Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,141)

Search Parameters:
Keywords = coiled-coils

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 6795 KiB  
Article
Thermal Analysis of Energy Efficiency Performance and Indoor Comfort in a LEED-Certified Campus Building in the United Arab Emirates
by Khushbu Mankani, Mutasim Nour and Hassam Nasarullah Chaudhry
Energies 2025, 18(15), 4155; https://doi.org/10.3390/en18154155 - 5 Aug 2025
Abstract
Enhancing the real-world performance of sustainably designed and certified green buildings remains a significant challenge, particularly in hot climates where efforts to improve thermal comfort often conflict with energy efficiency goals. In the United Arab Emirates (UAE), even newly constructed facilities with green [...] Read more.
Enhancing the real-world performance of sustainably designed and certified green buildings remains a significant challenge, particularly in hot climates where efforts to improve thermal comfort often conflict with energy efficiency goals. In the United Arab Emirates (UAE), even newly constructed facilities with green building certifications present opportunities for retrofitting and performance optimization. This study investigates the energy and thermal comfort performance of a LEED Gold-certified, mixed-use university campus in Dubai through a calibrated digital twin developed using IES thermal modelling software. The analysis evaluated existing sustainable design strategies alongside three retrofit energy conservation measures (ECMs): (1) improved building envelope U-values, (2) installation of additional daylight sensors, and (3) optimization of fan coil unit efficiency. Simulation results demonstrated that the three ECMs collectively achieved a total reduction of 15% in annual energy consumption. Thermal comfort was assessed using operative temperature distributions, Predicted Mean Vote (PMV), and Predicted Percentage of Dissatisfaction (PPD) metrics. While fan coil optimization yielded the highest energy savings, it led to less favorable comfort outcomes. In contrast, enhancing envelope U-values maintained indoor conditions consistently within ASHRAE-recommended comfort zones. To further support energy reduction and progress toward Net Zero targets, the study also evaluated the integration of a 228.87 kW rooftop solar photovoltaic (PV) system, which offset 8.09% of the campus’s annual energy demand. By applying data-driven thermal modelling to assess retrofit impacts on both energy performance and occupant comfort in a certified green building, this study addresses a critical gap in the literature and offers a replicable framework for advancing building performance in hot climate regions. Full article
(This article belongs to the Special Issue Energy Efficiency and Thermal Performance in Buildings)
Show Figures

Graphical abstract

19 pages, 9745 KiB  
Article
Reconfigurable Wireless Power Transfer System with High Misalignment Tolerance Using Coaxial Antipodal Dual DD Coils for AUV Charging Applications
by Yonglu Liu, Mingxing Xiong, Qingxuan Zhang, Fengshuo Yang, Yu Lan, Jinhai Jiang and Kai Song
Energies 2025, 18(15), 4148; https://doi.org/10.3390/en18154148 - 5 Aug 2025
Abstract
Wireless power transfer (WPT) systems for autonomous underwater vehicles (AUVs) are gaining traction in marine exploration due to their operational convenience, safety, and flexibility. Nevertheless, disturbances from ocean currents and marine organisms frequently induce rotational, axial, and air-gap misalignments, significantly degrading the output [...] Read more.
Wireless power transfer (WPT) systems for autonomous underwater vehicles (AUVs) are gaining traction in marine exploration due to their operational convenience, safety, and flexibility. Nevertheless, disturbances from ocean currents and marine organisms frequently induce rotational, axial, and air-gap misalignments, significantly degrading the output power stability. To mitigate this issue, this paper proposes a novel reconfigurable WPT system utilizing coaxial antipodal dual DD (CAD-DD) coils, which strategically switches between a detuned S-LCC topology and a detuned S-S topology at a fixed operating frequency. By characterizing the output power versus the coupling coefficient (P-k) profiles under both reconfiguration modes, a parameter design methodology is developed to ensure stable power delivery across wide coupling variations. Experimental validation using a 1.2 kW AUV charging prototype demonstrates remarkable tolerance to misalignment: ±30° rotation, ±120 mm axial displacement, and 20–50 mm air-gap variation. Within this range, the output power fluctuation is confined to within 5%, while the system efficiency exceeds 85% consistently, peaking at 91.56%. Full article
(This article belongs to the Special Issue Advances in Wireless Power Transfer Technologies and Applications)
Show Figures

