Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (30)

Search Parameters:
Keywords = cloudy and rainy regions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3821 KB  
Article
Evaluation Model of Climatic Suitability for Olive Cultivation in Central Longnan, China
by Li Liu, Ying Na and Yun Ma
Atmosphere 2025, 16(8), 948; https://doi.org/10.3390/atmos16080948 - 7 Aug 2025
Viewed by 211
Abstract
Longnan is the largest olive cultivation area in China. The unique microclimates in Longnan make it an ideal testing ground for climate-resilient cultivation strategies with broader applications across similar regions, yet predictive models linking weather to oil quality remain scarce. This study establishes [...] Read more.
Longnan is the largest olive cultivation area in China. The unique microclimates in Longnan make it an ideal testing ground for climate-resilient cultivation strategies with broader applications across similar regions, yet predictive models linking weather to oil quality remain scarce. This study establishes a climate suitability evaluation model for olive cultivation in central Longnan based on meteorological data and olive quality data in the Fotanggou planting base. Four key climatic factors are identified: cumulative sunshine hours during the fruit coloring to ripening period, average temperature during the fruit coloring to harvesting period, number of cloudy and rainy days during the harvesting period, and relative humidity during the fruit setting to fruit enlargement period. Olive oil quality is graded into three levels (Excellent III, Good II, Fair I) based on acidity, linoleic acid, and peroxide value using K-means clustering. A climate suitability index is developed by integrating these factors, with weights determined via principal component analysis. The model is validated against an olive quality report from the Dabao planting base, showing an 80% match rate. From 1991 to 2023, 87.9% of years exhibit suitable or moderately suitable conditions, with 100% of years in the past decade (2014–2023) reaching “Good” or “Excellent” levels. This model provides a scientific basis for evaluating and predicting olive oil quality, supporting sustainable olive industry development in Longnan. This model provides policymakers and farmers with actionable insights to ensure the long-term sustainability of olive industry amid climate uncertainty. Full article
Show Figures

Figure 1

15 pages, 5288 KB  
Article
Seasonal Variations in the Relationship Between Canopy Solar-Induced Chlorophyll Fluorescence and Gross Primary Production in a Temperate Evergreen Needleleaf Forest
by Kaijie Yang, Yifei Cai, Xiaoya Li, Weiwei Cong, Yiming Feng and Feng Wang
Forests 2025, 16(6), 893; https://doi.org/10.3390/f16060893 - 26 May 2025
Viewed by 398
Abstract
The temperate evergreen needleleaf forest (ENF), primarily composed of Mongolian Scots pine (Pinus sylvestris var. mongolica), plays a pivotal role in the “The Great Green Wall” Shelterbelt Project in northern China as a major species for windbreak and sand fixation. Solar-induced [...] Read more.
The temperate evergreen needleleaf forest (ENF), primarily composed of Mongolian Scots pine (Pinus sylvestris var. mongolica), plays a pivotal role in the “The Great Green Wall” Shelterbelt Project in northern China as a major species for windbreak and sand fixation. Solar-induced chlorophyll fluorescence (SIF) has emerged as a revolutionary remote sensing signal for quantifying photosynthetic activity and gross primary production (GPP) at the ecosystem scale. Meanwhile, eddy covariance (EC) technology has been widely employed to obtain in situ GPP estimates. Although a linear relationship between SIF and GPP has been reported in various ecosystems, it is mainly derived from satellite SIF products and flux-tower GPP observations, which are often difficult to align due to mismatches in spatial and temporal resolution. In this study, we analyzed synchronous high-frequency SIF and EC-derived GPP measurements from a Mongolian Scots pine plantation during the seasonal transition (August–December). The results revealed the following. (1) The ENF acted as a net carbon sink during the observation period, with a total carbon uptake of 100.875 gC·m−2. The diurnal dynamics of net ecosystem exchange (NEE) exhibited a “U”-shaped pattern, with peak carbon uptake occurring around midday. As the growing season progressed toward dormancy, the timing of CO2 uptake and release gradually shifted. (2) Both GPP and SIF peaked in September and declined thereafter. A strong linear relationship between SIF and GPP (R2 = 0.678) was observed, consistent across both diurnal and sub-daily scales. SIF demonstrated higher sensitivity to light and environmental changes, particularly during the autumn–winter transition. Cloudy and rainy conditions significantly affect the relationship between SIF and GPP. These findings highlight the potential of canopy SIF observations to capture seasonal photosynthesis dynamics accurately and provide a methodological foundation for regional GPP estimation using remote sensing. This work also contributes scientific insights toward achieving China’s carbon neutrality goals. Full article
Show Figures

