Discovery of Stishovite in the Prismatine-Bearing Granulite from Waldheim, Germany: A Possible Role of Supercritical Fluids of Ultrahigh-Pressure Origin
Abstract
:1. Introduction
2. Method and Sample
2.1. Method
2.2. Sample
3. Results
4. Discussion
5. Conclusions
6. Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stishov, S.M.; Popova, S.V. New dense polymorphic modification of silica (in Russian). Geokhimiya 1961, 10, 837–839. [Google Scholar]
- Chao, E.C.T.; Fahey, J.J.; Littler, J.; Milton, D.J. Stishovite, SiO2, a very high pressure new mineral from Meteor Crater, Arizona. J. Geophys. Res. Earth Surf. 1962, 67, 419–421. [Google Scholar] [CrossRef]
- Holtstam, D.; Broman, C.; Söderhielm, J.; Zetterqvist, A. First discovery of stishovite in an iron meteorite. Meteorit. Planet. Sci. 2003, 38, 1579–1583. [Google Scholar] [CrossRef]
- Tschauner, O. High-pressure minerals. Am. Miner. 2019, 104, 1701–1731. [Google Scholar] [CrossRef]
- Dobrzhinetskaya, L.F.; Faryad, S.W. Frontiers of Ultrahigh-Pressure Metamorphism: View from Field and Laboratory. In Ultrahigh-Pressure Metamorphism 25 Years After the Discovery of Coesite and Diamond; Chapter 1; Dobrzhinetskaya, L.F., Faryad, S.W., Wallis, S., Cuthbert, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2011; pp. 1–39. [Google Scholar]
- Kaminsky, F. Mineralogy of the lower mantle: A review of ‘super-deep’ mineral inclusions in diamond. Earth-Sci. Rev. 2012, 110, 127–147. [Google Scholar] [CrossRef]
- Grew, E.S.; Cooper, M.A.; Hawthorne, F.C. Prismatine: Revalidation for boron-rich compositions in the kornerupine group. Miner. Mag. 1996, 60, 483–491. [Google Scholar] [CrossRef]
- Werner, C.-D. Saxonian Granulites—Igneous or Lithogenous. A Contribution to the Geochemical Diagnosis of the Original Rocks in High-Metamorphic Complexes; ZfI-Mitteilungen: Leipzig, Germany, 1987; pp. 221–250. [Google Scholar]
- Rötzler, J.; Hagen, B.; Hoernes, S. Geothermometry of the ultrahigh-temperature Saxon granulites revised. Part I: New evidence from key mineral assemblages and reaction textures. Eur. J. Miner. 2008, 20, 1097–1115. [Google Scholar] [CrossRef]
- Hagen, B.; Hoernes, S.R. Geothermometry of the ultrahigh-temperature Saxon granulites revisited. Part II: Thermal peak conditions and cooling rates inferred from oxygen-isotope fractionations. Eur. J. Miner. 2008, 20, 1117–1133. [Google Scholar] [CrossRef]
- Zagorsky, V.Y. Deep fluid flow–melt interaction and problems of granite–pegmatite system petrogenesis. Abstracts in Granitic pegmatites: The state of the art. Memórias Porto 2007, 8, 106–107. [Google Scholar]
- Hurai, V.; Huraiova, M.; Slobodnik, M.; Thomas, R. Geofluids—Developments in Microthermometr, Spectroscopy, Thermodynamics, and Stable Isotopes; Elsevier: Amsterdam, The Netherlands, 2015; 489p. [Google Scholar]
- Lafuente, B.; Downs, R.T.; Yang, H.; Stone, N. The power of databases: The RRUFF project. In Highlights in Mineralogical Crystallography; Armbruster, T., Danisi, R.M., Eds.; De Gruyter: Berlin, Germany; München, Germany; Boston, MA, USA, 2016; pp. 1–30. ISBN 9783110417104. [Google Scholar]