Figure 1

24 pages, 4314 KiB  
Article
Hyperparameter Optimization of Neural Networks Using Grid Search for Predicting HVAC Heating Coil Performance
by Yosef Jaber, Pasidu Dharmasena, Adam Nassif and Nabil Nassif
Buildings 2025, 15(15), 2753; https://doi.org/10.3390/buildings15152753 - 5 Aug 2025
Abstract
Heating, Ventilation, and Air Conditioning (HVAC) systems represent a significant portion of global energy use, yet they are often operated without optimized control strategies. This study explores the application of deep learning to accurately model heating system behavior as a foundation for predictive [...] Read more.
Heating, Ventilation, and Air Conditioning (HVAC) systems represent a significant portion of global energy use, yet they are often operated without optimized control strategies. This study explores the application of deep learning to accurately model heating system behavior as a foundation for predictive control and energy-efficient HVAC operation. Experimental data were collected under controlled laboratory conditions, and 288 unique hyperparameter configurations were developed. Each configuration was tested three times, resulting in a total of 864 artificial neural network models. Five key hyperparameters were varied systematically: number of epochs, network size, network shape, learning rate, and optimizer. The best-performing model achieved a mean squared error of 0.469 and featured 17 hidden layers, a left-triangle architecture trained for 500 epochs with a learning rate of 5 × 10−5, and Adam as the optimizer. The results highlighted the importance of hyperparameter tuning in improving model accuracy. Future research should extend the analysis to incorporate cooling operation and real-world building operation data for broader applicability. Full article
Show Figures

Figure 1

18 pages, 7432 KiB  
Article
Design and Optimization of a Pneumatic Microvalve with Symmetric Magnetic Yoke and Permanent Magnet Assistance
by Zeqin Peng, Zongbo Zheng, Shaochen Yang, Xiaotao Zhao, Xingxiao Yu and Dong Han
Actuators 2025, 14(8), 388; https://doi.org/10.3390/act14080388 - 4 Aug 2025
Abstract
Electromagnetic pneumatic microvalves, widely used in knitting machines, typically operate based on a spring-return mechanism. When the coil is energized, the electromagnetic force overcomes the spring force to attract the armature, opening the valve. Upon de-energization, the armature returns to its original position [...] Read more.
Electromagnetic pneumatic microvalves, widely used in knitting machines, typically operate based on a spring-return mechanism. When the coil is energized, the electromagnetic force overcomes the spring force to attract the armature, opening the valve. Upon de-energization, the armature returns to its original position under the restoring force of the spring, closing the valve. However, most existing electromagnetic microvalves adopt a radially asymmetric magnetic yoke design, which generates additional radial forces during operation, leading to armature misalignment or even sticking. Additionally, the inductance effect of the coil causes a significant delay in the armature release response, making it difficult to meet the knitting machine’s requirements for rapid response and high reliability. To address these issues, this paper proposes an improved electromagnetic microvalve design. First, the magnetic yoke structure is modified to be radially symmetric, eliminating unnecessary radial forces and preventing armature sticking during operation. Second, a permanent magnet assist mechanism is introduced at the armature release end to enhance release speed and reduce delays caused by the inductance effect. The effectiveness of the proposed design is validated through electromagnetic numerical simulations, and a multi-objective genetic algorithm is further employed to optimize the geometric dimensions of the electromagnet. The optimization results indicate that, while maintaining the fundamental power supply principle of conventional designs, the new microvalve structure achieves a pull-in time comparable to traditional designs during engagement but significantly reduces the release response time by approximately 80.2%, effectively preventing armature sticking due to radial forces. The findings of this study provide a feasible and efficient technical solution for the design of electromagnetic microvalves in textile machinery applications. Full article
(This article belongs to the Section Miniaturized and Micro Actuators)
Show Figures