Figure 1

24 pages, 9270 KB  
Article
Spatiotemporal Variation and Influencing Factors of Ecological Quality in the Guangdong-Hong Kong-Macao Greater Bay Area Based on the Unified Remote Sensing Ecological Index over the Past 30 Years
by Fangfang Sun, Chengcheng Dong, Longlong Zhao, Jinsong Chen, Li Wang, Ruixia Jiang and Hongzhong Li
Land 2025, 14(5), 1117; https://doi.org/10.3390/land14051117 - 20 May 2025
Viewed by 548
Abstract
The Guangdong-Hong Kong-Macao Greater Bay Area (GBA) is one of China’s three major urban agglomerations. Over the past thirty years, the region has undergone intensive economic development and urban expansion, resulting in significant changes in its ecological conditions. Due to the region’s humid [...] Read more.
The Guangdong-Hong Kong-Macao Greater Bay Area (GBA) is one of China’s three major urban agglomerations. Over the past thirty years, the region has undergone intensive economic development and urban expansion, resulting in significant changes in its ecological conditions. Due to the region’s humid and rainy climate, traditional remote sensing ecological indexes (RSEIs) struggle to ensure consistency in long-term ecological quality assessments. To address this, this study developed a unified RSEI (URSEI) model, incorporating optimized data selection, composite index construction, normalization using invariant regions, and multi-temporal principal component analysis. Using Landsat imagery from 1990 to 2020, this study examined the spatiotemporal evolution of ecological quality in the GBA. Building on this, spatial autocorrelation analysis was applied to explore the distribution characteristics of the URSEI, followed by geodetector analysis to investigate its driving factors, including temperature, precipitation, elevation, slope, land use, population density, GDP, and nighttime light. The results indicate that (1) the URSEI effectively mitigates the impact of cloudy and rainy conditions on data consistency, producing seamless ecological quality maps that accurately reflect the region’s ecological evolution; (2) ecological quality showed a “decline-then-improvement” trend during the study period, with the URSEI mean dropping from 0.65 in 1990 to 0.60 in 2000, then rising to 0.63 by 2020. Spatially, ecological quality was higher in the northwest and northeast, and poorer in the central urbanized areas; and (3) in terms of driving mechanisms, nighttime light, GDP, and temperature were the most influential, with the combined effect of “nighttime light + land use” being the primary driver of URSEI spatial heterogeneity. Human-activity-related factors showed the most notable variation in influence over time. Full article
Show Figures

Figure 1

12 pages, 3049 KB  
Article
Synergistic Effects of Supplemental Lighting and Foliar Phosphorus Application on Flowering in Passion Fruit (Passiflora edulis)
by Dongyu Sun, Caizhu Hu, Yinyan Yang, Huanhuan Wang, Tongbo Yan, Chubin Wu, Zhiqun Hu, Xingyu Lu and Biyan Zhou
Horticulturae 2025, 11(5), 478; https://doi.org/10.3390/horticulturae11050478 - 29 Apr 2025
Viewed by 540
Abstract
Passion fruit (Passiflora edulis), a commercially vital tropical crop, faces flowering instability due to photoperiod-sensitive flowering patterns, particularly under the cloudy, rainy climates of subtropical regions. To mitigate floral suppression during unfavorable light conditions, this study implemented a dual-modality strategy combining [...] Read more.
Passion fruit (Passiflora edulis), a commercially vital tropical crop, faces flowering instability due to photoperiod-sensitive flowering patterns, particularly under the cloudy, rainy climates of subtropical regions. To mitigate floral suppression during unfavorable light conditions, this study implemented a dual-modality strategy combining 16 h daily supplementary lighting (460 nm blue + 630 nm red spectrum) and foliar application of a high-phosphorus-containing nutrient, the Plant-Prod (nitrogen–phosphorus–potassium = 10:52:10) grown in field ‘Qinmi No. 9’. The treatment significantly stimulated lateral branch formation, internode elongation, flower retention, stage IV flower bud development, and enhanced photosynthetic efficiency. Physiological analyses revealed that the treatment increased the net photosynthetic rate (Pn), reduced the intercellular carbon dioxide concentration (Ci), and enhanced stomatal conductance (Gs), indicating the improvement of carbon assimilation. Controlled seedling trials further confirmed these effects, with treated groups exhibiting accelerated lateral branching and stress resilience. This integrated approach, combining optimized supplemental lighting and precision phosphorus fertilization, offers a practical and scalable strategy to stabilize passion fruit yields in climate-variable regions, with immediate potential for commercial orchards and greenhouse production. Full article
Show Figures

