Anharmonic Effects on the Thermodynamic Properties of Quartz from First Principles Calculations
Abstract
:1. Introduction
2. Methods and Computational Details
2.1. Strategy of Computation
2.2. Computational Details
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ballato, A. Basic material quartz and related innovations. In Piezoelectricity; Springer: Berlin/Heidelberg, Germany, 2008; pp. 9–35. [Google Scholar] [CrossRef]
- Zhang, Q.; Sanchez-Fuentes, D.; Desgarceaux, R.; Escofet-Majoral, P.; Oró-Soler, J.; Gázquez, J.; Larrieu, G.; Charlot, B.; Gómez, A.; Gich, M.; et al. Micro/nanostructure engineering of epitaxial piezoelectric α-quartz thin films on silicon. ACS Appl. Mater. Interfaces 2019, 12, 4732–4740. [Google Scholar] [CrossRef]
- Carpenter, M.A.; Salje, E.K.H.; Graeme-Barber, A.; Wruck, B.; Dove, M.T.; Knight, K.S. Calibration of excess thermodynamic properties and elastic constant variations associated with the alpha-beta phase transition in quartz. Am. Mineral. 1998, 83, 2–22. [Google Scholar] [CrossRef] [Green Version]
- Angel, R.J.; Bismayer, U. Renormalization of the phase transition in lead phosphate, Pb3(PO4)2, by high pressure: Lattice parameters and spontaneous strain. Acta Crystallogr. Sect. B Struct. Sci. 1999, 55, 896–901. [Google Scholar] [CrossRef]
- Holland, T.J.B.; Powell, R. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. J. Met. Geol. 2011, 29, 333–383. [Google Scholar] [CrossRef]
- Wang, J.; Mao, Z.; Jiang, F.; Duffy, T. Elasticity of single-crystal quartz to 10 GPa. Phys. Chem. Miner. 2015, 42, 203–212. [Google Scholar] [CrossRef]
- Scheidl, K.S.; Kurnosov, A.; Trots, D.M.; Boffa Ballaran, T.; Angel, R.J.; Miletich, R. Extending the single-crystal quartz pressure gauge up to hydrostatic pressure of 19 GPa. J. Appl. Crystallogr. 2016, 49, 2129–2137. [Google Scholar] [CrossRef]
- Angel, R.J.; Alvaro, M.; Miletich, R.; Nestola, F. A simple and generalised P-T-V EoS for continuous phase transitions, implemented in EosFit and applied to quartz. Contrib. Mineral. Petrol. 2017, 172, 29. [Google Scholar] [CrossRef]
- Murri, M.; Mazzucchelli, M.L.; Campomenosi, N.; Korsakov, A.V.; Prencipe, M.; Mihailova, B.; Scambelluri, M.; Angel, R.J.; Alvaro, M. Raman elastic geobarometery for anisotropic mineral inclusions. Am. Mineral. 2018, 103, 1869–1872. [Google Scholar] [CrossRef]
- Murri, M.; Alvaro, M.; Angel, R.J.; Prencipe, M.; Mihailova, B.D. The effects of non-hydrostatic stress on the structure and properties of alpha-quartz. Phys. Chem. Miner. 2019, 46, 487–499. [Google Scholar] [CrossRef]
- Angel, R.J.; Murri, M.; Mihailova, B.; Alvaro, M. Stress, Strain and Raman Shifts. Z. Krist. Cryst. Mater. 2019, 234, 129–140. [Google Scholar] [CrossRef] [Green Version]
- Bonazzi, M.; Tumiati, S.; Thomas, J.B.; Angel, R.J.; Alvaro, M. Assessment of the reliability of elastic geobarometry with quartz inclusions. Lithos 2019, 350–351, 105201. [Google Scholar] [CrossRef]
- Gonzalez, J.P.; Thomas, J.B.; Baldwin, S.L.; Alvaro, M. Quartz-in-garnet and Ti-in-quartz thermobarometry: Methodology and first application to a quartzofeldspathic gneiss from eastern Papua New Guinea. J. Met. Geol. 2019, 37, 1193–1208. [Google Scholar] [CrossRef]
- Mazzucchelli, M.L.; Burnley, P.; Angel, R.J.; Morganti, S.; Domeneghetti, M.C.; Nestola, F.; Alvaro, M. Elastic geothermobarometry: Corrections for the geometry of the host-inclusion system. Geology 2018, 46, 231–234. [Google Scholar] [CrossRef] [Green Version]