Figure 1

20 pages, 6427 KiB  
Article
Comparative Study of Distributed Compensation Effects on E-Field Emissions in Conventional and Phase-Inverted Wireless Power Transfer Coils
by Zeeshan Shafiq, Siqi Li, Sizhao Lu, Jinglin Xia, Tong Li, Zhe Liu and Zhe Li
Actuators 2025, 14(8), 384; https://doi.org/10.3390/act14080384 - 4 Aug 2025
Abstract
This paper presents a comparative analysis of electric field (E-field) mitigation in inductive power transfer (IPT) systems. It focuses on how distributed capacitor placement interacts with coil topology to influence E-field emissions. The study compares traditional sequential-winding coils and the alternating voltage phase [...] Read more.
This paper presents a comparative analysis of electric field (E-field) mitigation in inductive power transfer (IPT) systems. It focuses on how distributed capacitor placement interacts with coil topology to influence E-field emissions. The study compares traditional sequential-winding coils and the alternating voltage phase coil (AVPC), which employs a sequential inversion winding (SIW) structure to enforce a 180° phase voltage opposition between adjacent turns. While capacitor segmentation is a known method for E-field reduction, this work is the first to systematically evaluate its effects across both conventional and phase-inverted coils. The findings reveal that capacitor placement serves as a topology-dependent design parameter. Finite Element Method (FEM) simulations and experimental validation show that while capacitor placement has a moderate influence on traditional coils due to in-phase voltage relationships, AVPC coils are highly sensitive to segmentation patterns. When capacitors align with the SIW phase structure, destructive interference significantly reduces E-field emissions. Improper capacitor placement disrupts phase cancellation and negates this benefit. This study resolves a critical design gap by establishing that distributed compensation acts as a tuning mechanism in conventional coils but becomes a primary constraint in phase-inverted topologies. The results demonstrate that precise capacitor placement aligned with the coil topology significantly enhances E-field mitigation up to 60% in AVPC coils, greatly outperforming traditional coil configurations and providing actionable guidance for high-power wireless charging applications. Full article
(This article belongs to the Special Issue Power Electronics and Actuators—Second Edition)
Show Figures

Figure 1

24 pages, 3915 KiB  
Article
Prothrombotic Genetic Mutations Are Associated with Sub-Clinical Placental Vascular Lesions: A Histopathological and Morphometric Study
by Viorela-Romina Murvai, Anca Huniadi, Radu Galiș, Gelu Florin Murvai, Timea Claudia Ghitea, Alexandra-Alina Vesa and Ioana Cristina Rotar
Curr. Issues Mol. Biol. 2025, 47(8), 612; https://doi.org/10.3390/cimb47080612 - 4 Aug 2025
Abstract
Background: Inherited thrombophilia is increasingly recognized as a contributing factor to placental vascular pathology and adverse pregnancy outcomes. While the clinical implications are well-established, fewer studies have systematically explored the histopathological changes associated with specific genetic mutations in thrombophilic pregnancies. Materials and Methods: [...] Read more.
Background: Inherited thrombophilia is increasingly recognized as a contributing factor to placental vascular pathology and adverse pregnancy outcomes. While the clinical implications are well-established, fewer studies have systematically explored the histopathological changes associated with specific genetic mutations in thrombophilic pregnancies. Materials and Methods: This retrospective observational study included two cohorts of placental samples collected between September 2020 and September 2024 at a tertiary maternity hospital. Group 1 included women diagnosed with hereditary thrombophilia, and Group 2 served as controls without known maternal pathology. Placentas were examined macroscopically and histologically, with pathologists blinded to group allocation. Histological lesions were classified according to the Amsterdam Consensus and quantified using a composite score (0–5) based on five key vascular features. Results: Placental lesions associated with maternal vascular malperfusion—including infarctions, intervillous thrombosis, stromal fibrosis, villous stasis, and acute atherosis—were significantly more frequent in the thrombophilia group (p < 0.05 for most lesions). A combination of well-established thrombophilic mutations (Factor V Leiden, Prothrombin G20210A) and other genetic polymorphisms with uncertain clinical relevance (MTHFR C677T, PAI-1 4G/4G) showed moderate-to-strong correlations with histopathological markers of placental vascular injury. A composite histological score ≥3 was significantly associated with thrombophilia (p < 0.001). Umbilical cord abnormalities, particularly altered coiling and hypertwisting, were also more prevalent in thrombophilic cases. Conclusions: Thrombophilia is associated with distinct and quantifiable placental vascular lesions, even in pregnancies without overt clinical complications. The use of a histological scoring system may aid in the retrospective identification of thrombophilia-related placental pathology and support the integration of genetic and histologic data in perinatal risk assessment. Full article
(This article belongs to the Special Issue Feature Papers in Molecular Medicine 2025)
Show Figures

