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Abstract: The need to get rid of solid waste in the environment necessitates the incorporation of
waste glass powder (WGP) in mortar and concrete. The blending of WGP (G) with ordinary Portland
cement (OPC) is a valorization technique that is not only cost efficient but also environmentally
friendly. The replacement level is denoted as CxG10−x, where x is 0–20 wt.% at an interval of 5 wt.%
in mortar (w/b = 0.4) and 0, 10, 20 and 30 in concrete (w/b = 0.42). The study investigates the effects
of glass on the setting, workability, thermal resistance, microstructure, mineral phases and bond
characteristics of silicon and hydroxyl-based compounds and C-O vibrations. It also provides the
model equations for strength characteristics in terms of OPC, G and ages in mortar and concrete on
one hand and investigates the residual strength and density of glass blended concrete at elevated
temperature (550 ◦C) on the other. It is found that glass enhances the workability, reduces the setting
time and density and enhances the residual strength and density of concrete. The presence of glass
leads to the formation of coesite and microstructural distortion and decreases the Ca/Si ratio. Besides,
the bond characteristics of the binder are significantly affected, while the thermal residual strength
capacity in glass blended concrete (C80G20) is 40.4% and 75.14% lower than that in OPC concrete
(C100G0) because of the low thermal conduction of glass particles. The optimum glass content in
mortar and concrete to produce 33 MPa (28 days) and 47 MPa (90 days) is found to be 10 wt.% and
20 wt.%, respectively.

Keywords: glass waste powder; cement; density; microstructure; consistency; compressive strength

1. Introduction

Carbon dioxide proliferation has been a major challenge facing our environment due
to its contribution to the global warming effect. Civil engineers have a responsibility
to minimize the use of cement as a source of carbon dioxide (CO2) being released into
the atmosphere. The reason for this is that the disintegration of limestone is essential to
obtain lime as the main ingredient for cement production. In addition, the accumulation
of glass wastes in landfill is ubiquitous due to auto crashes, automobile repair and the
fabrication of glass windows in the building industry. These wastes constitute 7% of the
world’s solid wastes, and plain glass was reported to form the majority of this waste [1].
The utilization of 6 tons of glass waste could reduce a tonnage of CO2, thereby reducing
cement production by 14% [1]. In 2018, the USA generated about 12.3 million tons of
glass waste, which accounts for about 4.2% of the total municipal solid waste (MSW).
The Environmental Protection Agency (EPA) aggregated data from the Glass Packaging
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Institute (GPI), estimating recyclable glass to total 3.1 million tons at a recyclable rate of
31.3% [2], In Australia, the annual amount of recyclable glass totals 1 million tons [3,4].

Lu et al. [5] reported the advantages of using waste glass powder as a replacement
of the cementitious material on the properties of the architectural cement mortars. The
waste glass powder controls the workability and hydration reaction and increases the
flexural strength of cement. It also performs the role of microfilling within the pores, with
an improvement in the strength at curing period of 90 days. The size of glass waste has
been reported to play a significant role on the glass pozzolanic reactivity [6]. Shi et al. [6]
asserted that a size of 20–44 microns has better pozzolanic reactivity than 5–20 microns and
74–150 microns, while thermogravimetric and differential scanning calorimetric analysis
(TGA/DSC) showed the depletion of portlandite in favor of CSH gel formation.

Shi et al. [6] reported that the optimum replacement level of glass waste in mortar is
in the range between 10% and 20%, respectively. Simonova et al. [7] observed that borosili-
cate glass waste does not significantly contribute to the consistency of mortar and added
that glass less than 10 wt.% can be incorporated without adversely affecting the strength
performance of the mixture. To achieve better durability performance, finer glass at 20%wt
replacement was recommended in mortar [8]. The microstructure analysis showed well
distributed spherical particles within the cement matrix, with consequently less density in
comparison with cement/blast furnace slag precursor (up to 26%) due to the presence of an
internal bubble system that accompanies its spherical shape. Shoaei et al. [9] also studied
the performance of glass powder in OPC and alkaline activated slag binder. A reduction
in expansion and the prevention of shrinkage in the mortar were reported among the
advantages of glass incorporation. In [10], the authors also used waste glass in partial re-
placement for OPC to control expansion and found that clear glass increased the expansion
while green and brown decreased the expansion due to alkali silica reactivity (ASR).

