Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,483)

Search Parameters:
Keywords = closure model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 26505 KiB  
Article
Advanced Electrospun Chitosan-(Polylactic Acid)-(Silver Nanoparticle)-Based Scaffolds for Facilitated Healing of Purulent Wounds: A Preclinical Investigation
by Yevhen Samokhin, Yuliia Varava, Anna Butsyk, Roman Moskalenko, Yevheniia Husak, Bohdan Dryhval, Valeriia Korniienko, Ihor Zhyvotovskyi, Vyacheslav Kukurika, Artem Shmatkov, Agne Ramanaviciute, Rafal Banasiuk, Maksym Pogorielov, Arunas Ramanavicius and Viktoriia Korniienko
Polymers 2025, 17(16), 2225; https://doi.org/10.3390/polym17162225 - 15 Aug 2025
Abstract
Biomaterials modified by antibacterial substances, including nanoparticles, open new opportunities for the effective treatment of infected wounds. Unfortunately, most publications focused only on experiments in vitro, with limited understanding of their potential for the clinic. This study evaluates the effectiveness in vivo of [...] Read more.
Biomaterials modified by antibacterial substances, including nanoparticles, open new opportunities for the effective treatment of infected wounds. Unfortunately, most publications focused only on experiments in vitro, with limited understanding of their potential for the clinic. This study evaluates the effectiveness in vivo of electrospun chitosan/polylactic acid (Ch/PLA) membranes enriched with silver nanoparticles (AgNPs) for purulent wound treatment. The composite biomaterial integrates chitosan’s biocompatibility and antimicrobial activity with PLA’s structural integrity, while AgNPs enhance antibacterial efficacy against major wound pathogens, including Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia aureus. A full-thickness purulent wound model was established in a rat model, and the animals were divided into three treatment groups: (i) Ch/PLA, (ii) Ch/PLA-AgNPs, and (iii) PLA-chlorhexidine (control). Wound healing was monitored over 21 days through macroscopic evaluation, histology, immunohistochemistry, and microbiological analysis. The Ch/PLA-AgNPs membranes significantly reduced bacterial colonization within 4–6 days, promoted granulation tissue formation, and accelerated epithelialization compared to the non-modified Ch/PLA scaffold. By day 15, complete wound closure was observed in the Ch/PLA-AgNPs group, comparable to PLA-chlorhexidine-treated wounds. Immunohistochemical analysis revealed a controlled inflammatory response with a balanced macrophage M1/M2 transition, supporting efficient tissue regeneration. Furthermore, systemic toxicity assessments indicated no significant adverse effects on internal organs. These findings demonstrate that electrospun Ch/PLA-AgNPs membranes effectively accelerate purulent wound healing by combining antimicrobial protection with biocompatible tissue support. This innovative approach presents a promising alternative to conventional wound dressings and paves the way for clinical applications in managing infected wounds. Full article
Show Figures

Figure 1

27 pages, 5515 KiB  
Article
Optimizing Multi-Camera Mobile Mapping Systems with Pose Graph and Feature-Based Approaches
by Ahmad El-Alailyi, Luca Morelli, Paweł Trybała, Francesco Fassi and Fabio Remondino
Remote Sens. 2025, 17(16), 2810; https://doi.org/10.3390/rs17162810 - 13 Aug 2025
Viewed by 139
Abstract
Multi-camera Visual Simultaneous Localization and Mapping (V-SLAM) increases spatial coverage through multi-view image streams, improving localization accuracy and reducing data acquisition time. Despite its speed and generally robustness, V-SLAM often struggles to achieve precise camera poses necessary for accurate 3D reconstruction, especially in [...] Read more.
Multi-camera Visual Simultaneous Localization and Mapping (V-SLAM) increases spatial coverage through multi-view image streams, improving localization accuracy and reducing data acquisition time. Despite its speed and generally robustness, V-SLAM often struggles to achieve precise camera poses necessary for accurate 3D reconstruction, especially in complex environments. This study introduces two novel multi-camera optimization methods to enhance pose accuracy, reduce drift, and ensure loop closures. These methods refine multi-camera V-SLAM outputs within existing frameworks and are evaluated in two configurations: (1) multiple independent stereo V-SLAM instances operating on separate camera pairs; and (2) multi-view odometry processing all camera streams simultaneously. The proposed optimizations include (1) a multi-view feature-based optimization that integrates V-SLAM poses with rigid inter-camera constraints and bundle adjustment; and (2) a multi-camera pose graph optimization that fuses multiple trajectories using relative pose constraints and robust noise models. Validation is conducted through two complex 3D surveys using the ATOM-ANT3D multi-camera fisheye mobile mapping system. Results demonstrate survey-grade accuracy comparable to traditional photogrammetry, with reduced computational time, advancing toward near real-time 3D mapping of challenging environments. Full article
Show Figures