Figure 1

19 pages, 4169 KiB  
Article
Magnetic Coil’s Performance Optimization with Nonsmooth Search Algorithms
by Igor Reznichenko, Primož Podržaj and Aljoša Peperko
Mathematics 2025, 13(15), 2490; https://doi.org/10.3390/math13152490 - 2 Aug 2025
Viewed by 176
Abstract
This research is concerned with design optimization of control systems. Our case study deals with magnetic levitation, in which an essential part is a solenoid. Its dimensions, along with controller parameters, form the optimization variables. We present a novel way of writing the [...] Read more.
This research is concerned with design optimization of control systems. Our case study deals with magnetic levitation, in which an essential part is a solenoid. Its dimensions, along with controller parameters, form the optimization variables. We present a novel way of writing the explicit expression of the solenoid’s force acting on a magnetic dipole, as well as its first derivatives. Numerical tests using non-gradient search algorithms show the difference in optimal designs provided by these methods. Since such optimization depends on output signals, a comparison of step response analysis methods is presented. Full article
(This article belongs to the Special Issue Advances in Metaheuristic Optimization Algorithms)
Show Figures

Figure 1

26 pages, 4981 KiB  
Article
Modeling and Characteristic Analysis of Mistuned Series–Series-Compensated Wireless Charging System for EVs
by Weihan Li, Yunhan Han and Chenxu Li
Energies 2025, 18(15), 4091; https://doi.org/10.3390/en18154091 - 1 Aug 2025
Viewed by 163
Abstract
Cumulative mistuning effects in electric vehicle wireless charging systems, arising from component tolerances, coil misalignments, and aging-induced drifts, can significantly degrade system performance. To mitigate this issue, this work establishes an analysis model for mistuned series–series-compensated wireless power transfer (WPT) systems. Through equivalent [...] Read more.
Cumulative mistuning effects in electric vehicle wireless charging systems, arising from component tolerances, coil misalignments, and aging-induced drifts, can significantly degrade system performance. To mitigate this issue, this work establishes an analysis model for mistuned series–series-compensated wireless power transfer (WPT) systems. Through equivalent simplification of mistuned parameters, we systematically examine the effects of compensation capacitances and coil inductances on input impedance, output power, and efficiency in SS-compensated topologies across wide load ranges and different coupling coefficients. Results reveal that transmitter-side parameter deviations exert more pronounced impacts on input impedance and power gain than receiver-side variations. Remarkably, under receiver-side inductance mistuning of −20%, a significant 32° shift in the input impedance angle was observed. Experimental validation on a 500 W prototype confirms ≤5% maximum deviation between calculated and measured values for efficiency, input impedance angle, and power gain. Full article
(This article belongs to the Special Issue Wireless Charging Technologies for Electric Vehicles)
Show Figures

Figure 1

26 pages, 8721 KiB  
Article
Experiments in 3D Printing Electric Motors
by Alex Ellery, Abdurr Elaskri, Mariappan Parans Paranthaman and Fabrice Bernier
Machines 2025, 13(8), 679; https://doi.org/10.3390/machines13080679 - 1 Aug 2025
Viewed by 71
Abstract
This paper catalogues a series of experiments we conducted to explore how to 3D print a DC electric motor. The individual parts of the electric motor were 3D printed but assembled by hand. First, we focused on a rotor with soft magnetic properties, [...] Read more.
This paper catalogues a series of experiments we conducted to explore how to 3D print a DC electric motor. The individual parts of the electric motor were 3D printed but assembled by hand. First, we focused on a rotor with soft magnetic properties, for which we adopted ProtoPastaTM, which is a commercial off-the-shelf PLA filament incorporating iron particles. Second, we focused on the stator permanent magnets, which were 3D printed through binder jetting. Third, we focused on the wire coils, for which we adopted a form of laminated object manufacture of copper wire. The chief challenge was in 3D printing the coils, because the winding density is crucial to the performance of the motor. We have demonstrated that DC electric motors can be 3D printed and assembled into a functional system. Although the performance was poor due to the wiring problem, we showed that the other 3D printing processes were consistent with high performance. Nevertheless, we demonstrated the principle of 3D printing electric motors. Full article
(This article belongs to the Special Issue Additive Manufacturing of Electrical Machines)
Show Figures

