborative optimization: (1) a local regularized optimization step, which utilizes proximal mappings to [...] Read more.
This paper proposes a Distributed Adaptive Regularization Algorithm (DARN) for solving composite non-convex and non-smooth optimization problems in multi-agent systems. The algorithm employs a three-phase iterative framework to achieve efficient collaborative optimization: (1) a local regularized optimization step, which utilizes proximal mappings to enforce strong convexity of weakly convex objectives and ensure subproblem well-posedness; (2) a consensus update based on doubly stochastic matrices, guaranteeing asymptotic convergence of agent states to a global consensus point; and (3) an innovative adaptive regularization mechanism that dynamically adjusts regularization strength using local function value variations to balance stability and convergence speed. Theoretical analysis demonstrates that the algorithm maintains strict monotonic descent under non-convex and non-smooth conditions by constructing a mixed time-scale Lyapunov function, achieving a sublinear convergence rate. Notably, we prove that the projection-based update rule for regularization parameters preserves lower-bound constraints, while spectral decay properties of consensus errors and perturbations from local updates are globally governed by the Lyapunov function. Numerical experiments validate the algorithm’s superiority in sparse principal component analysis and robust matrix completion tasks, showing a 6.6% improvement in convergence speed and a 51.7% reduction in consensus error compared to fixed-regularization methods. This work provides theoretical guarantees and an efficient framework for distributed non-convex optimization in heterogeneous networks. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

28 pages, 2422 KiB  
Article
Reverse Logistics Network Optimization for Retired BIPV Panels in Smart City Energy Systems
by Cimeng Zhou and Shilong Li
Buildings 2025, 15(14), 2549; https://doi.org/10.3390/buildings15142549 - 19 Jul 2025
Viewed by 292
Abstract
Through the energy conversion of building skins, building-integrated photovoltaic (BIPV) technology, the core carrier of the smart city energy system, encourages the conversion of buildings into energy-generating units. However, the decommissioning of the module faces the challenge of physical dismantling and financial environmental [...] Read more.
Through the energy conversion of building skins, building-integrated photovoltaic (BIPV) technology, the core carrier of the smart city energy system, encourages the conversion of buildings into energy-generating units. However, the decommissioning of the module faces the challenge of physical dismantling and financial environmental damage because of the close coupling with the building itself. As the first tranche of BIPV projects will enter the end of their life cycle, it is urgent to establish a multi-dimensional collaborative recycling mechanism that meets the characteristics of building pv systems. Based on the theory of reverse logistics network, the research focuses on optimizing the reverse logistics network during the decommissioning stage of BIPV modules, and proposes a dual-objective optimization model that considers both cost and carbon emissions for BIPV. Meanwhile, the multi-level recycling network which covers “building points-regional transfer stations-specialized distribution centers” is designed in the research, the Pareto solution set is solved by the improved NSGA-II algorithm, a “1 + 1” du-al-core construction model of distribution center and transfer station is developed, so as to minimize the total cost and life cycle carbon footprint of the logistics network. At the same time, the research also reveals the driving effect of government reward and punishment policies on the collaborative behavior of enterprise recycling, and provides methodological support for the construction of a closed-loop supply chain of “PV-building-environment” symbiosis. The study concludes that in the process of constructing smart city energy system, the systematic control of resource circulation and environmental risks through the optimization of reverse logistics network can provide technical support for the sustainable development of smart city. Full article
(This article belongs to the Special Issue Research on Smart Healthy Cities and Real Estate)
Show Figures

Figure 1

8 pages, 706 KiB  
Proceeding Paper
Developing a Nature-Inspired Sustainability Assessment Tool: The Role of Materials Efficiency
by Olusegun Oguntona
Mater. Proc. 2025, 22(1), 3; https://doi.org/10.3390/materproc2025022003 - 17 Jul 2025
Viewed by 158
Abstract
The global push for sustainable development has intensified the need for innovative tools to assess and enhance sustainability in the built environment. This study explores the role of materials efficiency (ME) within a nature-inspired sustainability assessment framework, focusing on green building projects in [...] Read more.
The global push for sustainable development has intensified the need for innovative tools to assess and enhance sustainability in the built environment. This study explores the role of materials efficiency (ME) within a nature-inspired sustainability assessment framework, focusing on green building projects in South Africa. Using a nature-based (biomimicry) approach, this study identifies and prioritises key ME criteria such as eco-friendly materials, local sourcing, and responsible processing. The methodology employed the Analytic Hierarchy Process (AHP), with input from 38 carefully sampled construction experts, to rank ME criteria through pairwise comparisons. The findings revealed that eco-friendly materials (29.5%) and locally sourced materials (25.1%) were the highest-weighted factors, with strong expert consensus (CR = 0.01). The study highlights how nature-inspired principles like closed-loop systems and minimal waste can guide sustainable construction aligned with global goals such as the UN Sustainable Development Goals. The conclusion advocates for integrating ME criteria into green certification systems, industry collaboration, and further research to scale the framework globally. This study bridges biomimicry theory with practical sustainability assessment, offering actionable insights for the built environment. Full article
Show Figures