Moreover, [11] asserted that using glass waste as fine aggregate reduces the flowa-
bility and density of the mortar but not the drying shrinkage and air content. Li et al. [1]
identified the contribution of size of glass powder to the fluidity, strength and microstruc-
tural performances of the resultant mortars. In [12], the authors also established that a
size lower than 25 microns would result in higher pozzolanic reactivity. However, this
study was restricted to only mortar samples without considering equivalent concrete
characteristics. Lu et al. [13] correlated prolonged setting, workability (flowability) and
the early hydration process to the quantity of waste powder [13], and Sadati and Khayat
maintained that the inclusion of glass powder decreases the rheology of the mixture by
increasing the plastic viscosity of mortar while the rate of structural build-up decreased
from 0.118 to 0.013 Pa/s [14].

In [15], the authors used glass waste as fine and coarse aggregates and asserted that
sample levels lower than 25% could be used without any significant disintegration in
strength, but neither microstructural analysis nor mineral phase identification were studied.
In [16], the authors also used a cathode ray tube as fine aggregate, and the result showed
that concrete at more than 45 MPa with a better expansion of less than 0.1% could be
achieved. In [7], the authors reported a decrease in the mechanical strengths (tensile and
flexural) and fracture parameters due to replacement of ordinary Portland cement (OPC)
with glass waste at 3–20 wt.% of cement. The presence of glass reduces early strength
development in mortar and concrete with a water–binder ratio of 0.53 [17]. The presence of
glass could protect against the early formation of C-S-H gel [3]. In [18], the authors reported
that glass fume (GF) nanoparticles similar in characteristics to silica fume (SF) can be
developed by using radio frequency induction coupled-plasma spheroidization technology.
The material underwent pozzolanic reaction with portlandite, thereby increasing early age
performance and strength development that influenced long-term mortar characteristics.

Kamali and Ghahremaninezhad [19] also reported the contribution of glass waste
to later time hydration reaction, microstructural refinement and non-evaporable water
content. Moreover, the concrete blocks produced from the waste glass cullet enhanced
the fresh properties and displayed high resistance to acidic attack, thermal exposure and
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drying shrinkage and possessed low water absorption mainly due to the non-absorbent
nature of glass, thereby enhancing its durability advantage [16,20]. In [7], the authors found
that borosilicate glass powder decreased the fracture toughness, modulus of elasticity and
fracture energy except for the partial substitution of OPC, which was less than 10%.

Karen Zheng [21] reported the potency of glass reactivity and pozzolanicity in the
formation of a calcium-dominated rim due to the formation of C-S-H by using pore solu-
tions. The formation of this secondary product leads to the proliferation of aluminum and
sodium, which causes the prevention of formation of dissolved silica from the aggregate.
In [22], the authors also reported a reduction in thermal conductivity and sorptivity when
nano-silica and brown soda-lime waste glass powder were used as fine aggregate in cement
mortar [22]. Recycled cathode ray tube glass was also used as fine aggregate to improve the
workability and shrinkage performance of mortar [23,24]. Crack and corrosion reduction
were among the other advantages of using glass as aggregates in mortar [25]. In [26], the
authors exposed glass blended mortar to temperatures of 500 ◦C and 800 ◦C. Better per-
formance was experienced in glass blended mortar below 500 ◦C, but worse performance
was recorded within 500–800 ◦C with reference to the control while the strength loss was
adduced to the dehydration of portlandite [26]. The strength loss of partial Portland cement
replacement in mortar by the fine glass powder cementitious materials was studied by [26].
This study showed that 20% glass powder mortar mix had the highest residual strength
(15% loss) due to the reduction in portlandite in the mixture. The incorporation of glass
waste into concrete containing silica fume and flyash had low density and absorption,
even though compressive and tensile strength were lower than the value obtained from
conventional concrete [27]. In [28], the authors conducted a review on silica fume and glass
powder, while in recent times, the authors of [29] investigated ternary blended concrete
containing silica fume, waste glass powder and ordinary Portland cement.