Figure 1

17 pages, 2352 KiB  
Article
Comparative Study of Automated Real-Time Left Atrial Appendage Sizing Using Patient-Specific 3D Heart Models Versus Transesophageal Echocardiography and Multidetector Computed Tomography in Patients with Nonvalvular Atrial Fibrillation: Implications for Device Selection
by Dominika Kanschik, Amin Polzin, Houtan Heidari, Lisa Dannenberg, Raphael Phinicarides, Kathrin Klein, Nikos Werner, Malte Kelm, Christian Jung, Tobias Zeus and Shazia Afzal
J. Clin. Med. 2025, 14(16), 5696; https://doi.org/10.3390/jcm14165696 - 12 Aug 2025
Viewed by 162
Abstract
Background: An accurate device sizing for percutaneous left atrial appendage closure (LAAC) can be challenging. Intraprocedural automated LAA evaluation by transoesophageal echocardiography (TEE) based on an artificial intelligence-assisted 3D model may facilitate sizing and prediction of C-arm angulation for device implantation in a [...] Read more.
Background: An accurate device sizing for percutaneous left atrial appendage closure (LAAC) can be challenging. Intraprocedural automated LAA evaluation by transoesophageal echocardiography (TEE) based on an artificial intelligence-assisted 3D model may facilitate sizing and prediction of C-arm angulation for device implantation in a one-stop-shop procedure. This study aimed to evaluate the feasibility and accuracy of automated echocardiographic LAA sizing based on a patient-specific 3D heart model prototype in real-time. Methods: A prospective monocentric study was conducted in 66 patients who underwent LAAC with the Amulet device. All major LAA morphologies were represented. Preprocedural multidetector computed tomography (MSCT) measurements and intraprocedural TEE and angiography measurements of the ostium, landing zone, and C-arm angulation were compared with the 3D heart model measurements. Results: The procedure achieved a 100% success rate. The measurements for the maximum diameter of the ostium in the 3D heart model were not significantly different from those obtained via angiography, TEE, and MSCT. Specifically, the maximum diameter of the landing zone did not differ significantly compared to TEE and angiographic measurements (20.90 ± 3.42 mm vs. 20.96 ± 4.81 mm, p = 0.563; compared to 21.20 ± 3.90 mm, p = 0.291). However, these measurements were significantly smaller than the average MSCT measurements (18.30 ± 2.68 mm vs. 21.03 ± 4.34 mm, p < 0.001). Additionally, the predicted implantation angles showed no significant differences between the 3D heart model and MSCT. Conclusions: The intraprocedural application of this prototype is both safe and feasible. The measurements obtained from the 3D heart model were consistent with those from TEE and angiography, although discrepancies were noted when compared to MSCT measurements. Notably, the predicted implantation angles demonstrated strong agreement with MSCT, further supporting the prototype’s efficacy in clinical settings. Full article
(This article belongs to the Special Issue Cardiac Imaging: Current Applications and Future Perspectives)
Show Figures