Figure 1

22 pages, 4581 KiB  
Article
Strategies to Mitigate Risks in Building Information Modelling Implementation: A Techno-Organizational Perspective
by Ibrahim Dogonyaro and Amira Elnokaly
Intell. Infrastruct. Constr. 2025, 1(2), 5; https://doi.org/10.3390/iic1020005 - 17 Jul 2025
Viewed by 173
Abstract
The construction industry is moving towards the era of industry 4.0; 5.0 with Building Information Modelling (BIM) as the tool gaining significant traction owing to its inherent advantages such as enhancing construction design, process and data management. However, the integration of BIM presents [...] Read more.
The construction industry is moving towards the era of industry 4.0; 5.0 with Building Information Modelling (BIM) as the tool gaining significant traction owing to its inherent advantages such as enhancing construction design, process and data management. However, the integration of BIM presents risks that are often overlooked in project implementation. This study aims to develop a novel amalgamated dimensional factor (Techno-organizational Aspect) that is set out to identify and align appropriate management strategies to these risks. Firstly, it encompasses an in-depth analysis of BIM and risk management, through an integrative review approach. The study utilizes an exploratory-based review centered around journal articles and conference papers sourced from Scopus and Google Scholar. Then processed using NVivo 12 Pro software to categorise risks through thematic analysis, resulting in a comprehensive Risk Breakdown Structure (RBS). Then qualitative content analysis was employed to identify and develop management strategies. Further data collection via online survey was crucial for closing the research gap identified. The analysis by mixed method research enabled to determine the risk severity via the quantitative approach using SPSS (version 29), while the qualitative approach linked management strategies to the risk factors. The findings accentuate the crucial linkages of key strategies such as version control system that controls BIM data repository transactions to mitigate challenges controlling transactions in multi-model collaborative environment. The study extends into underexplored amalgamated domains (techno-organisational spectrum). Therefore, a significant contribution to bridging the existing research gap in understanding the intricate relationship between BIM implementation risks and effective management strategies. Full article
Show Figures

Figure 1

36 pages, 3524 KiB  
Review
Building Information Modeling and Big Data in Sustainable Building Management: Research Developments and Thematic Trends via Data Visualization Analysis
by Zhen Liu, Langyue Deng, Fenghong Wang, Wei Xiong, Tzuhui Wu, Peter Demian and Mohamed Osmani
Systems 2025, 13(7), 595; https://doi.org/10.3390/systems13070595 - 16 Jul 2025
Viewed by 533
Abstract
At present, the construction industry has not yet fully optimized the integration of the potential of big data. Past studies signaled the potential benefits of integrating building information management (BIM) and big data in the field of sustainable building management (SBM). However, these [...] Read more.
At present, the construction industry has not yet fully optimized the integration of the potential of big data. Past studies signaled the potential benefits of integrating building information management (BIM) and big data in the field of sustainable building management (SBM). However, these studies have a monotonous perspective in identifying the development of BIM and big data applications in SBM. Therefore, this paper aims to explore BIM and big data from various perspectives in the field of SBM to identify the aspects where additional efforts are required and provide insights into future directions, and it adopts a mixed method of quantitative and qualitative analysis, including bibliometric analysis and knowledge mapping, providing a macro-overview of the research status and development trends of BIM and big data integration for SBM from multiple bibliometric perspectives. The results indicate the following: (1) the current studies on BIM and big data integration (BBi)-aided SBM mainly focused on data integration and interoperability for collaboration, development of information technologies and emerging technologies, data analysis and presentation, and green building and sustainability assessment; (2) the longitudinal analysis of three time-slice phases (2010–2014, 2015–2018, and 2019–2024) over the past 15 years indicates that the studies on BBi-aided SBM have been expanded from the application of BIM in construction projects to the integration and interoperability of BIM with information technology, the integration of virtual models with physical buildings, and sustainable management throughout the building life cycle stages; and (3) key research gaps and emerging directions include data integration and model interoperability across the building life cycle, model transferability in the application of technology, and a comprehensive sustainability assessment framework based on the whole building life cycle stages. Full article
(This article belongs to the Special Issue Advancing Project Management Through Digital Transformation)
Show Figures