Figure 1

19 pages, 10949 KiB  
Article
Segmentation Control in Dynamic Wireless Charging for Electric Vehicles
by Tran Duc Hiep, Nguyen Huu Minh, Tran Trong Minh, Nguyen Thi Diep and Nguyen Kien Trung
Electronics 2025, 14(15), 3086; https://doi.org/10.3390/electronics14153086 - 1 Aug 2025
Viewed by 145
Abstract
Dynamic wireless charging systems have emerged as a promising solution to extend the driving range of electric vehicles by enabling energy transfer while the vehicle is in motion. However, the segment-based charging lane structure introduces challenges such as pulsation of the output power [...] Read more.
Dynamic wireless charging systems have emerged as a promising solution to extend the driving range of electric vehicles by enabling energy transfer while the vehicle is in motion. However, the segment-based charging lane structure introduces challenges such as pulsation of the output power and the need for precise switching control of the transmitting segments. This paper proposes a position-sensorless control method for managing transmitting lines in a dynamic wireless charging system. The proposed approach uses a segmented charging lane structure combined with two receiving coils and LCC compensation circuits on both the transmitting and receiving sides. Based on theoretical analysis, the study determines the optimal switching positions and signals to reduce the current fluctuation. To validate the proposed method, a dynamic wireless charging system prototype with a power rating of 3kW was designed, constructed, and tested in a laboratory environment. The results demonstrate that the proposed position-sensorless control method effectively mitigates power fluctuations and enhances the stability and efficiency of the wireless charging process. Full article
Show Figures

Figure 1

19 pages, 6096 KiB  
Article
Functional Characterization of Two Glutamate Dehydrogenase Genes in Bacillus altitudinis AS19 and Optimization of Soluble Recombinant Expression
by Fangfang Wang, Xiaoying Lv, Zhongyao Guo, Xianyi Wang, Yaohang Long and Hongmei Liu
Curr. Issues Mol. Biol. 2025, 47(8), 603; https://doi.org/10.3390/cimb47080603 - 1 Aug 2025
Viewed by 83
Abstract
Glutamate dehydrogenase (GDH) is ubiquitous in organisms and crucial for amino acid metabolism, energy production, and redox balance. The gdhA and gudB genes encoding GDH were identified in Bacillus altitudinis AS19 and shown to be regulated by iron. However, their functions remain unclear. [...] Read more.
Glutamate dehydrogenase (GDH) is ubiquitous in organisms and crucial for amino acid metabolism, energy production, and redox balance. The gdhA and gudB genes encoding GDH were identified in Bacillus altitudinis AS19 and shown to be regulated by iron. However, their functions remain unclear. In this study, gdhA and gudB were analyzed using bioinformatics tools, such as MEGA, Expasy, and SWISS-MODEL, expressed with a prokaryotic expression system, and the induction conditions were optimized to increase the yield of soluble proteins. Phylogenetic analysis revealed that GDH is evolutionarily conserved within the genus Bacillus. GdhA and GudB were identified as hydrophobic proteins, not secreted or membrane proteins. Their structures were primarily composed of irregular coils and α-helices. SWISS-MODEL predicts GdhA to be an NADP-specific GDH, whereas GudB is an NAD-specific GDH. SDS-PAGE analysis showed that GdhA was expressed as a soluble protein after induction with 0.2 mmol/L IPTG at 24 °C for 16 h. GudB was expressed as a soluble protein after induction with 0.1 mmol/L IPTG at 16 °C for 12 h. The proteins were confirmed by Western blot and mass spectrometry. The enzyme activity of recombinant GdhA was 62.7 U/mg with NADPH as the coenzyme. This study provides a foundation for uncovering the functions of two GDHs of B. altitudinis AS19. Full article
(This article belongs to the Section Bioinformatics and Systems Biology)
Show Figures

Figure 1

15 pages, 2290 KiB  
Article
Research on Automatic Detection Method of Coil in Unmanned Reservoir Area Based on LiDAR
by Yang Liu, Meiqin Liang, Xiaozhan Li, Xuejun Zhang, Junqi Yuan and Dong Xu
Processes 2025, 13(8), 2432; https://doi.org/10.3390/pr13082432 - 31 Jul 2025
Viewed by 194
Abstract
The detection of coils in reservoir areas is part of the environmental perception technology of unmanned cranes. In order to improve the perception ability of unmanned cranes to include environmental information in reservoir areas, a method of automatic detection of coils based on [...] Read more.
The detection of coils in reservoir areas is part of the environmental perception technology of unmanned cranes. In order to improve the perception ability of unmanned cranes to include environmental information in reservoir areas, a method of automatic detection of coils based on two-dimensional LiDAR dynamic scanning is proposed, which realizes the detection of the position and attitude of coils in reservoir areas. This algorithm realizes map reconstruction of 3D point cloud by fusing LiDAR point cloud data and the motion position information of intelligent cranes. Additionally, a processing method based on histogram statistical analysis and 3D normal curvature estimation is proposed to solve the problem of over-segmentation and under-segmentation in 3D point cloud segmentation. Finally, for segmented point cloud clusters, coil models are fitted by the RANSAC method to identify their position and attitude. The accuracy, recall, and F1 score of the detection model are all higher than 0.91, indicating that the model has a good recognition effect. Full article
Show Figures

