Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = coesite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 16018 KB  
Article
Textures and Inclusions in Mengyin Diamonds: Insights on Their Formation Within the Southeastern North China Craton
by Yu-Meng Sun, Yi-Qi Wang, Liang Zhang, Li-Qiang Yang, Zhi-Yuan Chu and Hao-Shuai Wang
Minerals 2025, 15(8), 856; https://doi.org/10.3390/min15080856 - 14 Aug 2025
Cited by 1 | Viewed by 1070
Abstract
Beyond its renowned gemological value, diamond serves as a vital economic mineral and a unique messenger from Earth’s deep interior, preserving invaluable geological information. Since the Mengyin region is the source of China’s greatest diamond deposits, research on the diamonds there not only [...] Read more.
Beyond its renowned gemological value, diamond serves as a vital economic mineral and a unique messenger from Earth’s deep interior, preserving invaluable geological information. Since the Mengyin region is the source of China’s greatest diamond deposits, research on the diamonds there not only adds to our understanding of their origins but also offers an essential glimpse into the development of the North China Craton’s mantle lithosphere. In this article, 50 diamond samples from Mengyin were investigated using gemological microscopy, Fourier-transform infrared (FTIR) spectroscopy, Raman spectroscopy, DiamondView™, and X-ray micro-computed tomography (CT) scanning technologies. The types of Mengyin diamonds are mainly Type IaAB, Type IaB, and Type IIa, and the impurity elements are N and H. Inclusions in diamonds serve as direct indicators of mantle-derived components, providing crucial constraints on the pressure–temperature (P–T) conditions during their crystallization. Mengyin diamonds have both eclogite-type and peridotite-type inclusions. It formed at depths ranging from 147 to 176 km, which corresponds to source pressures of approximately 4.45–5.35 GPa, as determined by the Raman shifts of olivine inclusions. The discovery of coesite provides key mineralogical evidence for subduction of an ancient oceanic plate in the source region. The surface morphology of diamonds varies when they are reabsorbed by melts from the mantle, reflecting distinctive features that record subsequent geological events. Distinctive surface features observed on Mengyin diamonds include fusion pits, tile-like etch patterns, and growth steps. Specifically, regular flat-bottomed negative trigons are mainly formed during diamond resorption in kimberlite melts with a low CO2 (XCO2 < ~0.5) and high H2O content. The samples exhibit varying fluorescence under DiamondView™, displaying blue, green, and a combination of blue and green colors. This diversity indicates that the diamonds have undergone a complex process of non-uniform growth. The nitrogen content of the melt composition also varies significantly throughout the different growth stages. The N3 center is responsible for the blue fluorescence, suggesting that it originated in a long-term, hot, high-nitrogen craton, and the varied ring band structure reveals localized, episodic environmental variations. Radiation and medium-temperature annealing produce H3 centers, which depict stagnation throughout the ascent of kimberlite magma and are responsible for the green fluorescence. Full article
Show Figures