- Grew, E.S. A second occurrence of Kornerupine in Waldheim, Saxony, German Democratic Republic. Z. Geol. Wiss. 1989, 17, 67–76. [Google Scholar]
- Thomas, R.; Grew, E. Coesite Inclusions in Prismatine from Waldheim, Germany: New Constraints on the Pressure-Temperature Evolution of the Saxony Granulite Complex; Book of Abstracts, 3rd European Mineralogical Conference; EMC: Cracow, Poland, 2021; p. 391. [Google Scholar]
- Ono, S.; Kikegawa, T.; Higo, Y.; Tange, Y. Precise determination of the phase boundary between coesite and stishovite in SiO. Phys. Earth Planet. Inter. 2017, 264, 1–6. [Google Scholar] [CrossRef]
- Hemley, R.J. Pressure dependence of Raman spectra of SiO2 polymorphs: A-quartz, coesite, and stishovite. In High-Pressure Research in Mineral Physics; Manghnani, M.H., Syona, Y., Eds.; Terra Scientific Publishing Company (TERRAPUB): Tokyo, Japan; American Geophysical Union: Washington, DC, USA, 1987; pp. 347–359. [Google Scholar]
- Hemley, R.J.; Mao, H.-K.; Chao, E.C.T. Raman spectrum of natural and synthetic stishovite. Phys. Chem. Miner. 1986, 13, 285–290. [Google Scholar] [CrossRef]
- Nisr, C.; Shim, S.-H.; Leinenweber, K.; Chizmeshya, A. Raman spectroscopy of water-rich stishovite and dense high-pressure silica up to 55 GPa. Am. Miner. 2017, 102, 2180–2189. [Google Scholar] [CrossRef]
- Lin, Y.; Hu, Q.; Meng, Y.; Walter, M.; Mao, H.-K. Evidence for the stability of ultrahydrous stishovite in Earth’s lower mantle. Proc. Natl. Acad. Sci. USA 2019, 117, 184–189. [Google Scholar] [CrossRef] [PubMed]
- Zong, A.; Kogar, A.; Bie, Y.-Q.; Rohwer, T.; Lee, C.; Baldini, E.; Ergeçen, E.; Yilmaz, M.B.; Freelon, B.; Sie, E.J.; et al. Evidence for topological defects in a photoinduced phase transition. Nat. Phys. 2019, 15, 27–31. [Google Scholar] [CrossRef]
- Zhai, K.; Xue, W.; Wang, H.; Wu, X.; Zhai, S. Raman spectra of sillimanite, andalusite, and kyanite at various temperatures. Phys. Chem. Miner. 2020, 47, 23. [Google Scholar] [CrossRef]
- Gigl, P.D.; Dachille, F. Effect of Pressure and Temperature on the Reversal Transitions of Stishovite. Meteoritics 1968, 4, 123–136. [Google Scholar] [CrossRef]
- Hemley, R.J.; Prewitt, C.T.; Kingma, K.J. Chapter high-pressure behavior of silica. Silica 1994, 29, 41–82. [Google Scholar] [CrossRef]
- Lakshtanov, D.L.; Litasov, K.D.; Sinogeikin, S.V.; Hellwig, H.; Li, J.; Ohtani, E.; Bass, J.D. Effect of Al3+ and H+ on the elastic properties of stishovite. Am. Miner. 2007, 92, 1026–1030. [Google Scholar] [CrossRef]
- Kalkowsky, E. Der Korundgranulit von Waldheim in Sachsen. In Abhandlungen der Naturwissenschaftlichen Gesellschaft ISIS in Dresden; Hofbuchhandlung H. Burdach: Dresden, Germany, 1907; Volume 2, pp. 47–65. [Google Scholar]
- Thomas, R.; Davidson, P.; Rericha, A. Prismatine granulite from Waldheim/Saxony: Zircon-Reidite. J. Earth Envi. Sci. JEES-103 2022, 1, 1–3. [Google Scholar]