Figure 1

20 pages, 5597 KB  
Article
Downscaling TRMM Monthly Precipitation in Cloudy and Rainy Regions and Analyzing Spatiotemporal Variations: A Case Study in the Dongting Lake Basin
by Haonan Xia, Huanhua Peng, Jun Zhai, Haifeng Gao, Diandian Jin and Sijia Xiao
Remote Sens. 2024, 16(16), 2959; https://doi.org/10.3390/rs16162959 - 12 Aug 2024
Cited by 1 | Viewed by 1450
Abstract
High-resolution and accurate precipitation data are essential for hydrological, meteorological, and ecological research at the watershed scale. However, in regions with complex terrain and significant rainfall variability, the limited number of rain gauge stations (RGS) is insufficient, and the spatial resolution of existing [...] Read more.
High-resolution and accurate precipitation data are essential for hydrological, meteorological, and ecological research at the watershed scale. However, in regions with complex terrain and significant rainfall variability, the limited number of rain gauge stations (RGS) is insufficient, and the spatial resolution of existing satellite precipitation data is too low to capture detailed precipitation patterns at the watershed scale. To address this issue, the downscaling of satellite precipitation products has become an effective method to obtain high-resolution precipitation data. This study proposes a monthly downscaling method based on a random forest model, aiming to improve the resolution of precipitation data in cloudy and rainy regions at mid-to-low latitudes. We combined the Google Earth Engine (GEE) platform with a local Python environment, introducing cloud cover characteristics into traditional downscaling variables (latitude, longitude, topography, and vegetation index). The TRMM data were downscaled from 25 km to 1 km, generating high-resolution monthly precipitation data for the Dongting Lake Basin from 2001 to 2019. Furthermore, we analyzed the spatiotemporal variation characteristics of precipitation in the study area. The results show the following: (1) In cloudy and rainy regions, our method improves resolution and detail while maintaining the accuracy of precipitation data; (2) The response of monthly precipitation to environmental variables varies, with cloud cover characteristics contributing more to the downscaling model than vegetation characteristics, helping to overcome the lag effect of vegetation characteristics; and (3) Over the past 20 years, there have been significant seasonal trends in precipitation changes in the study area, with a decreasing trend in winter and spring (January–May) and an increasing trend in summer and autumn (June–December). These results indicate that the proposed method is suitable for downscaling monthly precipitation data in cloudy and rainy regions of the Dongting Lake Basin. Full article
(This article belongs to the Section Ecological Remote Sensing)
Show Figures

Figure 1

22 pages, 6306 KB  
Article
Validation of Red-Edge Vegetation Indices in Vegetation Classification in Tropical Monsoon Region—A Case Study in Wenchang, Hainan, China
by Miao Liu, Yulin Zhan, Juan Li, Yupeng Kang, Xiuling Sun, Xingfa Gu, Xiangqin Wei, Chunmei Wang, Lingling Li, Hailiang Gao and Jian Yang
Remote Sens. 2024, 16(11), 1865; https://doi.org/10.3390/rs16111865 - 23 May 2024
Cited by 5 | Viewed by 2501
Abstract
Vegetation classification has always been the focus of remote sensing applications, especially for tropical regions with fragmented terrain, cloudy and rainy climates, and dense vegetation. How to effectively classify vegetation in tropical regions by using multi-spectral remote sensing with high resolution and red-edge [...] Read more.
Vegetation classification has always been the focus of remote sensing applications, especially for tropical regions with fragmented terrain, cloudy and rainy climates, and dense vegetation. How to effectively classify vegetation in tropical regions by using multi-spectral remote sensing with high resolution and red-edge spectrum needs to be further verified. Based on the experiment in Wenchang, Hainan, China, which is located in the tropical monsoon region, and combined with the ZY-1 02D 2.5 m fused images in January, March, July, and August, this paper discusses whether NDVI and four red-edge vegetation indices (VIs), CIre, NDVIre, MCARI, and TCARI, can promote vegetation classification and reduce the saturation. The results show that the schemes with the highest classification accuracies in all phases are those in which the red-edge VIs are involved, which suggests that the red-edge VIs can effectively contribute to the classification of vegetation. The maximum accuracy of the single phase is 86%, and the combined accuracy of the four phases can be improved to 92%. It has also been found that CIre and NDVIre do not reach saturation as easily as NDVI and MCARI in July and August, and their ability to enhance the separability between different vegetation types is superior to that of TCARI. In general, red-edge VIs can effectively promote vegetation classification in tropical monsoon regions, and red-edge VIs, such as CIre and NDVIre, have an anti-saturation performance, which can slow down the confusion between different vegetation types due to saturation. Full article
Show Figures