Figure 1

21 pages, 6935 KB  
Article
Internal Structure and Inclusions: Constraints on the Origin of the Tancheng Alluvial Diamonds from the North China Craton
by Qing Lv, Fei Liu, Yue-Jin Ge, Zhao-Ying Li, Xiao Liu, Yong-Lin Yao, Yu-Feng Wang, Hai-Qin Wang, Sheng-Hu Li, Xiao-Dong Ma, Yong Zhang, Jia-Hong Xu and Ahmed E. Masoud
Minerals 2025, 15(6), 588; https://doi.org/10.3390/min15060588 - 30 May 2025
Viewed by 815
Abstract
The internal growth patterns and surface micromorphology of diamonds provide a record of their multi-stage evolution, from initial formation within the mantle to their eventual ascent to the Earth’s surface via deeply derived kimberlite magmas. In this study, gemological microscopic examination, Diamond View [...] Read more.
The internal growth patterns and surface micromorphology of diamonds provide a record of their multi-stage evolution, from initial formation within the mantle to their eventual ascent to the Earth’s surface via deeply derived kimberlite magmas. In this study, gemological microscopic examination, Diamond ViewTM, Raman spectroscopy, and electron probe analysis were employed to analyze the surface features, internal patterns, and inclusions of the Tancheng alluvial diamonds in Shandong Province, China. The results show that surface features of octahedra with triangular and sharp edges, thick steps with irregular contours or rounded edges, and thin triangular or serrated layers are developed on diamonds during deep-mantle storage, as well as during the growth process of diamonds, when they are not subjected to intense dissolution. The rounding of octahedral and cubic diamond edges and their transformation into tetrahedral (THH) shapes are attributed to resorption in kimberlitic magma. These characteristics indicate that the Tancheng diamonds were commonly resorbed by carbonate–silicate melts during mantle storage. Abnormal birefringence phenomena, including irregular extinction patterns, petaloid and radial extinction patterns, and banded birefringence, were formed during the diamond growth stage. In contrast, fine grid extinction patterns and composite superimposed extinction patterns are related to later plastic deformation. The studied diamonds mainly contain P-type inclusions of olivine and graphite, with a minority of E-type inclusions, including coesite and omphacite. The pressure of entrapment of olivine inclusions within the Tancheng diamonds ranges from 4.3 to 5.9 GPa, which is consistent with that of coesite inclusions, which yield pressure ranging from 5.2 to 5.5 GPa, and a temperature range of 1083–1264 °C. Overall, the evidence suggests that Tancheng diamonds probably originated from hybrid mantle sources metasomatized by the subduction of ancient oceanic lithosphere. Full article
Show Figures

Graphical abstract

23 pages, 8354 KB  
Article
The Discovery of the New UHP Eclogite from the East Kunlun, Northwestern China, and Its Tectonic Significance
by Feng Chang, Guibin Zhang and Lu Xiong
Minerals 2024, 14(6), 582; https://doi.org/10.3390/min14060582 - 31 May 2024
Cited by 1 | Viewed by 1805
Abstract
The East Kunlun Orogenic Belt (EKOB), northwestern China, recording long-term and multiple accretionary and collisional events of the Tethyan Ocean, belongs to a high-pressure to ultra-high-pressure (HP-UHP) metamorphic belt that underwent complex metamorphic overprinting in the early Paleozoic. In this contribution, we carry [...] Read more.
The East Kunlun Orogenic Belt (EKOB), northwestern China, recording long-term and multiple accretionary and collisional events of the Tethyan Ocean, belongs to a high-pressure to ultra-high-pressure (HP-UHP) metamorphic belt that underwent complex metamorphic overprinting in the early Paleozoic. In this contribution, we carry out an integrated study, including field investigations, petrographic observations, whole-rock analyses, zircon U-Pb dating, and P-T condition modeling using THERMOCALC in the NCKFMASHTO system for the eclogites, especially for the newly discovered UHP eclogite in the eastern part of EKOB. The eclogites exhibit geochemistry ranging from normal mid-ocean ridge basalt (N-MORB) to enriched mid-ocean ridge basalt (E-MORB). Zircons from the eclogites yield metamorphic ages of 416–413 Ma, indicating the eclogite facies metamorphism. Coesite inclusions in garnet and omphacite and quartz exsolution in omphacite and pseudosection calculation suggest that some eclogites experienced UHP eclogite facies metamorphism. The eclogites from the eastern part of EKOB record peak conditions of 29–33 kbar/705–760 °C, first retrograde conditions of 10 kbar at 9.5–12.5 kbar/610–680 °C, and second retrograde conditions at ~6 kbar/<600 °C. New evidence of the early Paleozoic UHP metamorphism in East Kunlun is identified in our study. Thus, we suggest that these eclogites were produced by the oceanic crust subducting to the depth of 100 km and exhumation. The presence of East Gouli and Gazhima eclogites in this study and other eclogites (430–414 Ma) in East Kunlun record the final closure of the local branch ocean of the Proto-Tethys and the evolution from subduction to collision. Full article
(This article belongs to the Special Issue Microbeam Analysis Characterization in Petrogenesis and Ore Deposit)
Show Figures