Figure 1

45 pages, 7852 KiB  
Article
Determination of the Steady State Fiber Orientation Tensor States in Homogeneous Flows with Newton–Raphson Iteration Using Exact Jacobians
by Aigbe E. Awenlimobor and Douglas E. Smith
J. Compos. Sci. 2025, 9(8), 433; https://doi.org/10.3390/jcs9080433 - 9 Aug 2025
Viewed by 235
Abstract
Fiber orientation is an important descriptor of the microstructure for short fiber polymer composite materials where accurate and efficient prediction of the orientation state is crucial when evaluating the bulk thermo-mechanical response of the material. Macroscopic fiber orientation models employ the moment-tensor form [...] Read more.
Fiber orientation is an important descriptor of the microstructure for short fiber polymer composite materials where accurate and efficient prediction of the orientation state is crucial when evaluating the bulk thermo-mechanical response of the material. Macroscopic fiber orientation models employ the moment-tensor form in representing the fiber orientation state, and they all require a closure approximation for the higher-order orientation tensors. In addition, various models have more recently been developed to account for rotary diffusion due to fiber-fiber and fiber-matrix interactions which can now more accurately simulate the experimentally observed slow fiber kinematics in polymer composite processing. It is common to use explicit numerical initial value problem-ordinary differential equation (IVP-ODE) solvers such as the 4th- and 5th-order Dormand Prince Runge–Kutta (RK45) method to predict the transient and steady-state fiber orientation response. Here, we propose a computationally efficient method based on the Newton-Raphson (NR) iterative technique for determining steady state orientation tensor values by evaluating exact derivatives of the moment-tensor evolution equation with respect to the independent components of the orientation tensor. We consider various existing macroscopic-fiber orientation models and several closure approximations to ensure the robustness and reliability of the method. The performance and stability of the approach for obtaining physical solutions in various homogeneous flow fields is demonstrated through several examples. Validation of our orientation tensor exact derivatives is performed by benchmarking with results of finite difference techniques. Overall, our results show that the proposed NR method accurately predicts the steady state orientation for all tensor models, closure approximations and flow types considered in this paper and was relatively faster compared to the RK45 method. The NR convergence and stability behavior was seen to be sensitive to the initial orientation tensor guess value, the fiber orientation tensor model type and complexity, the flow type and extension to shear rate ratio. Full article
(This article belongs to the Special Issue Theoretical and Computational Investigation on Composite Materials)
Show Figures

Figure 1

19 pages, 1277 KiB  
Article
Melampyrum nemorosum L. Herb Extracts: Phytochemical Composition and Screening of Pharmacological Activities
by Victoria Reznik, Andriy Grytsyk, Roman Hrytsyk, Roman Kutsyk, Oksana Yurchyshyn, Andriy Kaplaushenko, Ain Raal and Oleh Koshovyi
Appl. Sci. 2025, 15(16), 8776; https://doi.org/10.3390/app15168776 - 8 Aug 2025
Viewed by 137
Abstract
In folk medicine, species of the genus Melampyrum (Orobanchaceae) have traditionally been used to treat dermatological conditions, neuralgia, rheumatism, and wounds. M. nemorosum L. possesses a diverse chemical profile that supports its therapeutic potential. This study aimed to investigate its principal biologically active [...] Read more.
In folk medicine, species of the genus Melampyrum (Orobanchaceae) have traditionally been used to treat dermatological conditions, neuralgia, rheumatism, and wounds. M. nemorosum L. possesses a diverse chemical profile that supports its therapeutic potential. This study aimed to investigate its principal biologically active compounds and to evaluate the antimicrobial, anti-inflammatory, haemostatic, and wound-healing activities of aqueous-ethanolic extracts (40% ethanol (MN40) and 70% ethanol (MN70)) of M. nemorosum herb. Nineteen phenolic compounds were identified in the extracts, including phenolic acids, hydroxycinnamic acids, flavonoids, and tannin metabolites. At a dose of 100 mg/kg, the extracts exhibited anti-inflammatory activity in the formalin-induced paw oedema model. Haemostatic effects were demonstrated by reductions in bleeding time by 38.5% (MN40) and 45.5% (MN70). Both extracts significantly accelerated wound healing, with MN70 showing the most pronounced effect: achieving 97.8% wound closure by day 11 and complete healing by day 13. Additionally, both extracts demonstrated antimicrobial activity, with MN70 being the most effective across all tested parameters. These findings reported here for the first time for this plant support the potential of M. nemorosum herb extracts for further preclinical and clinical development as a multifunctional phytotherapeutic agent. Full article
(This article belongs to the Section Chemical and Molecular Sciences)
Show Figures