Figure 1

15 pages, 6006 KB  
Technical Note
Satellite-Based Estimation of Near-Surface NO2 Concentration in Cloudy and Rainy Areas
by Fuliang Deng, Yijian Chen, Wenfeng Liu, Lanhui Li, Xiaojuan Chen, Pravash Tiwari and Kai Qin
Remote Sens. 2024, 16(10), 1785; https://doi.org/10.3390/rs16101785 - 17 May 2024
Cited by 2 | Viewed by 1954
Abstract
Satellite-based remote sensing enables the quantification of tropospheric NO2 concentrations, offering insights into their environmental and health impacts. However, remote sensing measurements are often impeded by extensive cloud cover and precipitation. The scarcity of valid NO2 observations in such meteorological conditions [...] Read more.
Satellite-based remote sensing enables the quantification of tropospheric NO2 concentrations, offering insights into their environmental and health impacts. However, remote sensing measurements are often impeded by extensive cloud cover and precipitation. The scarcity of valid NO2 observations in such meteorological conditions increases data gaps and thus hinders accurate characterization and variability of concentration across geographical regions. This study utilizes the Empirical Orthogonal Function interpolation in conjunction with the Extreme Gradient Boosting (XGBoost) algorithm and dense urban atmospheric observed station data to reconstruct continuous daily tropospheric NO2 column concentration data in cloudy and rainy areas and thereby improve the accuracy of NO2 concentration mapping in meteorologically obscured regions. Using Chengdu City as a case study, multiple datasets from satellite observations (TROPOspheric Monitoring Instrument, TROPOMI), near-surface NO2 measurements, meteorology, and ancillary data are leveraged to train models. The results showed that the integration of reconstructed satellite observations with provincial and municipal control surface measurements enables the XGBoost model to achieve heightened predictive accuracy (R2 = 0.87) and precision (RMSE = 5.36 μg/m3). Spatially, this approach effectively mitigates the problem of missing values in estimation results due to absent satellite data while simultaneously ensuring increased consistency with ground monitoring station data, yielding images with more continuous and refined details. These results underscore the potential for reconstructing satellite remote sensing information and combining it with dense ground observations to greatly improve NO2 mapping in cloudy and rainy areas. Full article
Show Figures

Figure 1

17 pages, 6656 KB  
Article
Wind Profile Retrieval Based on LSTM Algorithm and Mobile Observation of Brightness Temperature over the Tibetan Plateau
by Bing Chen, Xinghong Cheng, Debin Su, Xiangde Xu, Siying Ma and Zhiqun Hu
Remote Sens. 2024, 16(6), 1068; https://doi.org/10.3390/rs16061068 - 18 Mar 2024
Cited by 1 | Viewed by 1529
Abstract
Stationary or mobile microwave radiometers (MRs) can measure atmospheric temperature, relative humidity, and water vapor density profiles with high spatio-temporal resolution, but cannot obtain the vertical variations of wind field. Based on a dataset of brightness temperatures (TBs) measured with a mobile MR [...] Read more.
Stationary or mobile microwave radiometers (MRs) can measure atmospheric temperature, relative humidity, and water vapor density profiles with high spatio-temporal resolution, but cannot obtain the vertical variations of wind field. Based on a dataset of brightness temperatures (TBs) measured with a mobile MR over the Three-River-Source Region of the Tibetan Plateau from 18 to 30 July 2021, we develop a direct retrieval method for the wind profile (WP) based on the Long Short-Term Memory (LSTM) network technique, and obtain the reliable dynamic variation characteristics of the WP in the region. Furthermore, the ground-based radiative transfer model for TOVS (RTTOV-gb) was employed to validate the reliability of the TB observation, and we analyzed the impact of weather conditions, altitude, observational mode, and TB diurnal variation on the accuracy of the TB measurement and the retrieval of the WP. Results show that the TB from the mobile observation (MOTB) on clear and cloudy days are close to those of the simulated TB with the RTTOV-gb model, while TB measurements on rainy days are far larger than the modeled TBs. When compared with radiosonde observations, the WPs retrieved with the LSTM algorithm are better than the ERA5 reanalysis data, especially below 350 hPa, where the root mean square errors for both wind speed and wind direction are smaller than those of ERA5. The major factors influencing WP retrieval include the weather conditions, altitude, observational mode, and TB diurnal variation. Under clear-sky and cloudy conditions, the LSTM retrieval method can reproduce the spatio-temporal evolution of wind field and vertical wind shear characteristics. The findings of this study help to improve our understanding of meso-scale atmospheric dynamic structures, characteristics of vertical wind shear, atmospheric boundary layer turbulence, and enhance the assessment and forecasting accuracy of wind energy resources. Full article
Show Figures