Figure 1

15 pages, 1713 KB  
Article
Stability of CO2 Fluid in Eclogitic Mantle Lithosphere: Thermodynamic Calculations
by Yulia G. Vinogradova and Anton Shatskiy
Minerals 2024, 14(4), 403; https://doi.org/10.3390/min14040403 - 15 Apr 2024
Viewed by 1725
Abstract
Findings of solid and liquefied CO2 in diamonds from kimberlites and placers have indicated its presence in the form of a fluid phase in the Earth’s mantle at depths of 150–250 km. However, this is inconsistent with the results of experiments and [...] Read more.
Findings of solid and liquefied CO2 in diamonds from kimberlites and placers have indicated its presence in the form of a fluid phase in the Earth’s mantle at depths of 150–250 km. However, this is inconsistent with the results of experiments and existing thermodynamic calculations. To clarify this, we carried out thermodynamic modeling of garnet–CO2 and bimineral eclogite–CO2 systems using the Perple_X v. 7.1.3 software package, which establishes the most thermodynamically favorable assemblages for a given bulk composition of the system, unlike previous calculations, for which the phase relationships were simply assumed. The key difference between our results and previously known data is the presence of a region of partial carbonation. In this region, the garnet and clinopyroxene of the new compositions, CO2 fluid, carbonates, kyanite, and coesite are in equilibrium. The calculations revealed that unlike endmember systems (pyrope–CO2 and diopside–CO2) in the eclogite–CO2 system, the carbonation and decarbonation lines do not coincide, and the Grt+Cpx+CO2 and Carb+Ky+Coe+Cpx fields are separated by the Grt+Cpx+CO2+Carb+Ky+Coe region, which extends to pressures exceeding 4.3–6.0 GPa at 1050–1200 °C. This should extend the CO2 stability field in the eclogitic mantle to lower temperatures. Yet, owing to the short CO2 supply in the real mantle, the CO2 fluid should be completely spent on the carbonation of eclogite just below the eclogite + CO2 field. Thus, according to the obtained results, the CO2 fluid is stable in the eclogitic mantle in the diamond stability field at temperatures exceeding 1250 °C and pressures of 5–6 GPa. Full article
Show Figures

Graphical abstract

16 pages, 5566 KB  
Article
Silica Polymorphs Formation in the Jänisjärvi Impact Structure: Tridymite, Cristobalite, Quartz, Trace Stishovite and Coesite
by Daria A. Zamiatina, Dmitry A. Zamyatin, Georgii B. Mikhalevskii and Nikolai S. Chebikin
Minerals 2023, 13(5), 686; https://doi.org/10.3390/min13050686 - 17 May 2023
Cited by 10 | Viewed by 3991
Abstract
The study of silica polymorphs in impactites is important for determining the pressure and temperature of impact rock formation. Silica modifications in impact melt rocks of the Janisjärvi impact structure (Karelia, Russia) are presented by tridymite, cristobalite, quartz, trace stishovite and coesite. Silica [...] Read more.
The study of silica polymorphs in impactites is important for determining the pressure and temperature of impact rock formation. Silica modifications in impact melt rocks of the Janisjärvi impact structure (Karelia, Russia) are presented by tridymite, cristobalite, quartz, trace stishovite and coesite. Silica modifications were characterized and studied by scanning electron microscopy (SEM), electron probe microanalysis (EPMA), and Raman and cathodoluminescent spectroscopy. Investigations were carried out in order to clarify polymorphs formation mechanisms and search for signs of the transition of certain structural modifications to others. For the first time, a description of tridymite with a ballen-like texture from impact melt rock is given. A sequence of silica modification and textural transformation in impact rocks after the impact event is suggested. We conclude that the pressure of 40 GPa and a temperature of more than 900 °C were achieved in the impact structure. Full article
Show Figures