Most of these studies reported the strength performance of glass within 28 days and
durability characteristics such as shrinkage, absorption and thermal properties of paste
and mortars. This study focuses on both mortar and concrete in terms of fresh properties,
strength characteristics with predicting models and thermal performance of concrete pre-
pared at a lower cement ratio. Furthermore, the study also presents an understanding of
the microstructural characteristics, mineral phases, and bond characteristics of Si-O-Si, -OH
and C-O using scanning electron microscope/energy dispersive spectroscopy, X-ray diffrac-
tion and Fourier Transform Infrared spectroscopy, respectively. This study gives a better
understanding of the behavior of concrete in terms of strength and thermal performance
for infrastructural applications.

2. Materials and Methods
2.1. Raw Materials
2.1.1. Ordinary Portland Cement

Type I cement was used in accordance with ASTM C 150 [30] with an apparent specific
gravity (water) of 3.15. The oxide composition of ordinary Portland cement (OPC) is shown
in Table 1.

Table 1. Oxide composition of raw materials.

Oxides Cement Glass

SiO2 20.17 68.1
Al2O3 5.58 0.9
Fe2O3 2.86 0.6
CaO 63.51 14.5
MgO 3.15 1.8
Na2O 0.12 12.2
K2O 0.57 0.8
SO3 2.56 0.4

SiO2 + Al2O3 + Fe2O3 26.89 69.6
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Table 1. Cont.

Oxides Cement Glass

Specific gravity (water) 3.14 2.48
Specific surface area (m2/kg) 329.5 223.0

LOI (%) 2.80 0.80

2.1.2. Glass Waste

The glass waste used for this study was collected from the dumpsite located along
Sinaya Road, Hafr Al-Batin, in the eastern province of Saudi Arabia, as shown in Figure 1.
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Figure 1. Glass waste at dumpsite in Hafr Al-Batin.

Glass waste was first crushed by a Los Angeles grinding machine before being further
ground by a grinding machine with a titanium blade with a 1400 W power rating operating
at 220 V and 60 Hz. The oxide composition of cement and glass wastes as obtained from
x-ray fluorescence (XRF) is presented in Table 1. The X-ray diffractions (XRD) of the glass
waste and cement powder are presented in Figure 2.
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The specific surface areas (BET) of WGP were determined using Micromeritics ASAP2020
via nitrogen gas adsorption. The morphologies of WGP and cement powder were evaluated
using a JSM-5800LV scanning electron microscope (Figure 3).
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Figure 3. SEM micrographs of raw materials: (a) cement powder and (b) glass waste powder.

2.1.3. Fine and Coarse Aggregates

Natural sand was used, with a passing sieve 2.36 mm (No. 8) in accordance with
the condition in ASTM C 157/C 157M-08, while the ratio of fine to total aggregate was
maintained at 0.4. The cement to fine aggregate ratio was 2.75, while the fine to total
aggregate ratio was 0.4. Table 2 shows the fineness modulus and saturated dry density
(SSD) value of the fine aggregates. The coarse aggregates had a relative density of 2.54
while absorption was 2%. The aggregates included 10 mm and 20 mm sizes in balanced
proportion by weight.

Table 2. Property of fine aggregate.

Property Values

Fineness modulus 2.61
Specific gravity 2.57

2.1.4. Superplasticizer

Commercially available Glenum® superplasticizer based on polycarboxylic ether
(PCE) was used in accordance with ASTM C 494 Types A and F [31]. In all of the mixture,
0.5 wt.% of the total binder was used to enhance the workability of the mortar and concrete.