Figure 1

14 pages, 6123 KiB  
Article
Effects of Near-Infrared Diode Laser Irradiation on Pain Relief and Neuropeptide Markers During Experimental Tooth Movement in the Periodontal Ligament Tissues of Rats: A Pilot Study
by Kanako Okazaki, Ayaka Nakatani, Ryo Kunimatsu, Isamu Kado, Shuzo Sakata, Hirotaka Kiridoshi and Kotaro Tanimoto
Int. J. Mol. Sci. 2025, 26(15), 7404; https://doi.org/10.3390/ijms26157404 - 31 Jul 2025
Viewed by 145
Abstract
Pain following orthodontic treatment is the chief complaint of patients undergoing this form of treatment. Although the use of diode lasers has been suggested for pain reduction, the mechanism of laser-induced analgesic effects remains unclear. Neuropeptides, such as substance P (SP) and calcitonin [...] Read more.
Pain following orthodontic treatment is the chief complaint of patients undergoing this form of treatment. Although the use of diode lasers has been suggested for pain reduction, the mechanism of laser-induced analgesic effects remains unclear. Neuropeptides, such as substance P (SP) and calcitonin gene-related peptide (CGRP), contribute to the transmission and maintenance of inflammatory pain. Heat shock protein (HSP) 70 plays a protective role against various stresses, including orthodontic forces. This study aimed to examine the effects of diode laser irradiation on neuropeptides and HSP 70 expression in periodontal tissues induced by experimental tooth movement (ETM). For inducing ETM for 24 h, 50 g of orthodontic force was applied using a nickel–titanium closed-coil spring to the upper left first molar and the incisors of 20 male Sprague Dawley rats (7 weeks old). The right side without ETM treatment was considered the untreated control group. In 10 rats, diode laser irradiation was performed on the buccal and palatal sides of the first molar for 90 s with a total energy of 100.8 J/cm2. A near-infrared (NIR) laser with a 808 nm wavelength, 7 W peak power, 560 W average power, and 20 ms pulse width was used for the experiment. We measured the number of facial groomings and vacuous chewing movements (VCMs) in the ETM and ETM + laser groups. Immunohistochemical staining of the periodontal tissue with SP, CGRP, and HSP 70 was performed. The number of facial grooming and VCM periods significantly decreased in the ETM + laser group compared to the ETM group. Moreover, the ETM + laser group demonstrated significant suppression of SP, CGRP, and HSP 70 expression. These results suggest that the diode laser demonstrated analgesic effects on ETM-induced pain by inhibiting SP and CGRP expression, and decreased HSP 70 expression shows alleviation of cell damage. Thus, although further validation is warranted for human applications, an NIR diode laser can be used for reducing pain and neuropeptide markers during orthodontic tooth movement. Full article
(This article belongs to the Special Issue Advances in Photobiomodulation Therapy)
Show Figures