Figure 1

13 pages, 2987 KB  
Article
Ultrahigh-Pressure Mineral Inclusions in a Crustal Granite: Evidence for a Novel Transcrustal Transport Mechanism
by Rainer Thomas, Paul Davidson, Adolf Rericha and Ulrich Recknagel
Geosciences 2023, 13(4), 94; https://doi.org/10.3390/geosciences13040094 - 23 Mar 2023
Cited by 3 | Viewed by 2088
Abstract
Spherical crystals in minerals from prismatine-bearing rock from Waldheim, including ultrahigh-pressure (UHP) minerals such as stishovite and coesite, were previously described in uncommon crustal environments. To determine if this was an outlier phenomenon, we searched for equivalent inclusions in other rocks, which we [...] Read more.
Spherical crystals in minerals from prismatine-bearing rock from Waldheim, including ultrahigh-pressure (UHP) minerals such as stishovite and coesite, were previously described in uncommon crustal environments. To determine if this was an outlier phenomenon, we searched for equivalent inclusions in other rocks, which we indeed discovered in a Variscan tin-bearing granite sensu stricto from the Erzgebirge/Germany. The identification of more examples of this phenomenon implies a novel, very rapid transcrustal transport mechanism, which, however, is not unique. We demonstrate the unusual occurrence of UHP minerals (moissanite, diamond, lonsdaleite, stishovite, coesite, kumdykolite, and cristobalite-II) in topaz the investigated granitic samples, which reflects the direct interaction of mantle and crust via supercritical fluids or extremely volatile-rich melts. Mostly, the UHP minerals we recognized occur as tiny inclusions in moissanite. The trapping by this mineral prevents a fast reaction in an exogenous environment. Full article
(This article belongs to the Section Geochemistry)
Show Figures

Graphical abstract

25 pages, 32918 KB  
Article
Ultrahigh-Pressure Metamorphism and P-T-t Paths for the Eclogites from the Central Areas of Sulu Orogen, Eastern China
by Haiqi Yuan, Jian Wang, Zhipeng Xie, Jianguo Liu and Jinlin Liu
Minerals 2023, 13(3), 362; https://doi.org/10.3390/min13030362 - 4 Mar 2023
Viewed by 3451
Abstract
Eclogites from the Guanshan and Yangkou areas of the Sulu orogen consist of garnet, omphacite, phengite, amphibole, quartz/coesite, rutile, and ilmenite. Garnet exhibits weak compositional zoning where Xgr decreases from the core to the mantle and then increases towards the rim, coupled [...] Read more.
Eclogites from the Guanshan and Yangkou areas of the Sulu orogen consist of garnet, omphacite, phengite, amphibole, quartz/coesite, rutile, and ilmenite. Garnet exhibits weak compositional zoning where Xgr decreases from the core to the mantle and then increases towards the rim, coupled with an increase in Xpy from the core to the mantle and then decrease towards the rim. Phase equilibria modelling with pseudosections calculated using THERMOCALC in the NCKFMASHTO system for the Guanshan and Yangkou eclogites records two stages of metamorphism: (I) prograde associated with quick subduction (Stage-I) and (II) retrograde associated with quick exhumation (Stage-II). Stage-I is recorded in the core-mantle zoning of garnet and Si content in phengite in the Guanshan and Yangkou eclogites with a mineral assemblage of Grt-Omp-Amp-Phg-Qtz-Rt ± Lws, and the P-T conditions are constrained at 22–26 kbar and 600–615 °C in Guanshan, while 24–26 kbar and 595–600 °C in Yangkou. The peak P-T conditions (Pmax = 33 kbar; T = 685 °C) of Guanshan eclogites are revealed by the maximum Si content in phengite and the minimum Xgr in the garnet mantle with the mineral assemblage of Grt-Omp-Phg-Coe-Rt ± Lws. The value of Pmax suggests that the subduction depth of the Guanshan eclogites exceeds 110 km. Stage-II is recorded in the mantle-rim zoning of garnet, and its P-T conditions are estimated to be 12–15 kbar and 780–820 °C for the Guanshan eclogites reflected by the assemblage of Grt-Omp-Amp-Pl-LL-Qtz-Rt ± ilm, and 13–14 kbar and 770–790 °C for the Yangkou eclogites by the assemblage of Grt-Omp-Amp-Pl-LL-Qtz-Rt. The two stages of metamorphism in the study areas are overall consistent with the regional metamorphic events, from ultra-high-pressure eclogite facies, through high pressure eclogite facies, to amphibole eclogite facies, with the ages of 245, 227 and 195 Ma, respectively. Full article
Show Figures