- Scheumann, K.H. Das Kornerupingestein von Waldheim in Seinem Genetischen Zusammenhang. Abhandlungen der Sächsischen Akademie der Wissenschaften zu Leipzig. Mathematisch-naturwissenschaftliche Klasse 1960, 47, 22. [Google Scholar]
- Thomas, R.; Davidson, P.; Rericha, A.; Voznyak, D. Water-Rich Melt Inclusion as “Frozen” Samples of the Supercritical State in Granites and Pegmatites Reveal Extreme Element Enrichment Resulting Under Non-Equilibrium Conditions. Miner. J. 2022, 44, 3–15. [Google Scholar] [CrossRef]
- Arndt, N.T.; Guitreau, M.; Boullier, A.-M.; Le Roex, A.; Tommasi, A.; Cordier, P.; Sobolev, A. Olivine, and the origin of kimberlite. J. Petrol. 2010, 51, 573–602. [Google Scholar] [CrossRef] [Green Version]
- Ni, H.; Zhang, L.; Xiong, X.; Mao, Z.; Wang, J. Supercritical fluids at subduction zones: Evidence, formation condition, and physicochemical properties. Earth-Sci. Rev. 2017, 167, 62–71. [Google Scholar] [CrossRef]
- Manning, C.E. The Influence of Pressure on the Properties and Origins of Hydrous Silicate Liquids in Earth’s Interior. In Magmas Under Pressure; Chapter 3; Kono, Y., Sanloup, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 83–113. [Google Scholar]
- Thomas, R.; Davidson, P.; Appel, K. The enhanced element enrichment in the supercritical states of granite–pegmatite systems. Acta Geochim. 2019, 38, 335–349. [Google Scholar] [CrossRef]
Nr. | Coesite | α-Quartz | Cristobalite | Kokchetavite | Corundum | [ν3(T2)] | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1a | 76.1 | 175.8 | 273.1 | 339.2 | 527.4 | 1147.0 | 458.3 | 213.5 | 416.8 | 784.2 | 398.9 | 840.1 | - | - | 959.2 |
1b | 69.3 | 167.5 | 267.6 | 332.3 | 521.3 | 1141.1 | 453.7 | - | 414.7 | - | 382.1 | 838.4 | 382.1 | 632.9 | 953.2 |
2a | - | 176.1 | 273.1 | 339.3 | 527.3 | 1146.6 | 458.3 | 218.0 | 416.0 | 781.1 | 389.9 | 826.8 | - | - | 958.7 |
2b | 69.3 | 169.2 | 267.6 | 332.3 | 521.3 | 1141.1 | 452.1 | - | 416.5 | - | - | - | 383.7 | 634.5 | 954.7 |
3a | - | 175.9 | 273.2 | 339.4 | 527.4 | 1146.8 | 458.3 | 214.8 | 415.8 | 786.7 | 389.9 | 843.5 | - | - | 959.0 |
3b | - | 170.8 | 267.6 | 332.3 | 521.3 | 1141.1 | 452.1 | - | 417.5 | - | - | 836.7 | 383.7 | 636.0 | 953.2 |
4a | 84.4 | 175.8 | 273.1 | 339.3 | 527.5 | 1147.2 | 447.0 | - | 416.4 | 787.6 | 390.0 | 840.9 | - | 639.9 | 959.0 |
4b | - | 169.2 | 267.6 | 333.9 | 521,3 | 1142.6 | 452.1 | 417.5 | - | - | - | 383.7 | 634.5 | 954.7 | |
5a | - | 175.7 | 273.1 | 339.2 | 527.3 | 1146.2 | 458.4 | 211.7 | 416.8 | 787.8 | 390.0 | 840.0 | 390.0 | 639.8 | 958.5 |
5b | - | 166.4 | 264.8 | 329.6 | 518.5 | 1130.8 | 449.3 | - | 414.7 | - | - | 832.7 | 380.9 | 633.2 | 951.9 |
6a | 76.6 | 175.9 | 273.5 | 339.6 | 527.6 | 1147.0 | 458.7 | - | 414.1 | 787.1 | 390.4 | 839.9 | - | 640.2 | 958.9 |
6b | - | 169.2 | 267.6 | 333.9 | 521.3 | 1139.7 | 452.1 | - | 416.5 | - | - | 835.7 | 383.7 | 634.5 | 953.2 |
7a | 76.2 | 176.3 | 273.5 | 339.6 | 527.7 | 1147.6 | 458.6 | 213.8 | 422.8 | 782.9 | 390.2 | 840.5 | - | 639.8 | 959.4 |