2.2. Experimental Design and Methods
Mix Design

The total amount of binder was 350 kg (cement and glass) in 1 m3 of mortar. Glass par-
tially replaced OPC such that (G/(OPC + G)) was 0.05, 0.1, 0.15 and 0.2. The water/binder
ratio was 0.4 and the superplasticizer was 0.5% by the weight of the binder, while the
sand/binder ratio was 2.7. The samples were designated as MG0, MG5, MG10, MG15 and
MG 20, as shown in Table 3.

Similarly, the total amount of binder in concrete was also 350 kg (cement and glass) in
1 m3. Glass powder partially replaced OPC such that (G/(OPC + G)) was 0.1, 0.2 and 0.3.
The water/binder ratio was 0.42 and the superplasticizer was 0.5% by the weight of
the binder, while the fine aggregate to total aggregate ratio was 0.4. The samples were
designated as C100G0, C90G10, C80G20 and C70G30, as shown in Table 4.
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Table 3. Mixture proportion in 1 m3 cement–glass binary blended mortar.

Sample
ID

Water
(kg/m3)

Sand
(kg/m3)

Cement *
(kg/m3)

Glass Waste
* (kg/m3)

Superplasticizers
(kg/m3)

Sand
Absorption (%)

w/c
Ratio

Sand/Binder
Ratio

MG0 140 962.5 350 0 4.95 1.75 0.4 2.75
MG5 140 962.5 332.5 17.5 4.95 1.75 0.4 2.75
MG10 140 962.5 297.5 35 4.95 1.75 0.4 2.75
MG15 140 962.5 243.5 54 4.95 1.75 0.4 2.75
MG20 140 962.5 173.5 70 4.95 1.75 0.4 2.75

* Total binder = cement + glass powder.

Table 4. Mixture proportion in 1 m3 of cement–glass binary blended concrete.

Mixes Cement *
(kg/m3)

Glass *
(kg/m3)

Fine Aggregate
(kg/m3)

Coarse Aggregate
(kg/m3)

Water
(kg/m3)

SP
(kg/m3)

w/Binder
Ratio

Fine/Total
Aggregates

C100G0 350 0 767 1128 147 1.75 0.42 0.40
C90G10 315 35 735 1120 147 1.75 0.42 0.40
C80G20 280 70 738 1120 147 1.75 0.42 0.40
C70G30 245 105 737 1120 147 1.75 0.42 0.40

* C100G0 means 100% cement and zero percent glass.

2.3. Sample Preparation

The required quantities of materials were measured and mixed with the aid of a
Hobart planetary bench mixer with the capacity of 10 L. The mixing of the materials was in
three stages. First, the cement and glass waste powder were mixed dry for 3 min. Secondly,
the sand was added and mixed for 3 min before being cast in two layers as mortar samples
in 50 mm × 50 mm × 50 mm. For concrete, the process was repeated, the coarse aggregate
was added for 3 min, and the total mixture was mixed continuously and homogenously
for an additional 3 min. The resulting mortar and concrete were placed in the oil-smeared
mold in three layers in 100 mm × 100 mm × 100 mm steel molds, respectively. Each layer
was vibrated for 30 s using a Liya mechanical vibrating table to remove any entrapped air
from the mixture. Surface smoothening of the specimen was carried out with a hand trowel
to obtain a level surface. The mortar and concrete samples were then covered with a plastic
sheet to prevent moisture loss. Afterward, the specimens were kept in the laboratory at
20 ± 5 ◦C for 24 h before being demolded after 24 h. The specimens were cured in a water
curing tank under a normal condition of 20 ± 5 ◦C until they were ready for testing at
3, 7, 14, 28 and 90 days.

2.4. Evaluation Methods
2.4.1. Setting Time and Workability

The initial and final setting times of the cement–glass blended paste were determined
in accordance with ASTM C191 [32], and the workability of cement–glass blended mortar
was measured in accordance with ASTM C1437 [33].