Figure 1

20 pages, 5190 KB  
Article
Microstructural Characteristics, Modeling of Mechanical Strength and Thermal Performance of Industrial Waste Glass Blended Concrete
by Moruf Olalekan Yusuf, Khaled A. Alawi Al-Sodani, Adeshina A. Adewumi, Ali H. Alateah, Mohammed M. H. Al-Tholaia, Sami M. Ibn Shamsah, Umair Yaqub Qazi and Ghazi Dibas S. Alanazi
Appl. Sci. 2022, 12(17), 8600; https://doi.org/10.3390/app12178600 - 27 Aug 2022
Cited by 10 | Viewed by 2804
Abstract
The need to get rid of solid waste in the environment necessitates the incorporation of waste glass powder (WGP) in mortar and concrete. The blending of WGP (G) with ordinary Portland cement (OPC) is a valorization technique that is not only cost efficient [...] Read more.
The need to get rid of solid waste in the environment necessitates the incorporation of waste glass powder (WGP) in mortar and concrete. The blending of WGP (G) with ordinary Portland cement (OPC) is a valorization technique that is not only cost efficient but also environmentally friendly. The replacement level is denoted as CxG10−x, where x is 0–20 wt.% at an interval of 5 wt.% in mortar (w/b = 0.4) and 0, 10, 20 and 30 in concrete (w/b = 0.42). The study investigates the effects of glass on the setting, workability, thermal resistance, microstructure, mineral phases and bond characteristics of silicon and hydroxyl-based compounds and C-O vibrations. It also provides the model equations for strength characteristics in terms of OPC, G and ages in mortar and concrete on one hand and investigates the residual strength and density of glass blended concrete at elevated temperature (550 °C) on the other. It is found that glass enhances the workability, reduces the setting time and density and enhances the residual strength and density of concrete. The presence of glass leads to the formation of coesite and microstructural distortion and decreases the Ca/Si ratio. Besides, the bond characteristics of the binder are significantly affected, while the thermal residual strength capacity in glass blended concrete (C80G20) is 40.4% and 75.14% lower than that in OPC concrete (C100G0) because of the low thermal conduction of glass particles. The optimum glass content in mortar and concrete to produce 33 MPa (28 days) and 47 MPa (90 days) is found to be 10 wt.% and 20 wt.%, respectively. Full article
(This article belongs to the Special Issue Innovative Building Materials)
Show Figures

Figure 1

6 pages, 1325 KB  
Brief Report
Study on the Phase Transition from Quartz to Coesite under High Temperature and High Pressure
by Dongsheng Ren
Minerals 2022, 12(8), 963; https://doi.org/10.3390/min12080963 - 29 Jul 2022
Cited by 10 | Viewed by 3084
Abstract
Quartz is an important component of the Earth. In this study, experiments were conducted at temperatures between 600 to 700 °C, confining pressures between 1.5 and 1.8 GPa, and differential stress conditions. It was found that coesite production is closely related to differential [...] Read more.
Quartz is an important component of the Earth. In this study, experiments were conducted at temperatures between 600 to 700 °C, confining pressures between 1.5 and 1.8 GPa, and differential stress conditions. It was found that coesite production is closely related to differential stress, reaction time, and reaction temperature, with coesite formation being a multifactorial coupling process. Full article
(This article belongs to the Special Issue High-Pressure Physical and Chemical Behaviors of Minerals and Rocks)
Show Figures