Figure 1

19 pages, 741 KiB  
Review
Gold Nanoparticles for Wound Healing in Animal Models
by Stephen Klavsen and Sten Rasmussen
Nanomaterials 2025, 15(16), 1213; https://doi.org/10.3390/nano15161213 - 8 Aug 2025
Viewed by 538
Abstract
Background: Gold nanoparticles (GNPs) are increasingly studied for their potential to enhance wound healing, but their overall efficacy remains uncertain. Methods: We conducted a systematic meta-analysis (search date: 14 May 2025) across five databases. Included were randomized animal studies comparing GNPs to placebo, [...] Read more.
Background: Gold nanoparticles (GNPs) are increasingly studied for their potential to enhance wound healing, but their overall efficacy remains uncertain. Methods: We conducted a systematic meta-analysis (search date: 14 May 2025) across five databases. Included were randomized animal studies comparing GNPs to placebo, reporting wound closure percentages and relevant variance measures. Risk of bias was assessed using Cochrane and CAMARADES tools. Cohen’s d was used to estimate effect size under a random-effects model. Results: Thirty-one studies met the inclusion criteria. The pooled effect size was d = 4.52 (95% CI: 3.61 to 5.43; z = 9.73; p < 0.001), indicating a significant benefit of GNPs. Although heterogeneity was moderate to high, results consistently favored GNPs. Conclusion: GNPs significantly accelerate wound healing in animal models, supporting their potential as therapeutic agents. Full article
Show Figures

Figure 1

17 pages, 7341 KiB  
Article
Three-Dimensional Environment Mapping with a Rotary-Driven Lidar in Real Time
by Baixin Tong, Fangdi Jiang, Bo Lu, Zhiqiang Gu, Yan Li and Shifeng Wang
Sensors 2025, 25(15), 4870; https://doi.org/10.3390/s25154870 - 7 Aug 2025
Viewed by 452
Abstract
Three-dimensional environment reconstruction refers to the creation of mathematical models of three-dimensional objects suitable for computer representation and processing. This paper proposes a novel 3D environment reconstruction approach that addresses the field-of-view limitations commonly faced by LiDAR-based systems. A rotary-driven LiDAR mechanism is [...] Read more.
Three-dimensional environment reconstruction refers to the creation of mathematical models of three-dimensional objects suitable for computer representation and processing. This paper proposes a novel 3D environment reconstruction approach that addresses the field-of-view limitations commonly faced by LiDAR-based systems. A rotary-driven LiDAR mechanism is designed to enable uniform and seamless full-field-of-view scanning, thereby overcoming blind spots in traditional setups. To complement the hardware, a multi-sensor fusion framework—LV-SLAM (LiDAR-Visual Simultaneous Localization and Mapping)—is introduced. The framework consists of two key modules: multi-threaded feature registration and a two-phase loop closure detection mechanism, both designed to enhance the system’s accuracy and robustness. Extensive experiments on the KITTI benchmark demonstrate that LV-SLAM outperforms state-of-the-art methods including LOAM, LeGO-LOAM, and FAST-LIO2. Our method reduces the average absolute trajectory error (ATE) from 6.90 m (LOAM) to 2.48 m, and achieves lower relative pose error (RPE), indicating improved global consistency and reduced drift. We further validate the system in real-world indoor and outdoor environments. Compared with fixed-angle scans, the rotary LiDAR mechanism produces more complete reconstructions with fewer occlusions. Geometric accuracy evaluation shows that the root mean square error between reconstructed and actual building dimensions remains below 5 cm. The proposed system offers a robust and accurate solution for high-fidelity 3D reconstruction, particularly suitable for GNSS-denied and structurally complex environments. Full article
Show Figures