2.4.2. Compressive Strength

The compressive strength of the cement–glass blended mortar at was determined at
3, 7, 14 and 28 days, while that of concrete samples were determined at 3, 7, 14, 28, 56 and
90 days in accordance with ASTM C109 [34] and BS EN 12390-1:2000, respectively [35].
A Liya digital compression testing machine was used to determine compressive strength at
a loading rate of 0.9 kN/s.

2.4.3. Density of the Sample

The density of the samples was determined after wiping the surface water to achieve
saturated surface dry (SSD) density conditions by dividing the mass with the volume of
the sample.
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2.4.4. Thermal Treatment of Concrete

Concrete samples were exposed to an elevated temperature of 550 ◦C at an incremental
rate of 4◦/min. The concrete samples were removed after cooling, their densities were
determined, and then they were crushed for residual strength measurement.

2.4.5. Microstructural Characterization of the Specimens

An X-ray diffractometer (XRD) machine manufactured by Bruker instrument, Billerica,
MA, USA model d2-Phaser with Cu Ka radiation (40 kV, 40 mA) was used for the X-ray
diffraction of the powder sample. Scanning electron microscopy/energy dispersive X-ray
spectroscopy (SEM + EDS) SEM + EDS model 5800 LV operated at an accelerating voltage
of 20 kV made by JEOL, France was used for the analysis of the morphology of the
sample. A Fourier transform spectroscopy (FTIR) spectrometer made by PerkinElmer 880
Inc., Waltham, MA, USA was used to characterize the microstructure of the cement–glass
blended mortar and the bond vibration of functional groups (-OH-, Si-O and O=C=O).

3. Discussion of Results
3.1. Effect of Glass on the Setting Time of Mortar

Glass powder has a high proportion of silica, thereby causing the Ca/Si ratio to be
reduced. It is also noted that the presence of glass powder prompted the reduction of the
initial and final setting time of the mortar due to the simultaneous reaction of tricalcium
aluminate (C3A) with gypsum (CaSO4·2H2O) on one hand, and the frictional effect of
glass and cement particles on the other hand [6]. The formation of calcium-silicate-hydrate
in cement compounds is formed together with hydrated glass particles that occupy the
capillary pores, thereby causing early hardening [1]. From Figure 4, it can be seen that the
control sample has an initial setting time of 169 min, which decreased by 17.16%, 27.21%
and 34.91%, while the final setting time of 240 min was reduced by 12.1%, 25% and 31.25%
for the addition of glass powder at 5%, 10% and 15%, respectively. However, when the glass
content increased to 20 wt.%, the initial and final setting time reduced by only 13.01% and
10.41%, respectively. This implies that excessive glass content beyond the capillary pore
spaces could lead to a dilution effect that affects both setting and strength development.
Therefore, early setting could not necessarily lead to early strength development in glass
blended mortar.

3.2. Effect of Glass on Workability of Mortar and Concrete

The consistency of mortar increases linearly with the increase in the glass–cement
replacement level, as shown in Figure 5a,b. The irregular shape (Figure 3) of glass does not
make a significant negative contribution to the flowability of the fresh mix due to the low
intra-particle absorption of glass [13]. By replacing cement with 5, 10, 15 and 20 wt.%, the
flowability of mortar increased by 4.5%, 17.1%, 24.0% and 30%, respectively. This implies
that glass inclusion in mortar can facilitate the reduction of the water–cement ratio [8].
Despite the flowability or consistency of the mixture, no bleeding was observed in both
mortar and concrete samples. From Figure 5b, the consistency of the fresh concrete is
linearly increasing with the glass content as the slump values increase by 17.3%, 33.3% and
46.7% when the glass content was 10, 20 and 30 wt.%, respectively.
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3.3. Effect of Glass on the Density of Mortar