Figure 1

20 pages, 1899 KiB  
Case Report
Ruptured Posterior Inferior Cerebellar Artery Aneurysms: Integrating Microsurgical Expertise, Endovascular Challenges, and AI-Driven Risk Assessment
by Matei Șerban, Corneliu Toader and Răzvan-Adrian Covache-Busuioc
J. Clin. Med. 2025, 14(15), 5374; https://doi.org/10.3390/jcm14155374 - 30 Jul 2025
Viewed by 413
Abstract
Background/Objectives: Posterior inferior cerebellar artery (PICA) aneurysms are one of the most difficult cerebrovascular lesions to treat and account for 0.5–3% of all intracranial aneurysms. They have deep anatomical locations, broad-neck configurations, high perforator density, and a close association with the brainstem, which [...] Read more.
Background/Objectives: Posterior inferior cerebellar artery (PICA) aneurysms are one of the most difficult cerebrovascular lesions to treat and account for 0.5–3% of all intracranial aneurysms. They have deep anatomical locations, broad-neck configurations, high perforator density, and a close association with the brainstem, which creates considerable technical challenges for either microsurgical or endovascular treatment. Despite its acceptance as the standard of care for most posterior circulation aneurysms, PICA aneurysms are often associated with flow diversion using a coil or flow diversion due to incomplete occlusions, parent vessel compromise and high rate of recurrence. This case aims to describe the utility of microsurgical clipping as a durable and definitive option demonstrating the value of tailored surgical planning, preservation of anatomy and ancillary technologies for protecting a genuine outcome in ruptured PICA aneurysms. Methods: A 66-year-old male was evaluated for an acute subarachnoid hemorrhage from a ruptured and broad-necked fusiform left PICA aneurysm at the vertebra–PICA junction. Endovascular therapy was not an option due to morphology and the center of the recurrence; therefore, a microsurgical approach was essential. A far-lateral craniotomy with a partial C1 laminectomy was carried out for proximal vascular control, with careful dissection of the perforating arteries and precise clip application for the complete exclusion of the aneurysm whilst preserving distal PICA flow. Results: Post-operative imaging demonstrated the complete obliteration of the aneurysm with unchanged cerebrovascular flow dynamics. The patient had progressive neurological recovery with no new cranial nerve deficits or ischemic complications. Long-term follow-up demonstrated stable aneurysm exclusion and full functional independence emphasizing the sustainability of microsurgical intervention in challenging PICA aneurysms. Conclusions: This case intends to highlight the current and evolving role of microsurgical practice for treating posterior circulation aneurysms, particularly at a time when endovascular alternatives are limited by anatomy and hemodynamics. Advances in artificial intelligence cerebral aneurysm rupture prediction, high-resolution vessel wall imaging, robotic-assisted microsurgery and new generation flow-modifying implants have the potential to revolutionize treatment paradigms by embedding precision medicine principles into aneurysm management. While the discipline of cerebrovascular surgery is expanding, it can be combined together with microsurgery, endovascular technologies and computational knowledge to ensure individualized, durable, and minimally invasive treatment options for high-risk PICA aneurysms. Full article
(This article belongs to the Special Issue Neurovascular Diseases: Clinical Advances and Challenges)
Show Figures

Figure 1

20 pages, 1421 KiB  
Article
A Learning Design Framework for International Blended and Virtual Activities in Higher Education
by Ania Maria Hildebrandt, Alice Barana, Vasiliki Eirini Chatzea, Kelly Henao, Marina Marchisio Conte, Daniel Samoilovich, Nikolas Vidakis and Georgios Triantafyllidis
Trends High. Educ. 2025, 4(3), 40; https://doi.org/10.3390/higheredu4030040 - 29 Jul 2025
Viewed by 273
Abstract
Blended and virtual learning have become an integral part in international higher education, especially in the wake of the COVID-19 pandemic and the European Union’s Digital Education Action Plan. These modalities have enabled more inclusive, flexible, and sustainable forms of international collaboration, such [...] Read more.
Blended and virtual learning have become an integral part in international higher education, especially in the wake of the COVID-19 pandemic and the European Union’s Digital Education Action Plan. These modalities have enabled more inclusive, flexible, and sustainable forms of international collaboration, such as Collaborative Online International Learning (COIL) and Blended Intensive Programs (BIPs), reshaping the landscape of global academic mobility. This paper introduces the INVITE Learning Design Framework (LDF), developed to support higher education instructors in designing high-quality, internationalized blended and virtual learning experiences. The framework addresses the growing need for structured, theory-informed approaches to course design that foster student engagement, intercultural competence, and motivation in non-face-to-face settings. The INVITE LDF was developed through a rigorous scoping review of existing models and frameworks, complemented by needs-identification analysis and desk research. It integrates Self-Determination Theory, Active Learning principles, and the ADDIE instructional design model to provide a comprehensive, adaptable structure for course development. The framework was successfully implemented in a large-scale online training module for over 1000 educators across Europe. Results indicate that the INVITE LDF enhances educators’ ability to create engaging, inclusive, and pedagogically sound international learning environments. Its application supports institutional goals of internationalization by making global learning experiences more accessible and scalable. The findings suggest that the INVITE LDF can serve as a valuable tool for higher education institutions worldwide, offering a replicable model for fostering intercultural collaboration and innovation in digital education. This contributes to the broader transformation of international higher education, promoting equity, sustainability, and global citizenship through digital pedagogies. Full article
Show Figures

Figure 1

Back to TopTop