Figure 1

16 pages, 4197 KiB  
Review
Conformational Dynamics and Structural Transitions of Arginine Kinase: Implications for Catalysis and Allergen Control
by Sung-Min Kang
Life 2025, 15(8), 1248; https://doi.org/10.3390/life15081248 - 6 Aug 2025
Viewed by 317
Abstract
Arginine kinase is a key phosphagen kinase in invertebrates that facilitates rapid ATP regeneration by reversibly transferring phosphate groups between phosphoarginine and ADP. Structural studies have shown that the enzyme adopts distinct conformations in its ligand-free and ligand-bound states, known as the “open” [...] Read more.
Arginine kinase is a key phosphagen kinase in invertebrates that facilitates rapid ATP regeneration by reversibly transferring phosphate groups between phosphoarginine and ADP. Structural studies have shown that the enzyme adopts distinct conformations in its ligand-free and ligand-bound states, known as the “open” and “closed” forms, respectively. These conformational changes are crucial for catalytic activity, enabling precise positioning of active-site residues and loop closure during phosphoryl transfer. Transition-state analog complexes have provided additional insights by mimicking intermediate states of catalysis, supporting the functional relevance of the open/closed structural model. Furthermore, studies across multiple species reveal how monomeric and dimeric forms of arginine kinase contribute to its allosteric regulation and substrate specificity. Beyond its metabolic role, arginine kinase is also recognized as a major allergen in crustaceans. Its structural uniqueness and absence in vertebrates make it a promising candidate for selective drug targeting. By integrating crystallographic data with functional context, this review highlights conserved features and species-specific variations of arginine kinase that may inform the design of inhibitors. Such molecules have the potential to serve both as antiparasitic agents and as novel therapeutics to manage crustacean-related allergic responses in humans. Full article
(This article belongs to the Section Proteins and Proteomics)
Show Figures

Figure 1

17 pages, 4589 KiB  
Article
Evaluation of Slope Stability and Landslide Prevention in a Closed Open-Pit Mine Used for Water Storage
by Pengjiao Zhang, Yuan Gao, Yachao Liu and Tianhong Yang
Appl. Sci. 2025, 15(15), 8659; https://doi.org/10.3390/app15158659 - 5 Aug 2025
Viewed by 218
Abstract
To study and quantify the impact of water storage on lake slope stability after the closure of an open-pit mine, we targeted slope control measures by large-scale parallel computing methods and strength reduction theory. This was based on a three-dimensional refined numerical model [...] Read more.
To study and quantify the impact of water storage on lake slope stability after the closure of an open-pit mine, we targeted slope control measures by large-scale parallel computing methods and strength reduction theory. This was based on a three-dimensional refined numerical model to simulate the evolution of slope stability under different water storage levels and backfilling management conditions, and to quantitatively assess the risk of slope instability through the spatial distribution of stability coefficients. This study shows that during the impoundment process, the slope stability has a nonlinear decreasing trend due to the decrease in effective stress caused by the increase in pore water pressure. When the water storage was at 0 m, the instability range is the largest, and the surface range is nearly 200 m from the edge of the pit; when the water level continued to rise to 50 m, the hydrostatic pressure of the pit lake water on the slope support effect began to appear, and the stability was improved, but there is still a wide range of unstable areas at the bottom. In view of the unstable area of the steep slope with soft rock in the north slope during the process of water storage, the management scheme of backfilling the whole bottom to −150 m was proposed, and the slope protection and pressure footing were formed by discharging the soil to −40 m in steps to improve the anti-slip ability of the slope. Full article
(This article belongs to the Special Issue Advances in Slope Stability and Rock Fracture Mechanisms)
Show Figures