The inclusion of glass in cement mortar causes a decrease in density with age, as
shown in Figure 6. The density of mortar increases with the duration of hydration reaction.
This implies that as calcium-silicate-hydrate (CSH) is being formed, it occupies some
spaces within the microstructure and therefore causes a reduction in capillary pores [36].
A reduction in the capillary pore volume can lead to an increase in the internal density with
time. It is also noted that the density decreased with the percentage of cement replacement
by glass powder. There was 3.4% loss of density in 28 days in C80G20 (20% glass content).
This value reduced to 0.95%, 1.82% and 2.6% when the glass content was 5, 10 and 15 wt.%,
respectively. This is due to the higher value of specific gravity of cement (3.15) compared to
that glass powder (2.48). Equation (1) was developed to express the density of the mortar
in terms of cement content (C), glass content (G) and age. Figure 7 shows the relationship
between the experimental and predicted densities with a correlation coefficient of 0.82 at a
constant water binder ratio of 0.40.

ρ = −217.9 + 630
(

G
C

)28.1
− 1.274G0.9 + 2435.3Age0.01 (1)

3.4. Effect of Glass on Compressive Strength of Mortar and Concrete

From Figure 8, the compressive strength of the cement–glass blended mortar can
be seen to decrease with glass powder content. Glass powder affected both early and
later day strength development. The 3-day strength in cement mortar decreased by 24.2%,
31.4%, 39.71% and 53.1% in the mortars MG5, MG10, MG15 and MG20, respectively. The
maximum 28-day compressive strength obtained at zero inclusion of glass in mortar was
40 MPa and reduced by 7.5%, 10%, 15% and 45.5% for glass–cement replacement levels of
5%, 10%, 15% and 20%, respectively. Highest strength development (43.5%) was noticed
between 7 to 14 days in MG15 and then followed by 36.7% in MG10 with just 5% in MG15.
There was no significant strength development from 14 to 28 days in the glass blended
mortar sample except in MG5, where the maximum development (23.3%) was achieved.
The optimum glass dosage for cement replacement was between 5 to 10 wt.% (by weight of
the total binder).
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Compressive strength in mortar is modeled as shown in Equation (2) with a correlation
coefficient of 0.88, as shown in Figure 9. The compressive strength depends on the cement
content (C), glass content (G) and age of the mortar.

fcmortar = −1248.3 + 790.15C0.0106 − 5.7× 10−33G12.44 + 150.63Age0.04 (2)
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From Figure 10, the compressive strength of concrete increases with days of maturity.
Concrete sample C80G20 has the best strength characteristics, and its maximum 3-day
early strength was 22 MPa, which was 27.2% of the achievable strength in C100G0 (glass-
free). This decreased to 37.2% and 60.3% in C90G10 and C70G30, respectively. The strength
development increased linearly with a 90-day strength of 63 MPa in C100G0 and 47 MPa
in C80G20 (20% glass). The strength achieved in this sample could be regarded as high-
strength concrete. As the glass contents of 10 wt.% (C90G10) and 30 wt.% (C70G30) were
added, the strength reduced by 22.8% and 34.7%, respectively.
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Figure 10. Compressive strength of glass blended concrete.

The rate of strength development in C70G30 is higher (48.3 wt.%) between 21–28 days
in comparison with 56–90 days, where 9.2% only was achieved. Similarly, C80G20 developed
3.35% between 21–28 days, whereas the development was 19.75% between 56–90 days.
This implies that there were significant pozzolanic reactions in glass blended concrete
at a later time beyond 56 days. Therefore, we can conclude that glass present in OPC
concrete underwent a delayed pozzolanic reaction, thereby corroborating the hydration of
belite (C2S).

The model predicting the concrete strength in concrete is given in Equation (3) with a
correlation coefficient of 0.85, as shown in Figure 11. The model is developed to predict
compressive strength at 3, 7, 14, 28, 56 and 90 days for varying glass/cement ratios (G/C)
and ages at a constant water/binder ratio of 0.42.

fc_concrete = −0.3− 24.22(G/C)0.282 + 29Age0.153 (3)