Figure 1

13 pages, 16783 KB  
Article
Discovery of Stishovite in the Prismatine-Bearing Granulite from Waldheim, Germany: A Possible Role of Supercritical Fluids of Ultrahigh-Pressure Origin
by Rainer Thomas, Paul Davidson, Adolf Rericha and Ulrich Recknagel
Geosciences 2022, 12(5), 196; https://doi.org/10.3390/geosciences12050196 - 4 May 2022
Cited by 4 | Viewed by 4093
Abstract
For the first time in the sixty years since the synthesis of stishovite, we report unambiguous evidence of stishovite formed in the deep Earth. A minimum pressure of about 7.5 GPa at 1000 °C is necessary for the formation of stishovite, corresponding to [...] Read more.
For the first time in the sixty years since the synthesis of stishovite, we report unambiguous evidence of stishovite formed in the deep Earth. A minimum pressure of about 7.5 GPa at 1000 °C is necessary for the formation of stishovite, corresponding to a depth of about 230 km. In this manuscript we report the identification of stishovite along with coesite as inclusions in mineral grains from the Waldheim granulite. This implies that the stishovite was transported upwards, probably very rapidly to a depth of about 130 km, corresponding to the highest pressure indicated by newly identified coesite in the prismatine of the Waldheim granulite, and continuing up to the depth of emplacement of the Waldheim prismatine granulite. The analysis of the Raman spectra obtained from a metastable trapped stishovite micro-crystal show that all the diagnostic Raman bands are present. However, given the metastability of the stishovite at room temperatures and pressures, this mineral breaks down step-by-step into stable polymorphs, first coesite and then quartz and cristobalite, during the Raman stimulation. The rare coesite crystals in prismatine have also resulted from the irreversible transformation from stishovite. Although the Waldheim occurrence may be unique, we suggest that Raman analysis of co-trapped crystals in similar deep-seated rocks, an area of limited previous research, may prove an important innovation in the study of mantle processes. Full article
Show Figures

Figure 1

24 pages, 7360 KB  
Article
Ultrahigh-Pressure Metamorphism and P-T Path of Xiaoxinzhuang Eclogites from the Southern Sulu Orogenic Belt, Eastern China, Based on Phase Equilibria Modelling
by Haiqi Yuan, Jian Wang and Keiko Hattori
Minerals 2022, 12(2), 216; https://doi.org/10.3390/min12020216 - 8 Feb 2022
Cited by 3 | Viewed by 2918
Abstract
Three types of eclogites were identified in the Xiaoxinzhuang area in the northern Sulu ultrahigh pressure (UHP) terrene based on their petrographic, compositional characteristics and locations. They are composed of garnet, omphacite, amphibole, epidote, phengite, quartz/coesite, rutile, apatite, ilmenite and kyanite. Garnet in [...] Read more.
Three types of eclogites were identified in the Xiaoxinzhuang area in the northern Sulu ultrahigh pressure (UHP) terrene based on their petrographic, compositional characteristics and locations. They are composed of garnet, omphacite, amphibole, epidote, phengite, quartz/coesite, rutile, apatite, ilmenite and kyanite. Garnet in eclogite exhibits weak compositional zoning, which shows an increase in Xgr and a decrease in Xpy from core to mantle, and a decrease in Xgr and a slight increase in Xpy from mantle to rim. Phengite inclusions in garnet show higher Si, up to 3.424 p.f.u., than those in the matrix. Pseudosections calculated using THERMOCALC in the NCKFMASHTO system for three representative samples record three stages of metamorphism: (I) prograde stage, (II) post- Pmax decompression and heating to the Tmax stage and (III) retrograde stage. Stage-I was recorded in garnet cores with mineral assemblage of garnet + omphacite ± amphibole ± lawsonite + phengite + quartz + rutile, and the P-T condition is constrained at 23.5–26.4 kbar and 623–655 °C. The Pmax, 41.5 kbar at 801 °C, is revealed from garnet enclosed by coarse-grained garnet with the mineral assemblage of garnet + omphacite + phengite + coesite + rutile. Stage-II produced garnet rim with mineral assemblage of garnet + omphacite + amphibole + quartz + rutile + metabasite melt, which constrained the P-T conditions of 21.4–23.0 kbar and 869–924 °C. Stage-III, recorded by unzoned garnet grain with the mineral assemblage of garnet + omphacite + amphibole + ilmenite + rutile + metabasite melt, constrained P-T conditions of 13.5–16.4 kbar and 813–852 °C. The data suggest that the rocks in the Xiaoxinzhuang area were subducted to a depth of over 135 km and underwent an UHP metamorphism. The P-T-t path revealed by the Xiaoxinzhuang eclogites is different from those in other areas of the Sulu UHP terrane, suggesting that they represent different rock slices during the subduction and exhumations. Full article
Show Figures