- Mazzucchelli, M.L.; Reali, A.; Morganti, S.; Angel, R.J.; Alvaro, M. Elastic geobarometry for anisotropic inclusions in cubic hosts. Lithos 2019, 350–351, 105218. [Google Scholar] [CrossRef]
- Alvaro, M.; Mazzucchelli, M.L.; Angel, R.J.; Murri, M.; Campomenosi, N.; Scambelluri, M.; Nestola, F.; Korsakov, A.; Tomilenko, A.A.; Marone, F.; et al. Fossil subduction recorded by quartz from the coesite stability field. Geology 2020, 48, 24–28. [Google Scholar] [CrossRef]
- Bose, K.; Ganguly, J. Quartz-coesite transition revisited: Reversed experimental determination at 500–1200 °C and retrieved thermochemical properties. Am. Mineral. 1995, 80, 231–238. [Google Scholar] [CrossRef]
- Prencipe, M.; Scanavino, I.; Nestola, F.; Merlini, M.; Civalleri, B.; Bruno, M.; Dovesi, R. High-pressure thermo-elastic properties of beryl (Al4Be6Si12O36) from ab initio calculations, and observations about the source of thermal expansion. Phys. Chem. Miner. 2011, 38, 223–239. [Google Scholar] [CrossRef]
- Prencipe, M. Quantum mechanics in Earth sciences: A one-century-old story. Rend. Lincei. Sci. Fis. E Nat. 2019, 30, 239–259. [Google Scholar] [CrossRef]
- Dovesi, R.; Erba, A.; Orlando, R.; Zicovich-Wilson, C.M.; Civalleri, B.; Maschio, L.; Rérat, M.; Casassa, S.; Baima, J.; Salustro, S.; et al. Quantum-mechanical condensed matter simulations with CRYSTAL. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2018, 8, 1–36. [Google Scholar] [CrossRef]
- Wu, Z.; Cohen, R.E. More accurate generalized gradient approximation for solids. Phys. Rev. B 2006, 73. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pascale, F.; Zicovich-Wilson, C.M.; Orlando, R.; Roetti, C.; Ugliengo, P.; Dovesi, R. Vibration frequencies of Mg3Al2Si3O12 pyrope. An ab initio study with the CRYSTAL code. J. Phys. Chem. B 2005, 109, 6146–6152. [Google Scholar] [CrossRef] [PubMed]
- Valenzano, L.; Torres, F.J.; Doll, K.; Pascale, F.; Zicovich-Wilson, C.M.; Dovesi, R. Ab initio study of the vibrational spectrum and related properties of crystalline compounds; the case of CaCO3 calcite. Z. Phys. Chem. 2006, 220, 893–912. [Google Scholar] [CrossRef]
- Stangarone, C.; Angel, R.J.; Prencipe, M.; Campomenosi, N.; Mihailova, B.; Alvaro, M. Measurement of strains in zircon inclusions by Raman spectroscopy. Eur. J. Mineral. 2019, 31, 685–694. [Google Scholar] [CrossRef] [Green Version]
- Prencipe, M. Mauro-Prencipe/QM-thermodynamics: QmTh-v2.4.1-alpha (Version 2.4.1). Zenodo. 2 July 2021. Available online: https://doi.org/10.5281/zenodo.5061097 (accessed on 2 July 2021).
- Richet, P.; Bottinga, Y.; Denielou, L.; Petitet, J.P.; Tequi, C. Thermodynamic properties of quartz, cristobalite and amorphous SiO2: Drop calorimetry measurements between 1000 and 1800 K and a review from 0 to 2000 K. Geochim. Cosmochim. Acta 1982, 46, 2639–2658. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murri, M.; Prencipe, M. Anharmonic Effects on the Thermodynamic Properties of Quartz from First Principles Calculations. Entropy 2021, 23, 1366. https://doi.org/10.3390/e23101366
Murri M, Prencipe M. Anharmonic Effects on the Thermodynamic Properties of Quartz from First Principles Calculations. Entropy. 2021; 23(10):1366. https://doi.org/10.3390/e23101366
Chicago/Turabian StyleMurri, Mara, and Mauro Prencipe. 2021. "Anharmonic Effects on the Thermodynamic Properties of Quartz from First Principles Calculations" Entropy 23, no. 10: 1366. https://doi.org/10.3390/e23101366
APA StyleMurri, M., & Prencipe, M. (2021). Anharmonic Effects on the Thermodynamic Properties of Quartz from First Principles Calculations. Entropy, 23(10), 1366. https://doi.org/10.3390/e23101366