3.5. Effect of Glass on the Morphology of the Binder

The decrease in the observable strength can be understood from the morphology of
the glass blended paste from the scanning electron microscope/energy dispersive electron
spectroscopy (SEM/EDS) results, as shown in Figures 12a,b and 13. There is a discontinuity
(spectrum 28, Figure 12a) in the region of embedment of glass within the cement matrix.
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This discontinuity created an interfacial transition zone (ITZ), which is the weakest
point owing to its higher water/cement ratio than other areas within the matrix [37].
Therefore, there could be an initiation of microcracks from the ITZ during the application
of loading during the compressive strength test. Karen Zheng [21] reported that there is a
pozzolanic reaction in ITZ due to the deposition of more Ca2+ at glass boundaries. Thus,
EDS shows that Ca/Si of OPC hydrated (C100G0) (Figure 12b) and glass blended pastes
(C90G10) (Figure 12a). were 3.94 and 0.23, respectively. The presence of glass particles
also caused dilution, which has a significant effect on the early strength development
(Figures 8 and 10) and also reduced the formation of Afm when compared to its absence in
glass blended paste (Figure 13).
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Figure 13. Microstructure of OPC and glass blended pastes (calcium-silicate-hydrate ((CSH) and
Ettringite (Aft)).

Similarly, there is non-uniformity and microstructural disintegration (cracks) of cement
paste due to glass incorporation and more especially at the region of Aft formation in the
SEM/EDS (Figure 12) [38]. Aft is formed by the interaction of C3A with gypsum (G) during
the setting process. Therefore, the non-spherical shape of glass powder could be responsible
for the microstructural discontinuity in the ITZ, thereby reducing the resultant strength.
Both Aft and the proliferation of ITZ are clearly shown in Figure 13.

3.6. Effect of Glass on Hydroxyl Ion, C=O, Water Molecule Vibrations and Silica Reorganization of
the Binder

FTIR spectra (Figure 14) show the asymmetric stretching of hydroxyl ions with strong
absorption at wavenumber 3642 cm−1 in cement paste, whereas the band was weaker with
the wavenumber 3640 cm−1 in the glass blended sample [39]. This also indicates that the
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early hydration reaction is hindered by the presence of glass particles due to the lower
production of hydroxyl-based compound (portlandite).
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Figure 14. FTIR spectra of glass blended and hydrated cement mortar.

In addition, the polymerization of the silica structure is greater in cement mortar
with a wavenumber of 962 cm−1 with a strong peak in comparison with the broad peak
and lower vibration frequency (955 cm−1) that was observed in glass blended paste
(Figure 14). These peaks have been described to be due to Si-O stretching vibrations
within the silicate structure.

The C=O vibration (CO3) is noticed to be less prominent in the glass–cement binder
compared to OPC binder with a stronger peak at 2330 cm−1 [39]. The strong peaks of
the asymmetric stretching C-O vibration (CO2) at 1436 cm−1 in C100G0 become broad in
C80G20. Therefore, a decrease in the vibration of CO2 coupled with the reduced formation
of portlandite and a lower Ca/Si ratio could be responsible for less carbonation in glass
blended concrete. This stretching band of S-O (-SO4

2−) related compound (ettringite-
Aft/Afm) at 1119 cm−1 is noted to be stronger in hydrated cement (C100G0) [40] compared
to the lower frequency at wavenumber 1115 cm−1 in the glass blended binder (C80G20) [39].
In light of this, the presence of glass in cement mortar could mitigate against sulfate attack,
as reported by Carsana et al. [41]. However, this could require further investigation. Even
though the out-of-plane bending mode is absent in glass base mortar in FTIR spectra
(Figure 11), the presence of carbon (C) in the EDS together with the presence of calcite at
the same 2-theta angle suggests the possibility of Equation (4) in both systems:

Ca(OH)2 + CO2 → CaCO3 + H2O (4)

There was a presence of water molecules in the capillary and gel pore as indicated at
higher vibration frequency with wavenumbers of 3426 cm−1 and 1647 cm−1 in C100G0. The
same vibration was noticed at 3412 cm−1 with a broader but shallow peak at 1649 cm−1 in
C80G20 [42].
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3.7. Effect of Glass on the Formation of Mineral Phases in the Product