Figure 1

24 pages, 4583 KiB  
Article
Enhancing Forensic Analysis of Construction Project Delays Through Digital Interventions
by Serife Ece Boyacioglu, David Greenwood, Kay Rogage and Andrew Parry
Buildings 2025, 15(14), 2391; https://doi.org/10.3390/buildings15142391 - 8 Jul 2025
Viewed by 458
Abstract
Project delays remain a persistent challenge in the construction industry, having significant financial implications and contributing to disputes between project participants. Forensic Delay Analysis (FDA) has emerged as a specialised function that identifies the root causes of such delays, quantifies their duration, and [...] Read more.
Project delays remain a persistent challenge in the construction industry, having significant financial implications and contributing to disputes between project participants. Forensic Delay Analysis (FDA) has emerged as a specialised function that identifies the root causes of such delays, quantifies their duration, and assigns responsibility to the appropriate parties. While FDA is a widely practised process, it has yet to fully exploit the potential of emerging technologies. This study explores the integration of both existing and emerging technologies for enhancing FDA processes. A Design Science Research (DSR) approach is adopted, with data collection methods that involve the use of the literature, archival materials, case studies and survey methods. The research demonstrates how the use of technologies, such as database management systems (DBMSs), building information modelling (BIM), artificial intelligence (AI) and games engines, can improve the analytical efficiency, data management, and presentation of findings through a case study. The study showcases the transformative potential of these interventions in streamlining FDA processes, ultimately leading to more accurate and efficient resolution of construction disputes. The proposed process is exemplified by the development of a prototype: the Forensic Information Modelling Visualiser (FIMViz). The FIMViz is a practical tool that has received positive evaluation by FDA experts. The prototype and the enhanced FDA process model that underpins it demonstrate significant advancement in FDA practices, promoting improved decision-making and collaboration between project participants. Further development is needed, but the results could ultimately streamline the FDA process and minimise the uncertainties in FDA outcomes, thus reducing the incidence of costly disputes to the wider economic benefit of the industry generally. Full article
Show Figures

Figure 1

28 pages, 4054 KiB  
Article
A Core Ontology for Whole Life Costing in Construction Projects
by Adam Yousfi, Érik Andrew Poirier and Daniel Forgues
Buildings 2025, 15(14), 2381; https://doi.org/10.3390/buildings15142381 - 8 Jul 2025
Viewed by 369
Abstract
Construction projects still face persistent barriers to adopting whole life costing (WLC), such as fragmented data, a lack of standardization, and inadequate tools. This study addresses these limitations by proposing a core ontology for WLC, developed using an ontology design science research methodology. [...] Read more.
Construction projects still face persistent barriers to adopting whole life costing (WLC), such as fragmented data, a lack of standardization, and inadequate tools. This study addresses these limitations by proposing a core ontology for WLC, developed using an ontology design science research methodology. The ontology formalizes WLC knowledge based on ISO 15686-5 and incorporates professional insights from surveys and expert focus groups. Implemented in web ontology language (OWL), it models cost categories, temporal aspects, and discounting logic in a machine-interpretable format. The ontology’s interoperability and extensibility are validated through its integration with the building topology ontology (BOT). Results show that the ontology effectively supports cost breakdown, time-based projections, and calculation of discounted values, offering a reusable structure for different project contexts. Practical validation was conducted using SQWRL queries and Python scripts for cost computation. The solution enables structured data integration and can support decision-making throughout the building life cycle. This work lays the foundation for future semantic web applications such as knowledge graphs, bridging the current technological gap and facilitating more informed and collaborative use of WLC in construction. Full article
(This article belongs to the Special Issue Emerging Technologies and Workflows for BIM and Digital Construction)
Show Figures

Figure 1

Back to TopTop