Graphical abstract

19 pages, 10633 KB  
Article
Extraction the Spatial Distribution of Mangroves in the Same Month Based on Images Reconstructed with the FSDAF Model
by Qixu You, Weixi Deng, Yao Liu, Xu Tang, Jianjun Chen and Haotian You
Forests 2023, 14(12), 2399; https://doi.org/10.3390/f14122399 - 8 Dec 2023
Cited by 5 | Viewed by 1583
Abstract
Mangroves have extremely high economic and ecological value. Through remote sensing, the spatial distribution of and spatiotemporal changes in mangroves can be accurately obtained, providing data support for the sustainable development of coastal wetlands. However, due to the cloudy and rainy conditions in [...] Read more.
Mangroves have extremely high economic and ecological value. Through remote sensing, the spatial distribution of and spatiotemporal changes in mangroves can be accurately obtained, providing data support for the sustainable development of coastal wetlands. However, due to the cloudy and rainy conditions in the growing areas of mangroves, there are relatively few high-quality image data available, resulting in a time difference between regional mosaic images, with a maximum difference of several months, which has a certain impact on accuracy when extracting the spatial distribution of mangroves in some regions. At present, most regional mangrove research has ignored the impact of the time difference between mosaic images, which not only leads to inaccurate monitoring results of mangroves’ spatial distribution and dynamic changes but also limits the frequency of monitoring of regional mangrove dynamic changes to an annual scale, making it difficult to achieve more refined time scales. Based on this, this study takes the coastal mangrove distribution area in China as the research area, uses Landsat 8 and MODIS images as basic data, reconstructs the January 2021 images of the research area based on the FSDAF model, and uses a random forest algorithm to extract the spatial distribution of mangrove forests and analyze the landscape pattern. The results showed that the fused image based on the FSDAF model was highly similar to the validation image, with an R value of 0.85, showing a significant positive correlation, indicating that the fused image could replace the original image for mangrove extraction in the same month. The overall accuracy of the spatial distribution extraction of mangroves based on the fused image was 89.97%. The high sample separation and spectral curve changes highly similar to the validation image indicate that the fused image can more accurately obtain the spatial distribution of mangroves. Compared to the original image, the fused image based on the FSDAF model is closer to the validation image, and the fused image can reflect the changes in mangroves in time series, thus achieving accurate acquisition of dynamic change information in a short time span. It provides data and methodological support for future monitoring of dynamic changes in large-scale mangroves. The total area of mangroves in China in January 2021 based on the fused image was 27,122.4 ha, of which Guangdong had the largest mangrove area, with 12,098.34 ha, while Macao had the smallest mangrove area of only 16.74 ha. At the same time, the mangroves in Guangdong and Guangxi had a high degree of fragmentation and were severely disturbed, requiring strengthened protection efforts, while the mangroves in Hong Kong, Zhejiang, and Macao had regular shapes, benefiting from local active artificial restoration. Full article
(This article belongs to the Special Issue Machine Learning Techniques in Forest Mapping and Vegetation Analysis)
Show Figures