Figure 1

16 pages, 8522 KiB  
Article
Plant Extracts as Modulators of the Wound Healing Process—Preliminary Study
by Anna Herman, Aleksandra Leska, Patrycja Wińska and Andrzej Przemysław Herman
Int. J. Mol. Sci. 2025, 26(15), 7490; https://doi.org/10.3390/ijms26157490 - 2 Aug 2025
Viewed by 543
Abstract
The treatment of chronic wounds is one of the most complex therapeutic problems of modern medicine. It leads to patients’ protracted recovery, generating high treatment costs. Herbal products may be useful in the treatment of chronic wounds via a wide range of pharmacological [...] Read more.
The treatment of chronic wounds is one of the most complex therapeutic problems of modern medicine. It leads to patients’ protracted recovery, generating high treatment costs. Herbal products may be useful in the treatment of chronic wounds via a wide range of pharmacological properties and multidirectional effects on the wound healing phases. The study aims to determine the ability of selected plant extracts to modulate the processes involved in wound healing. The antimicrobial (MIC, MBC, MFC) and antioxidant (ABTS, DPPH) activities, cytotoxicity (MTT test), scratch wound test, and collagen assay were tested. R. canina (MBC 0.39 mg/mL) and V. venifera (MBC 3.13 mg/mL) extracts had bactericidal activities against P. aeruginosa and S. aureus, respectively. The V. vinifera extract showed the highest antioxidant activity in both ABTS (EC50 0.078 mg/mL) and DPPH (EC50 0.005 mg/mL) methods. The percentage of wound closure observed for C. cardunculus, R. rosea, and R. canina extracts with HaCaT, and V. vinifera extract with Hs27 cells was set as 100%. V. vinifera extract (50 μg/mL) stimulated collagen synthesis 5.16 times more strongly than ascorbic acid. Our preliminary study showed that some plant extracts may be promising modulators of the wound healing process, although further in-depth studies are necessary to determine their effectiveness in the in vivo model. Full article
Show Figures

Figure 1

12 pages, 1043 KiB  
Article
Persistent Pharmaceuticals in a South African Urban Estuary and Bioaccumulation in Endobenthic Sandprawns (Kraussillichirus kraussi)
by Olivia Murgatroyd, Leslie Petrik, Cecilia Y. Ojemaye and Deena Pillay
Water 2025, 17(15), 2289; https://doi.org/10.3390/w17152289 - 1 Aug 2025
Viewed by 505
Abstract
Pharmaceuticals are increasingly being detected in coastal ecosystems globally, but contamination and bioaccumulation levels are understudied in temporarily closed estuaries. In these systems, limited freshwater inputs and periodic closure may predispose them to pharmaceutical accumulation. We quantified in situ water column pharmaceutical levels [...] Read more.
Pharmaceuticals are increasingly being detected in coastal ecosystems globally, but contamination and bioaccumulation levels are understudied in temporarily closed estuaries. In these systems, limited freshwater inputs and periodic closure may predispose them to pharmaceutical accumulation. We quantified in situ water column pharmaceutical levels at five sites in a temporarily closed model urban estuary (Zandvlei Estuary) in Cape Town, South Africa, that has been heavily anthropogenically modified. The results indicate an almost 100-fold greater concentration of pharmaceuticals in the estuary relative to False Bay, into which the estuary discharges, with acetaminophen (max: 2.531 µg/L) and sulfamethoxazole (max: 0.138 µg/L) being the primary pollutants. Acetaminophen was potentially bioaccumulative, while nevirapine, carbamazepine and sulfamethoxazole were bioaccumulated (BAF > 5000 L/kg) by sandprawns (Kraussillichirus kraussi), which are key coastal endobenthic ecosystem engineers in southern Africa. The assimilative capacity of temporarily closed estuarine environments may be adversely impacted by wastewater discharges that contain diverse pharmaceuticals, based upon the high bioaccumulation detected in key benthic engineers. Full article
Show Figures