Figure 1

18 pages, 35347 KB  
Article
NMR Spectral Characteristics of Ultrahigh Pressure High Temperature Impact Glasses of the Giant Kara Crater (Pay-Khoy, Russia)
by Vladimir Lyutoev, Tatyana Shumilova, Anton Mazur and Peter Tolstoy
Minerals 2021, 11(12), 1418; https://doi.org/10.3390/min11121418 - 15 Dec 2021
Viewed by 3086
Abstract
In this study, we carried out the analysis of the impact melt vein glasses from the Kara impact crater (Russia) in comparison to low-pressure impact melt glasses (tektites) of the Zhamanshin crater (Kazakhstan). 27Al, 23Na, and 29Si MAS NMR spectra [...] Read more.
In this study, we carried out the analysis of the impact melt vein glasses from the Kara impact crater (Russia) in comparison to low-pressure impact melt glasses (tektites) of the Zhamanshin crater (Kazakhstan). 27Al, 23Na, and 29Si MAS NMR spectra of the samples of these glasses were analyzed. The samples of the natural glass contained inclusions of crystalline phases, paramagnetic elements that greatly complicate and distort the NMR signals from the glass phase itself. Taking into account the Mossbauer distribution of Fe in these glasses, the analysis of the spectra of MAS NMR of glass network-former (Si, Al) and potential network-modifiers (Na) of nuclei leads to the conclusion that the Kara impact melt vein glasses are characterized by complete polymerization of (Si,Al)O4 tetrahedral structural units. The NMR features of the glasses are consistent with the vein hypothesis of their formation under conditions of high pressures and temperatures resulting in their fluidity, relatively slow solidification with partial melt differentiation, polymerization, and precipitation of mineral phases as the impact melt cools. The 70 Ma stability of the Kara impact vein glass can be explained by the stabilization of the glass network with primary fine-dispersed pyroxene and coesite precipitates and by the high polymerization level of the impact glass. Full article
(This article belongs to the Special Issue NMR Spectroscopy in Mineralogy and Crystal Structures)
Show Figures

Figure 1

24 pages, 4704 KB  
Review
Diamond and Other Exotic Mineral-Bearing Ophiolites on the Globe: A Key to Understand the Discovery of New Minerals and Formation of Ophiolitic Podiform Chromitite
by Fei Liu, Dongyang Lian, Weiwei Wu and Jingsui Yang
Crystals 2021, 11(11), 1362; https://doi.org/10.3390/cryst11111362 - 8 Nov 2021
Cited by 7 | Viewed by 4829
Abstract
Ophiolite-hosted diamond from peridotites and podiform chromitites significantly differs from those of kimberlitic diamond and ultra-high pressure (UHP) metamorphic diamond in terms of occurrence, mineral inclusion, as well as carbon and nitrogen isotopic composition. In this review, we briefly summarize the global distribution [...] Read more.
Ophiolite-hosted diamond from peridotites and podiform chromitites significantly differs from those of kimberlitic diamond and ultra-high pressure (UHP) metamorphic diamond in terms of occurrence, mineral inclusion, as well as carbon and nitrogen isotopic composition. In this review, we briefly summarize the global distribution of twenty-five diamond-bearing ophiolites in different suture zones and outline the bulk-rock compositions, mineral and particular Re-Os isotopic systematics of these ophiolitic chromitites and host peridotites. These data indicate that the subcontinental lithospheric mantle is likely involved in the formation of podiform chromitite. We also provide an overview of the UHP textures and unusual mineral assemblages, including diamonds, other UHP minerals (e.g., moissanite, coesite) and crustal minerals, which robustly offer evidence of crustal recycling in the deep mantle along the suprasubduction zone (SSZ) and then being transported to shallow mantle depths by asthenospheric mantle upwelling in mid-ocean-ridge and SSZ settings. A systematic comparison between four main genetic models provides insights into our understanding of the origin of ophiolite-hosted diamond and the formation of podiform chromitite. Diamond-bearing peridotites and chromitites in ophiolites are important objects to discover new minerals from the deep earth and provide clues on the chemical composition and the physical condition of the deep mantle. Full article
(This article belongs to the Special Issue Gem Crystals)
Show Figures