Figure 1

19 pages, 8864 KB  
Article
High-Resolution Ratoon Rice Monitoring under Cloudy Conditions with Fused Time-Series Optical Dataset and Threshold Model
by Rongkun Zhao, Yue Wang and Yuechen Li
Remote Sens. 2023, 15(17), 4167; https://doi.org/10.3390/rs15174167 - 24 Aug 2023
Cited by 5 | Viewed by 2363
Abstract
Ratoon rice, an effective rice cultivation system, allows paddy rice to be harvested twice from the same stubble, playing an important role in ensuring food security and adapting to climate change with its unique growth characteristics. However, there is an absence of research [...] Read more.
Ratoon rice, an effective rice cultivation system, allows paddy rice to be harvested twice from the same stubble, playing an important role in ensuring food security and adapting to climate change with its unique growth characteristics. However, there is an absence of research related to remote-sensing monitoring of ratoon rice, and the presence of other rice cropping systems (e.g., double-season rice) with similar characteristics poses a hindrance to the accurate identification of ratoon rice. Furthermore, cloudy and rainy regions have limited available remote-sensing images, meaning that remote-sensing monitoring is limited. To address this issue, taking Yongchuan District, a typical cloud-prone region in Chongqing, China, as an example, this study proposed the construction of a time-series optical dataset using the Modified Neighborhood Similar Pixel Interpolator (MNSPI) method for cloud-removal interpolation and the Flexible Spatiotemporal DAta Fusion (FSDAF) model for fusing multi-source optical remote-sensing data, in combination with vegetation index features and phenological information to build a threshold model to map ratoon rice at high-resolution (10 m). The mapping performance of ratoon rice was evaluated using independent field samples to obtain the overall accuracy and kappa coefficient. The findings indicate that the combination of the MNSPI method and FSDAF model had a stable and effective performance, characterized by high correlation coefficient (r) values and low root mean square error (RMSE) values between the restored/predicted images and the true images. Notably, it was possible to effectively capture the distinct characteristics of ratoon rice in cloudy and rainy regions using the proposed threshold model. Specifically, the identified area of ratoon rice in the study region was 194.17 km2, which was close to the official data (158–180 km2), and the overall accuracy and kappa coefficient of ratoon rice identification result were 90.73% and 0.81, respectively. These results demonstrate that our proposed threshold model can effectively distinguish ratoon rice during vital phenological stages from other crop types, enrich the technical system of rice remote-sensing monitoring, and provide a reference for agricultural remote-sensing applications in cloudy and rainy regions. Full article
Show Figures

Figure 1

22 pages, 14239 KB  
Article
Mapping Paddy Rice Planting Area in Dongting Lake Area Combining Time Series Sentinel-1 and Sentinel-2 Images
by Qin Jiang, Zhiguang Tang, Linghua Zhou, Guojie Hu, Gang Deng, Meifeng Xu and Guoqing Sang
Remote Sens. 2023, 15(11), 2794; https://doi.org/10.3390/rs15112794 - 27 May 2023
Cited by 21 | Viewed by 3762
Abstract
Accurate and timely acquisition of cropping intensity and spatial distribution of paddy rice is not only an important basis for monitoring growth and predicting yields, but also for ensuring food security and optimizing the agricultural production management system of cropland. However, due to [...] Read more.
Accurate and timely acquisition of cropping intensity and spatial distribution of paddy rice is not only an important basis for monitoring growth and predicting yields, but also for ensuring food security and optimizing the agricultural production management system of cropland. However, due to the monsoon climate in southern China, it is cloudy and rainy throughout the year, which makes it difficult to obtain accurate information on rice cultivation based on optical time series images. Conventional image synthesis is prone to omission or redundancy of spectral and temporal features that are potentially important for rice-growth identification, making it difficult to determine the optimal features for high-precision mapping of paddy rice. To address these issues, we develop a method to granulate the effective use interval of classification features by extracting phenological signatures of rice to obtain cost-effective and highly accurate mapping results. Two steps are involved in this method: (1) analyzing the information on various features (spectra, polarization, and seasonal regularity) to identify three key phenological periods throughout the lifespan of paddy rice; (2) identifying the features with the highest class separation between paddy rice, non-paddy crops, and wetlands under different phenological stages; and (3) removing redundant features to retain the optimal feature combinations. Subsequently, the obtained feature sets are used as input data for the random forest classifier. The results showed that the overall accuracy of the identified rice results was 95.44% with F1 scores above 93% for both single- and double-cropping rice. Meanwhile, the correlation coefficient of our mapped rice area compared with the official statistics of rice area at county and district levels was 0.86. In addition, we found that combining Sentinel-1 and Sentinel-2 images for rice recognition was better than using Sentinel-1 or Sentinel-2 alone, and the classification accuracy was improved by 5.82% and 2.39%, which confirms that the synergistic Sentinel-1 and Sentinel-2 data can effectively overcome the problem of missing optical images caused by clouds and rain. Our study demonstrates the potential of distinguishing mixed rice-cropping systems in subtropical regions with fragmented rice-field distribution in a cloudy and rainy environment, and also provides a basis for the rational layout of rice production and improvement of cultivation systems. Full article
(This article belongs to the Special Issue Cropland Phenology Monitoring Based on Cloud-Computing Platforms)
Show Figures