Figure 1

36 pages, 4967 KiB  
Review
Mechanical Behavior of Adhesively Bonded Joints Under Tensile Loading: A Synthetic Review of Configurations, Modeling, and Design Considerations
by Leila Monajati, Aurelian Vadean and Rachid Boukhili
Materials 2025, 18(15), 3557; https://doi.org/10.3390/ma18153557 - 29 Jul 2025
Viewed by 497
Abstract
This review presents a comprehensive synthesis of recent advances in the tensile performance of adhesively bonded joints, focusing on applied aspects and modeling developments rather than providing a full theoretical analysis. Although many studies have addressed individual joint types or modeling techniques, an [...] Read more.
This review presents a comprehensive synthesis of recent advances in the tensile performance of adhesively bonded joints, focusing on applied aspects and modeling developments rather than providing a full theoretical analysis. Although many studies have addressed individual joint types or modeling techniques, an integrated review that compares joint configurations, modeling strategies, and performance optimization methods under tensile loading remains lacking. This work addresses that gap by examining the mechanical behavior of key joint types, namely, single-lap, single-strap, and double-strap joints, and highlighting their differences in stress distribution, failure mechanisms, and structural efficiency. Modeling and simulation approaches, including cohesive zone modeling, extended finite element methods, and virtual crack closure techniques, are assessed for their predictive accuracy and applicability to various joint geometries. This review also covers material and geometric enhancements, such as adherend tapering, fillets, notching, bi-adhesives, functionally graded bondlines, and nano-enhanced adhesives. These strategies are evaluated in terms of their ability to reduce stress concentrations and improve damage tolerance. Failure modes, adhesive and adherend defects, and delamination risks are also discussed. Finally, comparative insights into different joint configurations illustrate how geometry and adhesive selection influence strength, energy absorption, and weight efficiency. This review provides design-oriented guidance for optimizing bonded joints in aerospace, automotive, and structural engineering applications. Full article
(This article belongs to the Special Issue Advanced Materials and Processing Technologies)
Show Figures

Figure 1

23 pages, 8391 KiB  
Article
Autoregulation of Woven Fabric Structure: Image-Based and Regression Analysis of Structural Homogeneity Under Varying Weaving Parameters
by Magdalena Owczarek
Materials 2025, 18(15), 3554; https://doi.org/10.3390/ma18153554 - 29 Jul 2025
Viewed by 272
Abstract
This study investigates the influence of weaving process parameters on the structural homogeneity of woven fabrics, with a focus on the structural autoregulation phenomenon. Two experimental fabric groups of 30 each, plain and twill weaves, were produced using varied loom settings: shed closure [...] Read more.
This study investigates the influence of weaving process parameters on the structural homogeneity of woven fabrics, with a focus on the structural autoregulation phenomenon. Two experimental fabric groups of 30 each, plain and twill weaves, were produced using varied loom settings: shed closure timing, lease rod position, backrest roller position, warp pre-tension, and yarn twist direction. Structural uniformity was assessed using a proprietary method and the MagFABRIC 2.1. image analysis system, which quantify intra-repeat, inter-repeat, and global inhomogeneity. This method uses the size, shape, and location of inter-thread pores as well as warp and weft pitches. The results indicate that autoregulation can reduce local structural disturbances, including warp yarn grouping. In plain weaves, loom parameters and humidity significantly contributed to structural autoregulation. In contrast, twill weaves demonstrated dominant internal feedback mechanisms, significantly influenced by yarn twist direction. Regression models at F = 10 revealed nonlinear interactions, confirming autoregulation and experimentally supporting Nosek’s quasi-dynamic theory for these types of fabrics. The results of these studies have practical relevance in high-performance textiles such as filtration, barrier fabrics, and composite reinforcements, where local structural deviations critically affect the functional properties of fabrics. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