The XRD presented in Figure 15 shows the presence of gypsum in both hydrated ce-
ment and glass blended binder. In the EDS, the presence of Ca, Si and S is very conspicuous
in Aft regions, even though XRD could not detect Aft in the sample or the sulfate-based
compound [41]. Feng et al. [43] also reported that Aft could easily form within the pore
where portlandite is formed, thereby allowing it to grow without a stress-dependent dam-
age. This explains why the inner microstructural cracks (Figure 13) are found in C80G20,
whereas they are minimal or absent in cement glass-free mortar (C100G0). This could further
explain the lower strength in glass blended mortar or concrete. Coesite (SiO2) is present in
the C80G20 due to the additional silica present in the glass. Other compounds formed in
the hydrated cement C100G0 are portlandite (CH), larnite (CSH gel) and calcite (CaCO3).
Gypsum is found in both C80G20 and C100G0 regardless of the presence or absence of glass
powder. This implies that the detected gypsum was from the unreacted OPC particles.
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3.8. Effect of Glass on 28 Day Concrete Exposed to Elevated Temperatures (550 ◦C)

The glass blended concrete (C80G20) exposed to elevated temperature lost 22.6%, 16.8%
and 7.4% of strength in C90G10. C80G20 and C70G30, respectively, whereas OPC concrete
(C100G0) lost about 28.2% of strength, as shown in Figure 16. The strength retention is due to
microstructural stability and thermal absorption by glass. The residual density (Figure 17)
of the sample was 4.2% of pre-thermal treatment in C80G20. This further increased to 4.9%
and 5.0% in C90G10 and C70G30, respectively, while OPC concrete lost 16.9 wt.% in density.
This result implies that the use of glass particles in concrete in fire-resistant structures
such as kitchens and incinerators can be effective because of the propensity to improve the
durability of concrete structures.

Finally, it is also important to emphasize the cost efficiency of glass waste blended
concrete: in 1 m3 of concrete, a cement content of 280 kg/m3 can be added to 70 kg/m3 of
glass waste powder to constitute a total binder of 350 kg/m3. Therefore, the cost of cement
could be reduced by 80% in addition to the environmental benefit of solid waste reduction.
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Figure 16. Residual strength of glass blended concrete exposed to elevated temperature.
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Figure 17. Residual density of glass blended concrete exposed to elevated temperature.

4. Conclusions

This paper addresses the contribution of waste glass as a partial substitution for
ordinary Portland cement (OPC) in mortar and concrete prepared with water binder
ratios of 0.40 and 0.42, respectively. The characteristics of the setting time, workability
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and compressive strength and thermal resistance (550 ◦C) were observed in concrete and
mortar, while model equations predicting the density and compressive strength were also
developed. The following are the conclusions:

(i) Glass reduced the setting time and enhanced the workability of both glass blended
mortar and concrete.

(ii) Presence of glass caused an interfacial transition zone within the binder matrix, and
this led to weak microstructural stability that prevented early strength development.

(iii) Cement content, glass content and age constituted key elements in the models pre-
dicting the strength and density of mortar/concrete.

(iv) Presence of glass affected the vibrational frequencies of hydroxyl (-OH), C=O, water
molecules, Si-O and S-O, as observed in the Fourier infrared spectroscopy results.

(v) The maximum 28-day compressive strengths in mortar and concrete were 33 MPa
and 37 MPa, prepared at water/binder ratios of 0.4 and 0.42 with the optimum OPC
partially substituted glass content of 10 wt.% and 20 wt.%, respectively. In addition,
the maximum 90-day strength achieved in concrete was 47 MPa.

(vi) Generally, OPC (C100G0) and glass blended concrete (C80G20) subjected to thermal
exposure of 550 ◦C had strength reductions of 28.2% and 16.8%, while the loss of
density was 16.9% and 4.2%, respectively.

(vii) Glass blended concrete could be easily used in fire-resistant structures such as kitchens
and incinerators to achieve better durability.
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