Figure 1

21 pages, 4627 KB  
Article
Using Enhanced Gap-Filling and Whittaker Smoothing to Reconstruct High Spatiotemporal Resolution NDVI Time Series Based on Landsat 8, Sentinel-2, and MODIS Imagery
by Jieyu Liang, Chao Ren, Yi Li, Weiting Yue, Zhenkui Wei, Xiaohui Song, Xudong Zhang, Anchao Yin and Xiaoqi Lin
ISPRS Int. J. Geo-Inf. 2023, 12(6), 214; https://doi.org/10.3390/ijgi12060214 - 23 May 2023
Cited by 21 | Viewed by 5138
Abstract
Normalized difference vegetation index (NDVI) time series data, derived from optical images, play a crucial role for crop mapping and growth monitoring. Nevertheless, optical images frequently exhibit spatial and temporal discontinuities due to cloudy and rainy weather conditions. Existing algorithms for reconstructing NDVI [...] Read more.
Normalized difference vegetation index (NDVI) time series data, derived from optical images, play a crucial role for crop mapping and growth monitoring. Nevertheless, optical images frequently exhibit spatial and temporal discontinuities due to cloudy and rainy weather conditions. Existing algorithms for reconstructing NDVI time series using multi-source remote sensing data still face several challenges. In this study, we proposed a novel method, an enhanced gap-filling and Whittaker smoothing (EGF-WS), to reconstruct NDVI time series (EGF-NDVI) using Google Earth Engine. In EGF-WS, NDVI calculated from MODIS, Landsat-8, and Sentinel-2 satellites were combined to generate high-resolution and continuous NDVI time series data. The MODIS NDVI was employed as reference data to fill missing pixels in the Sentinel–Landsat NDVI (SL-NDVI) using the gap-filling method. Subsequently, the filled NDVI was smoothed using a Whittaker smoothing filter to reduce residual noise in the SL-NDVI time series. With reference to the all-round performance assessment (APA) metrics, the performance of EGF-WS was compared with the conventional gap-filling and Savitzky–Golay filter approach (GF-SG) in Fusui County of Guangxi Zhuang Autonomous Region. The experimental results have demonstrated that the EGF-WS can capture more accurate spatial details compared with GF-SG. Moreover, EGF-NDVI of Fusui County exhibited a low root mean square error (RMSE) and a high coefficient of determination (R2). In conclusion, EGF-WS holds significant promise in providing NDVI time series images with a spatial resolution of 10 m and a temporal resolution of 8 days, thereby benefiting crop mapping, land use change monitoring, and various ecosystems, among other applications. Full article
(This article belongs to the Topic Advances in Earth Observation and Geosciences)
Show Figures

Figure 1

27 pages, 50702 KB  
Article
Urban Impervious Surface Extraction Based on Deep Convolutional Networks Using Intensity, Polarimetric Scattering and Interferometric Coherence Information from Sentinel-1 SAR Images
by Wenfu Wu, Songjing Guo, Zhenfeng Shao and Deren Li
Remote Sens. 2023, 15(5), 1431; https://doi.org/10.3390/rs15051431 - 3 Mar 2023
Cited by 8 | Viewed by 2497
Abstract
Urban impervious surface area is a key indicator for measuring the degree of urban development and the quality of an urban ecological environment. However, optical satellites struggle to effectively play a monitoring role in the tropical and subtropical regions, where there are many [...] Read more.
Urban impervious surface area is a key indicator for measuring the degree of urban development and the quality of an urban ecological environment. However, optical satellites struggle to effectively play a monitoring role in the tropical and subtropical regions, where there are many clouds and rain all year round. As an active microwave sensor, synthetic aperture radar (SAR) has a long wavelength and can penetrate clouds and fog to varying degrees, making it very suitable for monitoring the impervious surface in such areas. With the development of SAR remote sensing technology, a more advanced and more complex SAR imaging model, namely, polarimetric SAR, has been developed, which can provide more scattering information of ground objects and is conducive to improving the extraction accuracy of impervious surface. However, the current research on impervious surface extraction using SAR data mainly focuses on the use of SAR image intensity or amplitude information, and rarely on the use of phase and polarization information. To bridge this gap, based on Sentinel-1 dual-polarized data, we selected UNet, HRNet, and Deeplabv3+ as impervious surface extraction models; and we input the intensity, coherence, and polarization features of SAR images into the respective impervious surface extraction models to discuss their specific performances in urban impervious surface extraction. The experimental results show that among the intensity, coherence, and polarization features, intensity is the most useful feature in the extraction of urban impervious surface based on SAR images. We also analyzed the limitations of extracting an urban impervious surface based on SAR images, and give a simple and effective solution. This study can provide an effective solution for the spatial-temporal seamless monitoring of an impervious surface in cloudy and rainy areas. Full article
Show Figures