Figure 1

9 pages, 1817 KB  
Article
Anharmonic Effects on the Thermodynamic Properties of Quartz from First Principles Calculations
by Mara Murri and Mauro Prencipe
Entropy 2021, 23(10), 1366; https://doi.org/10.3390/e23101366 - 19 Oct 2021
Cited by 3 | Viewed by 2920
Abstract
The simple chemistry and structure of quartz together with its abundance in nature and its piezoelectric properties make convenient its employment for several applications, from engineering to Earth sciences. For these purposes, the quartz equations of state, thermoelastic and thermodynamic properties have been [...] Read more.
The simple chemistry and structure of quartz together with its abundance in nature and its piezoelectric properties make convenient its employment for several applications, from engineering to Earth sciences. For these purposes, the quartz equations of state, thermoelastic and thermodynamic properties have been studied since decades. Alpha quartz is stable up to 2.5 GPa at room temperature where it converts to coesite, and at ambient pressure up to 847 K where it transforms to the beta phase. In particular, the displacive phase transition at 847 K at ambient pressure is driven by intrinsic anharmonicity effects (soft-mode phase transition) and its precise mechanism is difficult to be investigated experimentally. Therefore, we studied these anharmonic effects by means of ab initio calculations in the framework of the statistical thermodynamics approach. We determined the principal thermodynamic quantities accounting for the intrinsic anharmonicity and compared them against experimental data. Our results up to 700 K show a very good agreement with experiments. The same procedures and algorithms illustrated here can also be applied to determine the thermodynamic properties of other crystalline phases possibly affected by intrinsic anharmonic effects, that could partially invalidate the standard quasi-harmonic approach. Full article
Show Figures

Figure 1

19 pages, 5083 KB  
Article
Rheological Contrast between Quartz and Coesite Generates Strain Localization in Deeply Subducted Continental Crust
by Kouhei Asano, Katsuyoshi Michibayashi and Tomohiro Takebayashi
Minerals 2021, 11(8), 842; https://doi.org/10.3390/min11080842 - 4 Aug 2021
Cited by 6 | Viewed by 3764
Abstract
Deformation microstructures of peak metamorphic conditions in ultrahigh-pressure (UHP) metamorphic rocks constrain the rheological behavior of deeply subducted crustal material within a subduction channel. However, studies of such rocks are limited by the overprinting effects of retrograde metamorphism during exhumation. Here, we present [...] Read more.
Deformation microstructures of peak metamorphic conditions in ultrahigh-pressure (UHP) metamorphic rocks constrain the rheological behavior of deeply subducted crustal material within a subduction channel. However, studies of such rocks are limited by the overprinting effects of retrograde metamorphism during exhumation. Here, we present the deformation microstructures and crystallographic-preferred orientation data of minerals in UHP rocks from the Dabie–Shan to study the rheological behavior of deeply subducted continental material under UHP conditions. The studied samples preserve deformation microstructures that formed under UHP conditions and can be distinguished into two types: high-strain mafic–ultramafic samples (eclogite and garnet-clinopyroxenite) and low-strain felsic samples (jadeite quartzite). This distinction suggests that felsic rocks are less strained than mafic–ultramafic rocks under UHP conditions. We argue that the phase transition from quartz to coesite in the felsic rocks may explain the microstructural differences between the studied mafic–ultramafic and felsic rock samples. The presence of coesite, which has a higher strength than quartz, may result in an increase in the bulk strength of felsic rocks, leading to strain localization in nearby mafic–ultramafic rocks. The formation of shear zones associated with strain localization under HP/UHP conditions can induce the detachment of subducted crustal material from subducting lithosphere, which is a prerequisite for the exhumation of UHP rocks. These findings suggest that coesite has an important influence on the rheological behavior of crustal material that is subducted to coesite-stable depths. Full article
Show Figures

Figure 1

Back to TopTop