7b | - | - | 267.6 | 333.6 | 522.0 | 1141.3 | 463.2 | - | 416.0 | - | - | - | 384.7 | 635.3 | 953.4 |
8a | 76.0 | 176.6 | 273.3 | 339.5 | 527.6 | 1147.4 | 458.6 | 212.4 | 422.9 | 779.6 | 390.1 | 841.3 | - | 639.3 | 959.6 |
8b | - | 167.0 | 264.8 | 330.7 | 519.0 | 1138.0 | 450.2 | - | 416.2 | - | - | 832.0 | 381.7 | 631.8 | 950.5 |
9a | 76.0 | 176.4 | 273.8 | 339.8 | 527.9 | 1147.4 | 458.8 | 213.5 | 414.3 | 782.4 | 390.5 | 839.6 | - | 640.6 | 969.7 |
9b | - | 170.5 | 267.5 | 333.7 | 522.1 | 1144.6 | 452.9 | - | 416.5 | - | - | 836.4 | 384.3 | 634.9 | 953.8 |
10a | 76.0 | 176.4 | 273.8 | 339.8 | 572.9 | 1147.4 | 458.8 | 213.5 | 414.3 | 782.4 | 390.5 | 839.6 | - | 640.6 | 959.7 |
10b | 72.0 | 171.2 | 258.3 | 335.0 | 523.2 | 1143.5 | 451.5 | - | - | - | - | - | 386.4 | - | 957.7 |
11a | 76.0 | 176.0 | 271.5 | 339.5 | 527.7 | 1147.7 | - | 213.8 | 414.3 | - | 386.2 | - | 386.2 | - | 963.3 |
11b | 69.7 | - | 260.7 | 332.7 | 521.0 | 1144.1 | 455.7 | - | 414.3 | - | - | 830.5 | 383.4 | - | 952.5 |
12a | 78.3 | 176.8 | 273.8 | 340.0 | 528.2 | 1147.9 | 459.0 | 214.1 | 414.4 | 781.6 | 390.5 | 841.2 | - | 641.0 | 960.2 |
12b | 71.6 | 169.5 | 266.2 | 332.6 | 521.5 | 1141.2 | 452.3 | - | 416.2 | - | - | 836.4 | 382.4 | 634.7 | 951.9 |
13a | 75.0 | 174.4 | 271.9 | 338.0 | 526.1 | 1145.7 | 457.5 | 211.7 | 412.2 | 793.6 | 388.5 | 835.3 | 388.5 | 638.3 | 957.8 |
13b | 68.0 | 166.3 | 265.7 | 331.4 | 519.7 | 1139.6 | 447.9 | - | 412.3 | - | - | - | 382.5 | 633.3 | 952.1 |
14a | 75.5 | 175.8 | 273.0 | 339.5 | 527.5 | 1147.2 | 455.5 | 213.8 | 413.8 | 791.8 | 389.9 | 833.3 | - | 640.0 | 958.4 |
15a | 71.6 | - | 270.3 | 336.8 | 525.1 | - | 460.6 | 210.8 | 418.3 | - | 389.9 | . | 378.5 | - | 952.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thomas, R.; Davidson, P.; Rericha, A.; Recknagel, U. Discovery of Stishovite in the Prismatine-Bearing Granulite from Waldheim, Germany: A Possible Role of Supercritical Fluids of Ultrahigh-Pressure Origin. Geosciences 2022, 12, 196. https://doi.org/10.3390/geosciences12050196
Thomas R, Davidson P, Rericha A, Recknagel U. Discovery of Stishovite in the Prismatine-Bearing Granulite from Waldheim, Germany: A Possible Role of Supercritical Fluids of Ultrahigh-Pressure Origin. Geosciences. 2022; 12(5):196. https://doi.org/10.3390/geosciences12050196
Chicago/Turabian StyleThomas, Rainer, Paul Davidson, Adolf Rericha, and Ulrich Recknagel. 2022. "Discovery of Stishovite in the Prismatine-Bearing Granulite from Waldheim, Germany: A Possible Role of Supercritical Fluids of Ultrahigh-Pressure Origin" Geosciences 12, no. 5: 196. https://doi.org/10.3390/geosciences12050196
APA StyleThomas, R., Davidson, P., Rericha, A., & Recknagel, U. (2022). Discovery of Stishovite in the Prismatine-Bearing Granulite from Waldheim, Germany: A Possible Role of Supercritical Fluids of Ultrahigh-Pressure Origin. Geosciences, 12(5), 196. https://doi.org/10.3390/geosciences12050196