Figure 1

19 pages, 5404 KB  
Technical Note
Mapping Diverse Paddy Rice Cropping Patterns in South China Using Harmonized Landsat and Sentinel-2 Data
by Jie Hu, Yunping Chen, Zhiwen Cai, Haodong Wei, Xinyu Zhang, Wei Zhou, Cong Wang, Liangzhi You and Baodong Xu
Remote Sens. 2023, 15(4), 1034; https://doi.org/10.3390/rs15041034 - 14 Feb 2023
Cited by 16 | Viewed by 3609
Abstract
Paddy rice cropping patterns (PRCPs) play important roles in both agroecosystem modeling and food security. Although paddy rice maps have been generated over several regions using satellite observations, few studies have focused on mapping diverse smallholder PRCPs, which include crop rotation and are [...] Read more.
Paddy rice cropping patterns (PRCPs) play important roles in both agroecosystem modeling and food security. Although paddy rice maps have been generated over several regions using satellite observations, few studies have focused on mapping diverse smallholder PRCPs, which include crop rotation and are dominant cropping structures in South China. Here, an approach called the feature selection and hierarchical classification (FSHC) method was proposed to effectively identify paddy rice and its rotation types. Considering the cloudy and rainy weather in South China, a harmonized Landsat and Sentinel-2 (HLS) surface reflectance product was employed to increase high-quality observations. The FSHC method consists of three processes: cropping intensity mapping, feature selection, and decision tree (DT) model development. The FSHC performance was carefully evaluated using crop field samples obtained in 2018 and 2019. Results suggested that the derived cropping intensity map based on the Savitzky–Golay (S-G) filtered normalized difference vegetation index (NDVI) time series was reliable, with an overall accuracy greater than 93%. Additionally, the optimal spectral (i.e., normalized difference water index (NDWI) and land surface water index (LSWI)) and temporal (start-of-season (SOS) date) features for distinguishing different PRCPs were successfully identified, and these features are highly related to the critical growth stage of paddy rice. The developed DT model with three hierarchical levels based on optimal features performed satisfactorily, and the identification accuracy of each PRCP can be achieved approximately 85%. Furthermore, the FSHC method exhibited similar performances when mapping PRCPs in adjacent years. These results demonstrate that the proposed FSHC approach with HLS data can accurately extract diverse PRCPs over fragmented croplands; thus, this approach represents a promising opportunity for generating refined crop type maps. Full article
(This article belongs to the Special Issue Remote Sensing for Mapping Farmland and Agricultural Infrastructure)
Show Figures

Graphical abstract

38 pages, 19049 KB  
Article
A Field-Data-Aided Comparison of Three 10 m Land Cover Products in Southeast Asia
by Yaxin Ding, Xiaomei Yang, Zhihua Wang, Dongjie Fu, He Li, Dan Meng, Xiaowei Zeng and Junyao Zhang
Remote Sens. 2022, 14(19), 5053; https://doi.org/10.3390/rs14195053 - 10 Oct 2022
Cited by 16 | Viewed by 3595
Abstract
To study global and regional environment protection and sustainable development and also to optimize mapping methods, it is of great significance to compare three existing 10 m resolution global land cover products in terms of accuracy: FROM-GLC10, the ESRI 2020 land cover product [...] Read more.
To study global and regional environment protection and sustainable development and also to optimize mapping methods, it is of great significance to compare three existing 10 m resolution global land cover products in terms of accuracy: FROM-GLC10, the ESRI 2020 land cover product (ESRI2020), and the European Space Agency world cover 2020 product (ESA2020). However, most previous validations lack field collection points in large regions, especially in Southeast Asia, which has a cloudy and rainy climate, creating many difficulties in land cover mapping. In 2018 and 2019, we conducted a 56-day field investigation in Southeast Asia and collected 3326 points from different places. By combining these points and 14,808 other manual densification points in a stratified random sampling, we assessed the accuracy of the three land cover products in Southeast Asia. We also compared the impacts of the different classification standards, the different sample methods, and the different spatial distributions of the sample points. The results show that in Southeast Asia, (1) the mean overall accuracies of the FROM-GLC10, ESRI2020, and ESA2020 products are 75.43%, 79.99%, and 81.11%, respectively; (2) all three products perform well in croplands, forests, and built-up areas; ESRI2020 and ESA2020 perform well in water, but only ESA2020 performs well in grasslands; and (3) all three products perform badly in shrublands, wetlands, or bare land, as both the PA and the UA are lower than 50%. We recommend ESA2020 as the first choice for Southeast Asia’s land cover because of its high overall accuracy. FROM-GLC10 also has an advantage over the other two in some classes, such as croplands and water in the UA aspect and the built-up area in the PA aspect. Extracting the individual classes from the three products according to the research goals would be the best practice. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Graphical abstract

Back to TopTop