26 pages, 3200 KiB  
Article
The Effects of Anthyllis vulneraria Hydroalcoholic Leaf Extract as an Adjuvant in Wound Healing
by Olga-Maria Iova, Gheorghe-Eduard Marin, Ana-Maria Vlase, Marcela Achim, Dana Muntean, Ioan Tomuţă, Remus Moldovan, Nicoleta Decea, Bogdan Alexandru Gheban, Sebastian Romeo Pintilie, Oana-Alina Hoteiuc, Roxana Denisa Capras and Adriana Gabriela Filip
Appl. Sci. 2025, 15(15), 8388; https://doi.org/10.3390/app15158388 - 29 Jul 2025
Viewed by 356
Abstract
Anthyllis vulneraria is a traditional medicinal plant with confirmed anti-inflammatory properties, attributed to its high polyphenolic content. This study aimed to evaluate the wound-healing potential of A. vulneraria leaf extract in a rat burn model. Four groups of eight Wistar rats each received [...] Read more.
Anthyllis vulneraria is a traditional medicinal plant with confirmed anti-inflammatory properties, attributed to its high polyphenolic content. This study aimed to evaluate the wound-healing potential of A. vulneraria leaf extract in a rat burn model. Four groups of eight Wistar rats each received the following daily topical applications for 14 days: vehicle cream (negative control); silver sulfadiazine (positive control); or plant-based creams containing either 1 mg/cm2 or 2 mg/cm2 of polyphenols (experimental groups 1 and 2, respectively). On days 7 and 14, four animals per group were euthanized for histological and oxidative stress evaluations. LC-MS/MS analysis of the leaf extract identified hyperoside, ferulic acid, and p-coumaric acid as major constituents. Experimental group 1 showed significantly enhanced wound closure on days 5 and 7, while group 2 exhibited a significant effect on day 5. All oxidative stress markers, except catalase activity, differed significantly among the groups, with the most favorable results observed in group 2. IL-8 levels decreased after the extract treatment, while no significant microscopic changes were observed. These results indicate that A. vulneraria leaf extract may serve as a valuable adjuvant in burn wound healing. Full article
Show Figures

Figure 1

18 pages, 3997 KiB  
Article
Simulation of Dynamic Particle Trapping and Accumulation in HGMS Based on FEM-CFD-DEM Coupling Approach
by Xiaoming Wang, Yonghui Hu, Yefei Hao, Zhengchang Shen, Guodong Liang and Ming Zhang
Processes 2025, 13(8), 2391; https://doi.org/10.3390/pr13082391 - 28 Jul 2025
Viewed by 343
Abstract
High-gradient magnetic separation (HGMS) is a conventional and effective method for processing weak magnetic materials. A multi-field dynamic coupling simulation method integrating the Finite Element Method (FEM), Computational Fluid Dynamics (CFD), and the Discrete Element Method (DEM) was employed to investigate the separation [...] Read more.
High-gradient magnetic separation (HGMS) is a conventional and effective method for processing weak magnetic materials. A multi-field dynamic coupling simulation method integrating the Finite Element Method (FEM), Computational Fluid Dynamics (CFD), and the Discrete Element Method (DEM) was employed to investigate the separation behavior in HGMS. The dynamic deposition process of magnetic particles under the interactions of magnetic fields, fluid flow fields, and particle–particle forces was simulated using a two-way fluid–solid coupling algorithm based on the FEM-CFD-DEM coupling approach. Experimental results demonstrated that the particle deposition profiles predicted by the double-wire medium model were in good agreement with the measured data. The research findings indicated that the separation process could be divided into three distinct stages—the adsorption stage, the closure stage, and the clogging stage—each characterized by unique dynamic behaviors and pressure-drop evolution patterns. Additionally, the effects of key parameters such as the feeding velocity and medium filling ratio on the separation process were analyzed, providing theoretical foundations and technical support for the optimization of HGMS processes and the enhancement of separation efficiency. Full article
(This article belongs to the Special Issue Mineral Processing Equipments and Cross-Disciplinary Approaches)
Show Figures

Figure 1

Back to TopTop